The Cone Operator in Singular Homology
This note reorganizes some material in Hatcher’s “Algebraic Topology”, §2.1.

We introduce the cone operator, as a tool for the homotopy and excision axioms.

Linear chains As a first step, we study the following situation. Suppose Z is a

convex subspace of R?. Given any n + 1 points vy, v1,...,v, in Z (not necessarily
linearly independent), we have the linear map
)\:[Uo,vl,...,vn]:A"—>Z (1)

from the standard n-simplex A" C R"™! with vertices ¢; (for 0 < i < n), defined by
A(e;) = v; for each 4. Its image in Z is thus

)\(A”):{Ztivi:tiZOfor all 1, Ztizl}, (2
i=0

=0

~—

which may or may not be a geometric simplex.

Such maps A generate the subgroup LC,(Z) C C,(Z) of linear n-chains in Z. As
n varies, the groups LC,,(Z) clearly form a sub-chain complex LC,(Z) of the singular
chain complex C,(Z). The space Z, being convex, is contractible.

PROPOSITION 3 Hy(LC.(Z)) 2 Z, and H,(LC.(Z)) =0 for n # 0.

Suppose Z' C R® is another convex subspace, and that A: R? — R*® is a linear (or
affine) map that satisfies A(Z) C Z'. It is clear that the chain map Ay:C.(Z) —
C.(Z') restricts to a chain map

Ay LO(Z) — LOL(Z'). (4)

The cone operator This is suggested by the fact that the cone on a simplex is
another simplex.

DEFINITION 5 Given a point v € Z, we define the cone operator
Cy: LC,(Z) — LC,11(Z)
as the homomorphism defined on each linear simplex (1) by
CuA = Cylvg, v1, 09, ..., U] = [, 00, 01,02, ...,0,] € LC,11(Z). (6)
ProposiTiION 7 With A: Z — Z' as in (4), we have
Ay oCy=CuyoAy: LC(Z) — LC.(Z'). [
Let us compute the boundary.

n

~

OO\ = [vo, 01, ..., 00 — Y (=1)"[v,00,01,...,05...,0]
i=0

=\ —C,0\

This calculation is valid only for n > 0. For A = [vg] we have instead

IC,A = O[v, vo] = [vo] — [v] = A — [v].
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2 The Cone Operator in Singular Homology

By taking linear combinations, for any chain ¢ € LC,(Z) we may write

c—Cy0c if n>0;
OCuc = { c— (ec)[v] ifn=0; (8)

where we introduce the augmentation homomorphism e: LCy(Z) = Cy(Z) — Z given
by €[z] =1 for all z € Z.

Proof of Proposition 3 It is not necessary to determine the n-cycles or n-boundaries
in LC,(Z). If ¢ € LC,(Z) is a cycle, where n > 0, (8) shows that ¢ = 9C,c and is
thus a boundary.

Any chain ¢ € LCy(Z) is a 0-cycle, and by (8) is homologous to some multiple
(ec)[v] of [v]. Tt follows that Hy(LC.(Z)) = Z, generated by [v]. O

Chain homotopies The usefulness of equation (8) suggests a definition.

DEFINITION 9 Given two chain maps f, g: C' — C’ between chain complexes C' and
(", a chain homotopy from f to g is a family of homomorphisms s,:C,, — C . that
satisfy

0SpC + Sp_10Cc = gpc — fnc for all n and all ¢ € C,,. (10)

We say the two chain maps are chain homotopic and write f ~ g:C' — C".

It is easy to see that being chain homotopic is an equivalence relation. The
argument of Proposition 3 generalizes immediately.

ProposiTION 11 If f,g:C — C' are chain homotopic chain maps, we have f, =
gx: H,(C) — H,(C").

Proof 1If c € C, is a cycle, (10) reduces to g,c — f,c = ds,c, which shows that the
cycles f,c and g,c are homologous. [

The prism operator, on linear chains Let Z be a convex subspace of R?, as
before. We compare the two chain maps jog, j1,4: LC.(Z) — LC.(Z x 1) induced by
the maps jo and j; defined by j.(2) = (z,7).

