
The Cone Operator in Singular Homology

This note reorganizes some material in Hatcher’s “Algebraic Topology”, §2.1.

We introduce the cone operator, as a tool for the homotopy and excision axioms.

Linear chains As a first step, we study the following situation. Suppose Z is a
convex subspace of Rq. Given any n + 1 points v0, v1, . . . , vn in Z (not necessarily
linearly independent), we have the linear map

λ = [v0, v1, . . . , vn]: ∆n −−→ Z (1)

from the standard n-simplex ∆n ⊂ Rn+1 with vertices ei (for 0 ≤ i ≤ n), defined by
λ(ei) = vi for each i. Its image in Z is thus

λ(∆n) =

{
n∑

i=0

tivi : ti ≥ 0 for all i,
n∑

i=0

ti = 1

}
, (2)

which may or may not be a geometric simplex.
Such maps λ generate the subgroup LCn(Z) ⊂ Cn(Z) of linear n-chains in Z. As

n varies, the groups LCn(Z) clearly form a sub-chain complex LC∗(Z) of the singular
chain complex C∗(Z). The space Z, being convex, is contractible.

Proposition 3 H0(LC∗(Z)) ∼= Z, and Hn(LC∗(Z)) = 0 for n 6= 0.

Suppose Z ′ ⊂ Rs is another convex subspace, and that A: Rq → Rs is a linear (or
affine) map that satisfies A(Z) ⊂ Z ′. It is clear that the chain map A#: C∗(Z) →
C∗(Z

′) restricts to a chain map

A#: LC∗(Z) −−→ LC∗(Z
′). (4)

The cone operator This is suggested by the fact that the cone on a simplex is
another simplex.

Definition 5 Given a point v ∈ Z, we define the cone operator

Cv: LCn(Z) −−→ LCn+1(Z)

as the homomorphism defined on each linear simplex (1) by

Cvλ = Cv[v0, v1, v2, . . . , vn] = [v, v0, v1, v2, . . . , vn] ∈ LCn+1(Z). (6)

Proposition 7 With A: Z → Z ′ as in (4), we have

A# ◦ Cv = CAv ◦ A#: LC∗(Z) −−→ LC∗(Z
′).

Let us compute the boundary.

∂Cvλ = [v0, v1, . . . , vn]−
n∑

i=0

(−1)i[v, v0, v1, . . . , v̂i, . . . , vn]

= λ− Cv∂λ.

This calculation is valid only for n > 0. For λ = [v0] we have instead

∂Cvλ = ∂[v, v0] = [v0]− [v] = λ− [v].
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2 The Cone Operator in Singular Homology

By taking linear combinations, for any chain c ∈ LCn(Z) we may write

∂Cvc =

{
c− Cv∂c if n > 0;
c− (εc)[v] if n = 0;

(8)

where we introduce the augmentation homomorphism ε: LC0(Z) = C0(Z) → Z given
by ε[z] = 1 for all z ∈ Z.

Proof of Proposition 3 It is not necessary to determine the n-cycles or n-boundaries
in LC∗(Z). If c ∈ LCn(Z) is a cycle, where n > 0, (8) shows that c = ∂Cvc and is
thus a boundary.

Any chain c ∈ LC0(Z) is a 0-cycle, and by (8) is homologous to some multiple
(εc)[v] of [v]. It follows that H0(LC∗(Z)) ∼= Z, generated by [v].

Chain homotopies The usefulness of equation (8) suggests a definition.

Definition 9 Given two chain maps f, g: C → C ′ between chain complexes C and
C ′, a chain homotopy from f to g is a family of homomorphisms sn: Cn → C ′

n+1 that
satisfy

∂snc + sn−1∂c = gnc− fnc for all n and all c ∈ Cn. (10)

We say the two chain maps are chain homotopic and write f ' g: C → C ′.

It is easy to see that being chain homotopic is an equivalence relation. The
argument of Proposition 3 generalizes immediately.

Proposition 11 If f, g: C → C ′ are chain homotopic chain maps, we have f∗ =
g∗: Hn(C) → Hn(C ′).

Proof If c ∈ Cn is a cycle, (10) reduces to gnc − fnc = ∂snc, which shows that the
cycles fnc and gnc are homologous.

The prism operator, on linear chains Let Z be a convex subspace of Rq, as
before. We compare the two chain maps j0#, j1,#: LC∗(Z) → LC∗(Z×I) induced by
the maps j0 and j1 defined by jr(z) = (z, r).

