The Tangent Vector to a Curve

Let C be a space curve parametrized by the differentiable vector-valued function $\mathbf{r}(t)$. At the point P_0 (= $\mathbf{r}(t_0)$) of C, we have the *derivative* (or *velocity*) vector

$$\mathbf{v}(t_0) = \mathbf{r}'(t_0) = \lim_{h \to 0} \frac{\mathbf{r}(t_0 + h) - \mathbf{r}(t_0)}{h} = \lim_{h \to 0} \frac{\overline{P_0 P}}{h},$$
(1)

where we write P for the point $\mathbf{r}(t_0+h)$ on C. We give a direct geometric interpretation of this vector, assuming it is not zero. It follows from equation (1) that for small $h \neq 0$, we have $P \neq P_0$, so that $\overrightarrow{P_0P}$ is a nonzero vector.

THEOREM 2 Assume that $\mathbf{r}'(t_0) \neq \mathbf{0}$. Let $\theta(h)$ be the angle between the vectors $\overrightarrow{P_0P}$ and $\mathbf{r}'(t_0)$ (which is defined for sufficiently small $h \neq 0$). Then:

(a) $\lim_{h\to 0+} \theta(h) = 0;$

(b) $\lim_{h\to 0^-} \theta(h) = \pi$; or equivalently, the angle between $\overrightarrow{P_0P}$ and $-\mathbf{r}'(t_0)$ tends to 0 as $h \to 0^-$.

Proof The standard angle formula gives

$$\cos\theta(h) = \frac{\overrightarrow{P_0P} \cdot \mathbf{r}'(t_0)}{\left\| \overrightarrow{P_0P} \right\| \left\| \mathbf{r}'(t_0) \right\|} = \frac{\left[\mathbf{r}(t_0+h) - \mathbf{r}(t_0) \right] \cdot \mathbf{r}'(t_0)}{\left\| \mathbf{r}(t_0+h) - \mathbf{r}(t_0) \right\| \left\| \mathbf{r}'(t_0) \right\|}$$

We cannot take the limit directly, because we get 0/0. However, if we first divide numerator and denominator by h and assume h > 0, we can apply equation (1) directly (using the continuity of norms and dot products) to get

$$\cos\theta(h) = \frac{\frac{\mathbf{r}(t_0+h) - \mathbf{r}(t_0)}{h} \cdot \mathbf{r}'(t_0)}{\left\|\frac{\mathbf{r}(t_0+h) - \mathbf{r}(t_0)}{h}\right\| \|\mathbf{r}'(t_0)\|} \longrightarrow \frac{\mathbf{r}'(t_0) \cdot \mathbf{r}'(t_0)}{\|\mathbf{r}'(t_0)\|\|\mathbf{r}'(t_0)\|} = 1$$
(3)

as $h \to 0+$. Finally, we apply the continuous function \cos^{-1} to deduce that

$$\theta(h) = \cos^{-1}(\cos\theta(h)) \longrightarrow \cos^{-1}(1) = 0$$
 as $h \to 0+$,

as required.

If h < 0, equation (3) is off by a sign, and we get $\theta \to \cos^{-1}(-1) = \pi$ instead. Geometrically, the vector $\mathbf{r}'(t_0)$ is *tangent* to the curve C at P_0 . This leads to the following definition.

DEFINITION 4 The tangent line to C at P_0 is the line through P_0 in the direction of the vector $\mathbf{r}'(t_0)$.

Thus its parametric equation (with parameter u) is (see (13.3.2))

$$\mathbf{R}(u) = \mathbf{r}(t_0) + u\mathbf{r}'(t_0). \tag{5}$$

lus III JMB File: curvtgt, Revision C; 11 Feb 2000; Page 1

110.202 Calculus III