Given a linear n-simplex A = [ug, uy, ..., u,] in Z, we write the two simplices jgo A
and ji o A as [vg, v1,...,0,] and [wo, wy, ..., w,] respectively; they give the two ends
of a prism A" x I in Z x I (when the u; are linearly independent). Geometrically,
although the prism is not a simplex, it can be regarded as a cone with vertex vy on
the union of the top face A™ x 1 and F x I, where Fjy denotes the face of A™ opposite
ug (the image of no: A"™' C A™). (See the pictures on page 112.) This suggests the
following algebraic definition.

DEFINITION 12 We define the prism operator homomorphism
P LCW(Z) — LCpir(Z % 1)
on any linear n-simplex \ = [ug, uy,. .., u,] as above by
P\ = Cyy(j14\ — P, _1doA) € LC, 1 (Z %x1) for n > 0, (13)

using induction on n, where vy = (ug,0) € Z x I. Of course, P, =0 for all n < 0.
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The Cone Operator in Singular Homology 3

Note that the vertex vy of the cone varies as \ varies.
It is clear that P! commutes with linear maps, in the following sense.

PROPOSITION 14 Let A: Z — Z' be a linear (or affine) map as in (4). Then
Pl oAy =(Ax1y)yo P LC,(Z) — LC,1(Z'xI). O
LEMMA 15 Let Z be a convex subspace of R?. Then for all n,
Do P+ P _100=j14 — jou: LC,(Z) — LC,(Z XI). (16)
In words, the homomorphisms P, form a chain homotopy P’ from jou to jiu.
Proof For n =0, PJA = [vy, wy] and
IRy = Olvg, wo] = [wo] — [vo] = J1gA — JogA.
For n > 0, we proceed inductively:
IPN = 0Cy, j1u X — 0C,, Pl _1do\ by (13)
= JizA — Cyy 0712\ — P' 1doA + C, 0P, _1doX Dby (8)
= j1gA — Cuj14#0X — P doA — Cyy P! _50do\ + Cyy j1pdo) — Chyfopdo,

using (16) for n — 1 and the induction hypothesis. Here, the second and fifth terms
combine as

- Z vojl#d A (17>

In the fourth term, we expand

Ado) = Z Yedpdo = Z Yedody i\,

so that the fourth term becomes
n—1

—Coy P y0do) = (=1 Cy, P, _ydodys1 ). (18)
k=0
The last term reduces to one we want,

Cupdo|tr, ..y un] = Cyolvr, - .o, 0] = [V0, 1, . .., Un] = JogA.
Meanwhile, again using (13), for P._,,

' LON = PL_jdo) + Z(—

= P do)+ Z 1C i) — Z )iCly P! _ydod; A,

where we note that for ¢ > 0, the leading vertex of d;\ is still ug. When we add 0P/ A
to this, the first term cancels out, the second term cancels (17), and the third cancels
(18), if we replace i by k+ 1. O
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4 The Cone Operator in Singular Homology

The prism operator, on general chains We extend the prism operator P’ to
general spaces and chains by working in the space A" x [ rather than X or Y. We
focus attention on the element 6, € LC,(A") C C,(A™), which denotes the identity
map 1: A" — A" considered as a singular n-simplex of the space A"™. Then for
any singular n-simplex o: A" — X, the chain map ox: C,(A") — C.(X) induces
ouby = 0.