Given a linear n-simplex λ = [u0, u1, . . . , un] in Z, we write the two simplices j0 ◦λ
and j1 ◦ λ as [v0, v1, . . . , vn] and [w0, w1, . . . , wn] respectively; they give the two ends
of a prism ∆n × I in Z × I (when the ui are linearly independent). Geometrically,
although the prism is not a simplex, it can be regarded as a cone with vertex v0 on
the union of the top face ∆n×1 and F0×I, where F0 denotes the face of ∆n opposite
u0 (the image of η0: ∆

n−1 ⊂ ∆n). (See the pictures on page 112.) This suggests the
following algebraic definition.

Definition 12 We define the prism operator homomorphism

P ′
n: LCn(Z) −−→ LCn+1(Z×I)

on any linear n-simplex λ = [u0, u1, . . . , un] as above by

P ′
nλ = Cv0(j1#λ− P ′

n−1d0λ) ∈ LCn+1(Z×I) for n ≥ 0, (13)

using induction on n, where v0 = (u0, 0) ∈ Z × I. Of course, P ′
n = 0 for all n < 0.
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The Cone Operator in Singular Homology 3

Note that the vertex v0 of the cone varies as λ varies.
It is clear that P ′

n commutes with linear maps, in the following sense.

Proposition 14 Let A: Z → Z ′ be a linear (or affine) map as in (4). Then

P ′
n ◦ A# = (A×1I)# ◦ P ′

n: LCn(Z) −−→ LCn+1(Z
′×I).

Lemma 15 Let Z be a convex subspace of Rq. Then for all n,

∂ ◦ P ′
n + P ′

n−1 ◦ ∂ = j1# − j0#: LCn(Z) −−→ LCn(Z×I). (16)

In words, the homomorphisms P ′
n form a chain homotopy P ′ from j0# to j1#.

Proof For n = 0, P ′
0λ = [v0, w0] and

∂P ′
0λ = ∂[v0, w0] = [w0]− [v0] = j1#λ− j0#λ.

For n > 0, we proceed inductively:

∂P ′
nλ = ∂Cv0j1#λ− ∂Cv0P

′
n−1d0λ by (13)

= j1#λ− Cv0∂j1#λ− P ′
n−1d0λ + Cv0∂P ′

n−1d0λ by (8)

= j1#λ− Cv0j1#∂λ− P ′
n−1d0λ− Cv0P

′
n−2∂d0λ + Cv0j1#d0λ− Cv0j0#d0λ,

using (16) for n − 1 and the induction hypothesis. Here, the second and fifth terms
combine as

−
n∑

i=1

(−1)iCv0j1#diλ. (17)

In the fourth term, we expand

∂d0λ =
n−1∑
k=0

(−1)kdkd0λ =
n−1∑
k=0

(−1)kd0dk+1λ,

so that the fourth term becomes

−Cv0P
′
n−2∂d0λ =

n−1∑
k=0

(−1)k+1Cv0P
′
n−2d0dk+1λ. (18)

The last term reduces to one we want,

Cv0j0#[u1, . . . , un] = Cv0 [v1, . . . , vn] = [v0, v1, . . . , vn] = j0#λ.

Meanwhile, again using (13), for P ′
n−1,

P ′
n−1∂λ = P ′

n−1d0λ +
n∑

i=1

(−1)iP ′
n−1diλ

= P ′
n−1d0λ +

n∑
i=1

(−1)iCv0j1#diλ−
n∑

i=1

(−1)iCv0P
′
n−2d0diλ,

where we note that for i > 0, the leading vertex of diλ is still u0. When we add ∂P ′
nλ

to this, the first term cancels out, the second term cancels (17), and the third cancels
(18), if we replace i by k + 1.
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4 The Cone Operator in Singular Homology

The prism operator, on general chains We extend the prism operator P ′ to
general spaces and chains by working in the space ∆n × I rather than X or Y . We
focus attention on the element δn ∈ LCn(∆n) ⊂ Cn(∆n), which denotes the identity
map 1: ∆n → ∆n, considered as a singular n-simplex of the space ∆n. Then for
any singular n-simplex σ: ∆n → X, the chain map σ#: C∗(∆

n) → C∗(X) induces
σ#δn = σ.

