The Tangent Vector to a Curve

Let C be a space curve parametrized by the differentiable vector-valued function $\mathbf{r}(t)$. At the point $P_{0}\left(=\mathbf{r}\left(t_{0}\right)\right)$ of C, we have the derivative (or velocity) vector

$$
\begin{equation*}
\mathbf{v}\left(t_{0}\right)=\mathbf{r}^{\prime}\left(t_{0}\right)=\lim _{h \rightarrow 0} \frac{\mathbf{r}\left(t_{0}+h\right)-\mathbf{r}\left(t_{0}\right)}{h}=\lim _{h \rightarrow 0} \frac{\overrightarrow{P_{0} P}}{h}, \tag{1}
\end{equation*}
$$

where we write P for the point $\mathbf{r}\left(t_{0}+h\right)$ on C. We give a direct geometric interpretation of this vector, assuming it is not zero. It follows from equation (1) that for small $h \neq 0$, we have $P \neq P_{0}$, so that $\overrightarrow{P_{0} P}$ is a nonzero vector.

Theorem 2 Assume that $\mathbf{r}^{\prime}\left(t_{0}\right) \neq \mathbf{0}$. Let $\theta(h)$ be the angle between the vectors $\overrightarrow{P_{0} P}$ and $\mathbf{r}^{\prime}\left(t_{0}\right)$ (which is defined for sufficiently small $h \neq 0$). Then:
(a) $\lim _{h \rightarrow 0+} \theta(h)=0$;
(b) $\lim _{h \rightarrow 0-} \theta(h)=\pi$; or equivalently, the angle between $\overrightarrow{P_{0} P}$ and $-\mathbf{r}^{\prime}\left(t_{0}\right)$ tends to 0 as $h \rightarrow 0-$.

Proof The standard angle formula gives

$$
\cos \theta(h)=\frac{\stackrel{\rightharpoonup}{P_{0} P} \cdot \mathbf{r}^{\prime}\left(t_{0}\right)}{\left\|\stackrel{\rightharpoonup}{P_{0} P}\right\|\left\|\mathbf{r}^{\prime}\left(t_{0}\right)\right\|}=\frac{\left[\mathbf{r}\left(t_{0}+h\right)-\mathbf{r}\left(t_{0}\right)\right] \cdot \mathbf{r}^{\prime}\left(t_{0}\right)}{\left\|\mathbf{r}\left(t_{0}+h\right)-\mathbf{r}\left(t_{0}\right)\right\|\left\|\mathbf{r}^{\prime}\left(t_{0}\right)\right\|}
$$

We cannot take the limit directly, because we get $0 / 0$. However, if we first divide numerator and denominator by h and assume $h>0$, we can apply equation (1) directly (using the continuity of norms and dot products) to get

$$
\begin{equation*}
\cos \theta(h)=\frac{\frac{\mathbf{r}\left(t_{0}+h\right)-\mathbf{r}\left(t_{0}\right)}{h} \cdot \mathbf{r}^{\prime}\left(t_{0}\right)}{\left\|\frac{\mathbf{r}\left(t_{0}+h\right)-\mathbf{r}\left(t_{0}\right)}{h}\right\|\left\|\mathbf{r}^{\prime}\left(t_{0}\right)\right\|} \longrightarrow \frac{\mathbf{r}^{\prime}\left(t_{0}\right) \cdot \mathbf{r}^{\prime}\left(t_{0}\right)}{\left\|\mathbf{r}^{\prime}\left(t_{0}\right)\right\|\left\|\mathbf{r}^{\prime}\left(t_{0}\right)\right\|}=1 \tag{3}
\end{equation*}
$$

as $h \rightarrow 0+$. Finally, we apply the continuous function $\cos ^{-1}$ to deduce that

$$
\theta(h)=\cos ^{-1}(\cos \theta(h)) \longrightarrow \cos ^{-1}(1)=0 \quad \text { as } h \rightarrow 0+,
$$

as required.
If $h<0$, equation (3) is off by a sign, and we get $\theta \rightarrow \cos ^{-1}(-1)=\pi$ instead.
Geometrically, the vector $\mathbf{r}^{\prime}\left(t_{0}\right)$ is tangent to the curve C at P_{0}. This leads to the following definition.

Definition 4 The tangent line to C at P_{0} is the line through P_{0} in the direction of the vector $\mathbf{r}^{\prime}\left(t_{0}\right)$.

Thus its parametric equation (with parameter u) is (see (13.3.2))

$$
\begin{equation*}
\mathbf{R}(u)=\mathbf{r}\left(t_{0}\right)+u \mathbf{r}^{\prime}\left(t_{0}\right) . \tag{5}
\end{equation*}
$$

