
Evaluation of Double Integrals

The following Fubini-type theorem is fundamental to the evaluation of any Rie-
mann double integral. Yet I have found it stated in this form only in the advanced
text by Apostol (and even there, only with a complicated proof of a special case).
It is in fact quite easy, and is a result in pure integration (or measure) theory, with
no mention of continuity; it is obvious for step functions. We sketch a direct proof
below. Everything here generalizes (with a little care) to three dimensions, or even n
dimensions.

Theorem 1 Assume that the function f(x, y) is integrable over the rectangle R
defined by a ≤ x ≤ b, c ≤ y ≤ d in the xy-plane.

(a) We have∫∫
R
f(x, y)dxdy =

∫ d

c
F (y)dy =

∫ d

c

{∫ b

a
f(x, y)dx

}
dy,

provided that the inner integral

F (y) =
∫ b

a
f(x, y)dx

exists for all y (c ≤ y ≤ d). In particular, the function F is integrable.

(b) We have∫∫
R
f(x, y)dxdy =

∫ b

a
G(x)dx =

∫ b

a

{∫ d

c
f(x, y)dy

}
dx,

provided that the inner integral

G(x) =
∫ d

c
f(x, y)dy

exists for all x (a ≤ x ≤ b). In particular, the function G is integrable.

Examples show that the integrability hypothesis on f is essential. For this result
to be useful, we need a supply of integrable functions.

Theorem 2 Suppose that the function f(x, y) is bounded on the rectangle R, and
is continuous except on a set E with area zero. Then f is integrable over R.

We do not give the proof, which is quite advanced even if we assume that f is con-
tinuous everywhere. And this special case fails to cover many essential applications,
such as the following corollary.

Corollary 3 Let Ω be a bounded region in the plane. If the set of boundary points
of Ω has area zero, then the area of Ω is defined.

Proof We apply Theorem 2 to the characteristic function χΩ of Ω.

In view of this corollary, Theorem 2 does look rather circular. To make it useful,
we need a supply of sets that are known to have area zero. Of course, the union of
any two (or finitely many) sets of area zero also has area zero.
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2 Evaluation of Double Integrals

Theorem 4 The following sets have area zero:

(i) The graph y = f(x) of an integrable function on the interval a ≤ x ≤ b;

(ii) The graph x = g(y) of an integrable function on the interval c ≤ y ≤ d;

(iii) The image curve of a function r(t) that is continuously differentiable on the
interval a ≤ t ≤ b.

We omit the proofs. Parts (i) and (ii) are again pure integration theory, but
somewhat messier, and are closely related to the following result.

Theorem 5 Suppose that f(x) is integrable on the interval a ≤ x ≤ b, and that
f(x) ≥ 0 for all x. Then the region Ω under the graph of f , defined by 0 ≤ y ≤ f(x)
and a ≤ x ≤ b, has area

∫ b
a f(x)dx.

Once we know that the area exists, it is readily computed by Theorem 1.

Sketch proof of Theorem 1(a) We have to show that F is integrable, and that its
integral is I =

∫ ∫
R f(x, y)dxdy.

So take any Riemann sum

n∑
j=1

F (y∗j )(yj − yj−1) (6)

for the integral of F , where c = y0 < y1 < . . . < yn = d is a partition (or subdivision)
of [c, d] and yj−1 ≤ y∗j ≤ yj for each j. We also choose a partition a = x0 < x1 <
. . . < xm = b of [a, b], thus dividing the rectangle R into little rectangles Rij as usual.

For each j, we choose points Pij ∈ Rij having y∗j as the y-coordinate; then

m∑
i=1

f(Pij)(xi − xi−1) (7)

is a Riemann sum for the integral∫ b

a
f(x, y∗j )dx = F (y∗j ),

and will therefore be close to F (y∗j ) if the x-partition is fine enough. This holds for
all j simultaneously, if the x-partition is fine enough to handle all the integrals F (y∗j );
this works because we are considering here only finitely many integrals.

Now multiply (7) by yj − yj−1 and add. Then

n∑
j=1

m∑
i=1

f(Pij)(xi − xi−1)(yj − yj−1) (8)

will be close to (6). But (8) is a Riemann sum for the double integral I, and is
therefore close to I if the partitions of [a, b] and [c, d] are fine enough. So (6) is close
to (8) which is close to I, as required.

As it stands, this is not a formal proof, but can easily be made so. One has to
insert δ and ε in all the right places, and check that the various choices are made in
a legitimate order. The method also works well if the definite integral is defined in
terms of upper and lower sums instead of Riemann sums.
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