Coordinate Vectors

References are to Anton-Rorres, 7th Edition

In order to compute in a general vector space V, we usually need to install a coordinate system on V. In effect, we refer everything back to the standard vector space \mathbf{R}^{n}, with its standard basis $E=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$. It is not enough to say that V looks like \mathbf{R}^{n}; it is necessary to choose a specific linear isomorphism.

We consistently identify vectors $\mathbf{x} \in \mathbf{R}^{n}$ with $n \times 1$ column vectors. We know all about linear transformations between the spaces \mathbf{R}^{n}.

Theorem 1 (=Thm. 4.3.3)
(a) Every linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ has the form

$$
\begin{equation*}
T(\mathbf{x})=A \mathbf{x} \quad \text { for all } \mathbf{x} \in \mathbf{R}^{n} \tag{2}
\end{equation*}
$$

for a unique $m \times n$ matrix A. Explicitly, A is given by

$$
\begin{equation*}
A=\left[T\left(\mathbf{e}_{1}\right)\left|T\left(\mathbf{e}_{2}\right)\right| \ldots \mid T\left(\mathbf{e}_{n}\right)\right] . \tag{3}
\end{equation*}
$$

(b) Assume $m=n$. Then T is an invertible linear transformation if and only if A is an invertible matrix, and if so, the matrix of T^{-1} is A^{-1}.

We call A the matrix of the linear transformation T.
Coordinate vectors The commonest way to establish an invertible linear transformation (i. e. linear isomorphism) between \mathbf{R}^{n} and a general n-dimensional vector space V is to choose a basis $B=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ of V. Then we define the linear transformation $L_{B}: \mathbf{R}^{n} \rightarrow V$ by

$$
\begin{equation*}
L_{B}\left(k_{1}, k_{2}, \ldots, k_{n}\right)=k_{1} \mathbf{b}_{1}+k_{2} \mathbf{b}_{2}+\ldots+k_{n} \mathbf{b}_{n} \quad \text { in } V \tag{4}
\end{equation*}
$$

So $L_{B}\left(\mathbf{e}_{i}\right)=\mathbf{b}_{i}$ for each i.
The purpose of requiring B to be a basis of V is to ensure that L_{B} is invertible. To get $R\left(L_{B}\right)=V$, we need B to span V; and to get L_{B} to be $1-1$, we need B to be linearly independent. If we already know $\operatorname{dim}(V)=n$, Thm. 5.4.5 shows that it is enough to verify either of these conditions; then the other will follow. However, the basis B is only a means to define the linear isomorphism L_{B}, which is what we are really after. It allows us to pass back and forth between V and \mathbf{R}^{n}. Sometimes, it is more convenient to specify L_{B} or L_{B}^{-1} directly and forget about the basis.

For the inverse linear transformation $L_{B}^{-1}: V \rightarrow \mathbf{R}^{n}$, we clearly have $L_{B}^{-1}\left(\mathbf{b}_{i}\right)=\mathbf{e}_{i}$. More generally, we convert any vector in V to an n-tuple of numbers.

Definition 5 Given a vector $\mathbf{v} \in V$, its coordinate vector with respect to the basis B is the vector

$$
\begin{equation*}
[\mathbf{v}]_{B}=L_{B}^{-1}(\mathbf{v}) \quad \text { in } \mathbf{R}^{n} \tag{6}
\end{equation*}
$$

Example If $V=\mathbf{R}^{n}$ and we choose the standard basis E, L_{E} is the identity natural transformation and we have $[\mathbf{x}]_{E}=\mathbf{x}$. (But if we choose a different basis $B,[\mathbf{x}]_{B} \neq \mathbf{x}$ in general.

Change of basis Of course the coordinate vector $[\mathbf{v}]_{B}$ depends on the choice of basis B. The first basis chosen may not be the best. Let $C=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}\right\}$ be another basis of V. Then $L_{B}^{-1} \circ L_{C}$ is a linear transformation from \mathbf{R}^{n} to \mathbf{R}^{n}, and by Theorem 1(a), it has a matrix.

Definition 7 The transition matrix from C to B is the matrix P of the linear transformation $L_{B}^{-1} \circ L_{C}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$.

To find P explicitly, we use equations (2) and (6) to compute

$$
P \mathbf{e}_{i}=L_{B}^{-1}\left(L_{C}\left(\mathbf{e}_{i}\right)\right)=L_{B}^{-1}\left(\mathbf{c}_{i}\right)=\left[\mathbf{c}_{i}\right]_{B} .
$$

Then equation (3) yields immediately

$$
\begin{equation*}
P=\left[\left[\mathbf{c}_{1}\right]_{B}\left|\left[\mathbf{c}_{2}\right]_{B}\right| \ldots \mid\left[\mathbf{c}_{n}\right]_{B}\right] . \tag{8}
\end{equation*}
$$

Thus the columns of P express the new basis vectors in terms of the old basis; note the direction.

Theorem 9 Let B and C be bases of V, and P be the transition matrix from C to B. Then

$$
\begin{equation*}
[\mathbf{v}]_{B}=P[\mathbf{v}]_{C} \quad \text { in } \mathbf{R}^{n} . \tag{10}
\end{equation*}
$$

Proof This equation translates the trivial statement

$$
L_{B}^{-1}(\mathbf{v})=L_{B}^{-1}\left(L_{C}\left(L_{C}^{-1}(\mathbf{v})\right)\right)=\left(L_{B}^{-1} \circ L_{C}\right)\left(L_{C}^{-1}(\mathbf{v})\right) \quad \text { in } \mathbf{R}^{n}
$$

using equations (2) and (6).
So P is the matrix we need to transform new coordinates to old ones. We often need the reverse direction, to convert old coordinates to new coordinates.

Lemma 11 If P is the transition matrix from the basis C to the basis B, then the transition matrix from B to C is its inverse, P^{-1}.

Proof Theorem 1(b) shows that P^{-1} is the matrix of the linear transformation

$$
\left(L_{B}^{-1} \circ L_{C}\right)^{-1}=L_{C}^{-1} \circ\left(L_{B}^{-1}\right)^{-1}=L_{C}^{-1} \circ L_{B}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n} .
$$

By Definition 7, this is just the matrix we want.
Alternatively, we can simply multiply equation (10) on the left by P^{-1}.
Inner product spaces If V is an inner product space, we want to take advantage of the extra structure and choose not just any basis.

THEOREM 12 ($=$ Thm. 6.3.2) If V is an inner product space and B is a basis of V, then L_{B} preserves the inner product structure, $\left\langle L_{B}(\mathbf{x}), L_{B}(\mathbf{y})\right\rangle=\mathbf{x . y}$ (and hence the norm, $\left.\left\|L_{B}(\mathbf{x})\right\|=\|\mathbf{x}\|\right)$, if and only if the basis B is orthonormal.

Similarly, the relevant transition matrices take a special form.
Theorem 13 Suppose B and C are orthonormal bases of V. Then the transition matrix P from C to B is an orthogonal matrix.

Proof By Theorem 12, L_{B} and L_{C} preserve the inner-product structure, and therefore so does $L_{B}^{-1} \circ L_{C}$. By Theorem 6.5.3 (or 6.5.1), its matrix P is orthogonal.