Definition 19 Given a homotopy ft: X → Y , hence a map F : X×I → Y , we define
the prism operator homomorphism Pn: Cn(X) → Cn+1(Y ) on the singular n-simplex
σ: ∆n → X, a generator of Cn(X), by

Pnσ = F#(σ×1I)#P ′
nδn. (20)

Remark We note that if X is a convex subspace of Rq, σ a linear singular n-simplex
of X, and Y = X × I with F the identity map of X × I, equation (20) reduces to

Pnσ = (σ×1I)#P ′
nδn = P ′

nσ#δn = P ′
nσ,

with the help of Proposition 14. So Pn does extend P ′
n.

Theorem 21 Given a homotopy ft: X → Y , the resulting prism operator satisfies

∂ ◦ Pn + Pn−1 ◦ ∂ = f1# − f0#: Cn(X) −−→ Cn(Y ). (22)

Corollary 23 Then f∗ = g∗: Hn(X) → Hn(Y ).

Proof of Theorem 21 We evaluate each term of (22) on a general singular n-simplex
σ: ∆n → X:

∂Pnσ = ∂F#(σ×1I)#P ′
nδn = F#(σ×1I)#∂P ′

nδn;

Pn−1∂σ =
n∑

i=0

(−1)iPn−1(σ ◦ ηi) =
n∑

i=0

(−1)iF#(σ×1I)#(ηi×1I)#P ′
n−1δn−1

= F#(σ×1I)#P ′
n−1

{
n∑

i=0

(−1)iηi#δn−1

}
by Proposition 14

= F#(σ×1I)#P ′
n−1∂δn;

f1#σ = f1 ◦ σ = F ◦ (σ×1I) ◦ j1 = F#(σ×1I)#j1#δn;

f0#σ = F#(σ×1I)#j0#δn, similarly.

Then (22) follows from (16).

Barycentric subdivision, linear case We define the barycentric subdivision first
on linear simplices, to produce a chain map S ′

n: LCn(Z) → LCn(Z). Geometrically,
we proceed by induction; once the faces of a linear n-simplex λ as in (1) have been
subdivided, we join everything to the barycenter b(λ) = 1

n+1

∑n
i=0 vi of λ.

Algebraically, we begin the induction with S ′
0 = 1, and continue with

S ′
nλ = Cb(λ)S

′
n−1∂λ ∈ LCn(Z) for n > 0. (24)

(Of course, S ′
n = 0 for n < 0.) We must check that S ′ is a chain map. For n = 1 we

have, using (8),

∂S ′
1λ = ∂Cb(λ)S

′
0∂λ = S ′

0∂λ− ε(S ′
0∂λ)[b(λ)] = S ′

0∂λ,
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The Cone Operator in Singular Homology 5

since ε(S ′
0∂λ) = ε(∂λ) = 1− 1 = 0. For n ≥ 2 we compute, again using (8),

∂S ′
nλ = ∂Cb(λ)S

′
n−1∂λ = S ′

n−1∂λ− Cb(λ)∂S ′
n−1∂λ = S ′

n−1∂λ,

since by induction ∂S ′
n−1∂λ = S ′

n−2∂∂λ = 0.
We also need a chain homotopy T ′ between S ′ and the identity chain map 1, i. e.

homomorphisms T ′
n: LCn(Z) → LCn+1(Z) that satisfy

∂ ◦ T ′
n + T ′

n−1 ◦ ∂ = 1− S ′
n: LCn(Z) −−→ LCn(Z) for all n. (25)

Geometrically (see the picture on page 122), we subdivide the lower face ∆n × 0 of
the prism ∆n× I, leave the upper face ∆n× 1 alone, and join the barycenter (b(λ), 0)
of the lower face to ∆n × 1 and the already subdivided vertical faces ∂∆n × I of the
prism, then project everything to Z.

Algebraically, we begin the induction with T ′
0 = 0. (Hatcher uses T ′

0[v0] = [v0, v0],
which works equally well. Again, T ′

n = 0 for n < 0.) We continue with

T ′
nλ = Cb(λ)(λ− T ′

n−1∂λ) ∈ LCn+1(Z) for n > 0. (26)

Then equation (25) is trivial for n = 0. We verify it for n > 0 by induction, by
evaluating it on λ, with the help of (8),

∂T ′
nλ = ∂Cb(λ)(λ− T ′

n−1∂λ) = λ− T ′
n−1∂λ− Cb(λ)∂λ + Cb(λ)∂T ′

n−1∂λ.

