
Derivatives and Differentials
References are to Salas/Hille/Etgen’s Calculus, 8th Edition (Wiley, 1999)

We wish to differentiate a scalar-valued function f(r) of a vector variable r at the
point P0 = r0. For simplicity, we assume r is 2-dimensional and write r0 = (x0, y0);
however, everything extends without difficulty (except notationally) to n dimensions.

Differentials We want our basic definitions to be coordinate-free so as to ensure
some geometric content. We reduce to a one-dimensional problem by restricting
attention to the values of f along the general line through r0 with direction vector
h = h1i + h2 j, which may parametrized by r(t) = r0 + th, by setting

g(t) = f(r(t)) = f(r0 + th); (1)

this function is defined for all small t (if r0 is an interior point of the domain of f).

Definition 2 Given the point r0 and the vector h, we define the differential df of
f by

df(r0,h) = g′(0) = lim
t→0

g(t)− g(0)

t
= lim

t→0

f(r0 + th)− f(r0)

t
, (3)

provided that this limit exists.

Note that here h can be any vector; it does not have to be small and it does not
have to be a unit vector.

Directional derivatives If h is a unit vector, df(r0,h) is also called (see
Defn. 15.2.2) the directional derivative of f at the point r0 in the direction h, and is
sometimes written f ′h(r0) or Dhf(r0). (We shall not use either notation.) But if h
is not a unit vector (and not zero), we can replace h by the unit vector (1/‖h‖) h
and call df(r0, (1/‖h‖) h) the directional derivative of f in the direction of h (see the
Remark on p. 882). This usage in the book is confusing and is not recommended.

Partial derivatives For purposes of computation, we are particularly interested in
the two coordinate directions, i and j. It is convenient to write f(r) = f(x, y) here.

Definition 4 (cf. Defn. 14.4.1) The partial derivative fx(r0) or
∂f

∂x
(r0) of f with

respect to x at the point r0 = (x0, y0) is the directional derivative

fx(r0) = fx(x0, y0) =
∂f

∂x
(r0) = df(r0, i) = lim

t→0

f(x0 + t, y0)− f(x0, y0)

t
. (5)

Similarly, the partial derivative of f with respect to y at r0 is

fy(r0) = fy(x0, y0) =
∂f

∂y
(r0) = df(r0, j) = lim

t→0

f(x0, y0 + t)− f(x0, y0)

t
. (6)

If u = f(r), one often writes ux for fx and
∂u

∂x
for

∂f

∂x
.
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2 Derivatives and Differentials

Linearity It is easy to see that df(r0, kh) = k df(r0,h) for any constant k. (Chang-
ing h to kh replaces g(t) in equation (1) by g(kt).) However, the values of f along
different lines through r0 are quite independent, apart from the obvious requirement
g(0) = f(r0). This makes it quite easy to manufacture all kinds of bizarre behavior
of df ; see the book for some examples. (The existence of df does not guarantee that
f is continuous at r0, see Example 2 on p. 860, or even that f is bounded near r0.)

Nevertheless, such pathology rarely occurs in practice. Instead of moving from P0

to P (= r0 + h = (x0 +h1, y0 +h2)) directly, we can go by way of Q (= (x0, y0 +h2));
from P0 to Q, we change only the y-coordinate, and from Q to P we change only
the x-coordinate. One often writes ∆x for h1 and ∆y for h2 here. If the partial
derivatives of f exist at all points near r0, we can estimate f(P )− f(P0) = (f(P )−
f(Q)) + (f(Q) − f(P0)) by using the one-dimensional Mean-Value Theorem, in the
form

g(t+ h)− g(t) = g′(t+ θh)h (7)

for some θ satisfying 0 < θ < 1, assuming that g′ exists.

Theorem 8 (cf. Thm. 15.1.3) Assume that fx and fy are continuous at r0 (and
therefore exist at all points near r0). Then f is differentiable at r0,

f(r0 + h) = f(r0) + fx(r0)h1 + fy(r0)h2 + o(h) as h→ 0. (9)

Proof See the book, p. 878. For the notation o(h), see p. 872.
Under these mild hypotheses, we easily compute the differential df .

Theorem 10 If fx and fy are continuous at r0, the differential df is given by

df(r0,h) = ∇f(r0) • h = fx(r0)h1 + fy(r0)h2 =
∂f

∂x
(r0)h1 +

∂f

∂y
(r0)h2. (11)

Proof If we use equation (9) (with h replaced by th), equation (1) becomes

g(t) = f(r0 + th) = f(r0) + fx(r0) th1 + fy(r0) th2 + o(t) as t→ 0.

Now we can read off g′(0) as required. The term o(t) contributes nothing.

Approximation If we plug equation (11) back into equation (9), we obtain

f(r0 + h) = f(r0) + df(r0,h) + o(h) as h→ 0, (12)

which shows how the differential df gives a useful approximation to f(r0 + h).

The coordinate differentials The coordinate x can itself be considered a function
of r, and its differential is readily computed from equation (11), or directly from
equation (3), as dx(r0,h) = 1h1 + 0h2 = h1. Similarly, dy(r0,h) = h2. This allows us
to rewrite equation (11) as the equation of differentials

df(r0,h) = fx(r0) dx(r0,h) + fy(r0) dy(r0,h). (13)

If we suppress all the evaluations and switch to the other notation, this takes the
traditional and memorable form (cf. (15.7.4))

df =
∂f

∂x
dx+

∂f

∂y
dy. (14)

So df/dx is not the same as ∂f/∂x, unless dy happens to be zero.
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