Evaluation of Double Integrals

The following Fubini-type theorem is fundamental to the evaluation of any Riemann double integral. Yet I have found it stated in this form only in the advanced text by Apostol (and even there, only with a complicated proof of a special case). It is in fact quite easy, and is a result in pure integration (or measure) theory, with no mention of continuity; it is obvious for step functions. We sketch a direct proof below. Everything here generalizes (with a little care) to three dimensions, or even n dimensions.

Theorem 1 Assume that the function $f(x, y)$ is integrable over the rectangle R defined by $a \leq x \leq b, c \leq y \leq d$ in the $x y$-plane.
(a) We have

$$
\iint_{R} f(x, y) d x d y=\int_{c}^{d} F(y) d y=\int_{c}^{d}\left\{\int_{a}^{b} f(x, y) d x\right\} d y
$$

provided that the inner integral

$$
F(y)=\int_{a}^{b} f(x, y) d x
$$

exists for all $y(c \leq y \leq d)$. In particular, the function F is integrable.
(b) We have

$$
\iint_{R} f(x, y) d x d y=\int_{a}^{b} G(x) d x=\int_{a}^{b}\left\{\int_{c}^{d} f(x, y) d y\right\} d x
$$

provided that the inner integral

$$
G(x)=\int_{c}^{d} f(x, y) d y
$$

exists for all $x(a \leq x \leq b)$. In particular, the function G is integrable.
Examples show that the integrability hypothesis on f is essential. For this result to be useful, we need a supply of integrable functions.

THEOREM 2 Suppose that the function $f(x, y)$ is bounded on the rectangle R, and is continuous except on a set E with area zero. Then f is integrable over R.

We do not give the proof, which is quite advanced even if we assume that f is continuous everywhere. And this special case fails to cover many essential applications, such as the following corollary.

Corollary 3 Let Ω be a bounded region in the plane. If the set of boundary points of Ω has area zero, then the area of Ω is defined.

Proof We apply Theorem 2 to the characteristic function χ_{Ω} of Ω.
In view of this corollary, Theorem 2 does look rather circular. To make it useful, we need a supply of sets that are known to have area zero. Of course, the union of any two (or finitely many) sets of area zero also has area zero.

Theorem 4 The following sets have area zero:
(i) The graph $y=f(x)$ of an integrable function on the interval $a \leq x \leq b$;
(ii) The graph $x=g(y)$ of an integrable function on the interval $c \leq y \leq d$;
(iii) The image curve of a function $\mathbf{r}(t)$ that is continuously differentiable on the interval $a \leq t \leq b$.

We omit the proofs. Parts (i) and (ii) are again pure integration theory, but somewhat messier, and are closely related to the following result.
Theorem 5 Suppose that $f(x)$ is integrable on the interval $a \leq x \leq b$, and that $f(x) \geq 0$ for all x. Then the region Ω under the graph of f, defined by $0 \leq y \leq f(x)$ and $a \leq x \leq b$, has area $\int_{a}^{b} f(x) d x$.

Once we know that the area exists, it is readily computed by Theorem 1.
Sketch proof of Theorem 1(a) We have to show that F is integrable, and that its integral is $I=\iint_{R} f(x, y) d x d y$.

So take any Riemann sum

$$
\begin{equation*}
\sum_{j=1}^{n} F\left(y_{j}^{*}\right)\left(y_{j}-y_{j-1}\right) \tag{6}
\end{equation*}
$$

for the integral of F, where $c=y_{0}<y_{1}<\ldots<y_{n}=d$ is a partition (or subdivision) of $[c, d]$ and $y_{j-1} \leq y_{j}^{*} \leq y_{j}$ for each j. We also choose a partition $a=x_{0}<x_{1}<$ $\ldots<x_{m}=b$ of $[a, b]$, thus dividing the rectangle R into little rectangles $R_{i j}$ as usual.

For each j, we choose points $P_{i j} \in R_{i j}$ having y_{j}^{*} as the y-coordinate; then

$$
\begin{equation*}
\sum_{i=1}^{m} f\left(P_{i j}\right)\left(x_{i}-x_{i-1}\right) \tag{7}
\end{equation*}
$$

is a Riemann sum for the integral

$$
\int_{a}^{b} f\left(x, y_{j}^{*}\right) d x=F\left(y_{j}^{*}\right)
$$

and will therefore be close to $F\left(y_{j}^{*}\right)$ if the x-partition is fine enough. This holds for all j simultaneously, if the x-partition is fine enough to handle all the integrals $F\left(y_{j}^{*}\right)$; this works because we are considering here only finitely many integrals.

Now multiply (7) by $y_{j}-y_{j-1}$ and add. Then

$$
\begin{equation*}
\sum_{j=1}^{n} \sum_{i=1}^{m} f\left(P_{i j}\right)\left(x_{i}-x_{i-1}\right)\left(y_{j}-y_{j-1}\right) \tag{8}
\end{equation*}
$$

will be close to (6). But (8) is a Riemann sum for the double integral I, and is therefore close to I if the partitions of $[a, b]$ and $[c, d]$ are fine enough. So (6) is close to (8) which is close to I, as required.

As it stands, this is not a formal proof, but can easily be made so. One has to insert δ and ϵ in all the right places, and check that the various choices are made in a legitimate order. The method also works well if the definite integral is defined in terms of upper and lower sums instead of Riemann sums.