We use (25) for n− 1 to expand the last term,

Cb(λ)∂T ′
n−1∂λ = −Cb(λ)T

′
n−2∂∂λ + Cb(λ)∂λ− Cb(λ)S

′
n−1∂λ.

The first term on the right vanishes, the second cancels the unwanted term in ∂T ′
nλ,

and the third is S ′
nλ by definition.

The following property of S ′
n and T ′

n is immediate.

Proposition 27 With A: Z → Z ′ as in (4), the chain map A#: LCn(Z) → LCn(Z ′)
commutes with S ′

n and T ′
n: S ′

n ◦ A# = A# ◦ S ′
n and T ′

n ◦ A# = A# ◦ T ′
n.

Barycentric subdivision, general case As with the prism operator, we extend
the definition of S ′

n and T ′
n to a general singular n-simplex σ: ∆n → X of any space

X by using the chain map σ#: LCn(∆n) ⊂ Cn(∆n) → Cn(X), where δn ∈ LCn(∆n)
denotes as before the singular simplex 1: ∆n → ∆n. For all n, we define the ho-
momorphisms Sn: Cn(X) → Cn(X) and Tn: Cn(X) → Cn+1(X) on each generator σ
by

Snσ = σ#S ′
nδn; Tnσ = σ#T ′

nδn. (28)

If X happens to be a convex subspace of a real vector space and σ is a linear (or
affine) n-simplex, these reduce by Proposition 27 to S ′

nσ and T ′
nσ.

To verify that S is a chain map, we expand, using the fact that σ# and S ′ are
chain maps,

∂Snσ = ∂σ#S ′
nδn = σ#∂S ′

nδn = σ#S ′
n−1∂δn,

Sn−1∂σ =
n∑

i=0

(−1)iSn−1(σ ◦ ηi) =
n∑

i=0

(−1)iσ#ηi#S ′
n−1δn−1.
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6 The Cone Operator in Singular Homology

These agree, since

∂δn =
n∑

i=0

(−1)iδn ◦ ηi =
n∑

i=0

(−1)iηi =
n∑

i=0

(−1)iηi#δn−1 (29)

and ηi# commutes with S ′ by Proposition 27.
A similar proof shows that T satisfies

∂Tnσ + Tn−1∂σ = σ − Snσ: Cn(X) −−→ Cn(X), (30)

so is a chain homotopy from S to 1. We expand each term,

∂Tnσ = ∂σ#T ′
nδn = σ#∂T ′

nδn = σ#T ′
n∂δn,

Tn−1∂σ =
n∑

i=0

(−1)iTn−1(σ ◦ ηi) =
n∑

i=0

(−1)iσ#ηi#T ′
n−1δn−1,

σ = σ#δn,

Snσ = σ#S ′
nδn.

Since T ′
n−1 commutes with ηi# by Proposition 27, (30) now follows from (25).

We also need to know that S ′
n subdivides any linear simplex λ as in (1) into

simplices that really are smaller. There are (n+1)! simplices in the barycentric sub-
division of λ; one of these is

λ′ =

[
v0,

v0 + v1

2
,
v0 + v1 + v2

3
, . . . ,

v0 + v1 + . . . + vn

n + 1

]
.

All the others are obtained by reordering the vertices of λ. In terms of equation (2),
its image in Z ⊂ Rq is

λ′(∆n) =

{
n∑

i=0

tivi : t0 ≥ t1 ≥ . . . ≥ tn ≥ 0,
n∑

i=0

ti = 1

}
(31)

Because t0 is the largest and
∑n

i=0 ti = 1, we must have t0 ≥ 1
n+1

.

Lemma 32 We have diam λ′(∆n) ≤ n
n+1

diam λ(∆n).

Proof Consider the linear simplex λ′′ = [v0, v
′′
1 , v

′′
2 , . . . , v

′′
n], where v′′i = 1

n+1
v0+

n
n+1

vi

for 1 ≤ i ≤ n. This simplex is geometrically similar to λ, except shrunk in all direc-
tions by the factor n

n+1
, keeping v0 fixed; therefore diam λ′′(∆n) = n

n+1
diam λ(∆n).

Now the image λ′′(∆n) consists of all the points of λ(∆n) with t0 ≥ 1
n+1

, and
therefore contains λ′(∆n).
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