DEFINITION 19 Given a homotopy f;: X — Y, hence amap F: X xI — Y, we define
the prism operator homomorphism P,: C,,(X) — C,,4+1(Y) on the singular n-simplex
o: A" — X a generator of C,,(X), by

PnO' = F#(O'X 11>#P7/16n (20)

Remark We note that if X is a convex subspace of R?, ¢ a linear singular n-simplex
of X, and Y = X x [ with F' the identity map of X x I, equation (20) reduces to

P,o = (0x1;)4P.6, = Ployd, = Plo,
with the help of Proposition 14. So P, does extend P).
THEOREM 21 Given a homotopy f;: X — Y, the resulting prism operator satisfies
Do P+ Py100= frz — fop:Co(X) — Cu(Y). (22)
COROLLARY 23 Then f, = g Hy(X) — H,(Y). O

Proof of Theorem 21 We evaluate each term of (22) on a general singular n-simplex
o A" — X:

8Pn0 = 8F#(0>< 11)#P7'l(5n = F#(OX 1[)#6P¥L(Sn,

Poy0o = (1) Pacs(oom) =Y (=1) Fu(ox1)u(n:x11) 4P 100y
i=0 =0
= Fy(ox1)xP,_, {Z(—l)ini#én_l} by Proposition 14
=0

= F#(O’X 11)#P;L_105n;
figo = fioo=Fo(ox1y)oji = Fu(oX11)pji140n;
fQ#O' = F#(O'X 1I>#j0#5n7 similarly.
Then (22) follows from (16). O

Barycentric subdivision, linear case We define the barycentric subdivision first
on linear simplices, to produce a chain map S);: LC,(Z) — LC,(Z). Geometrically,
we proceed by induction; once the faces of a linear n-simplex A as in (1) have been
subdivided, we join everything to the barycenter b(A) = —= " v; of A.

n+l
Algebraically, we begin the induction with S = 1, and continue with
S1/1>‘ = C’b(,\)S;hl@)\ < LCn(Z> for n > 0. (24)

(Of course, S;, = 0 for n < 0.) We must check that S’ is a chain map. For n =1 we
have, using (8),

DS\ = OCh) ShON = ShoA — e(SHON)[B(N)] = ShoA,
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The Cone Operator in Singular Homology )

since €(SHON) = €(OA) =1 —1=0. For n > 2 we compute, again using (8),
IS, A = 0Cy(»)S;,_10X = S,,_ 10X — Cyr)0S,,_10X = S, O,

since by induction 9S],_,0\ = S],_,00\ = 0.
We also need a chain homotopy 7" between S’ and the identity chain map 1, i.e.
homomorphisms 7}: LC,,(Z) — LC,+1(Z) that satisfy

DoT!+T, 100=1-5:LC,(Z) — LC,(Z) for all n. (25)

Geometrically (see the picture on page 122), we subdivide the lower face A" x 0 of
the prism A" x I, leave the upper face A™ x 1 alone, and join the barycenter (b()),0)
of the lower face to A™ x 1 and the already subdivided vertical faces 0A™ x I of the
prism, then project everything to Z.

Algebraically, we begin the induction with 7] = 0. (Hatcher uses T{[vo] = [vo, vo],
which works equally well. Again, 7 = 0 for n < 0.) We continue with

To\ = Cypy(A = T,,_10N) € LC41(Z) for n > 0. (26)

Then equation (25) is trivial for n = 0. We verify it for n > 0 by induction, by
evaluating it on A, with the help of (8),

anlz)‘ = 801,@)()\ — T/Ha)\) = T/Ha)\ — Cb()\)a)\ + Cb()\)aTT/hlaA.
We use (25) for n — 1 to expand the last term,
Cb(A)é)T/L,l(?A = —Cb()\)T/l72aa>\ + Cbo\)ak - Cb(A)S,’%laA.

The first term on the right vanishes, the second cancels the unwanted term in 977 \,
and the third is S/ A\ by definition.
The following property of S/ and 7} is immediate.

PROPOSITION 27 With A: Z — Z' as in (4), the chain map Ay: LC,(Z) — LC,(Z")
commutes with S), and T): S} 0 Ay = Ay o S) and 1) o Ay = Ay oT). [

Barycentric subdivision, general case As with the prism operator, we extend
the definition of S/, and 7] to a general singular n-simplex o: A" — X of any space
X by using the chain map oy: LC,(A") C C,(A") — C,(X), where 6,, € LC,(A")
denotes as before the singular simplex 1: A" — A”". For all n, we define the ho-
momorphisms S,,: C,,(X) — C,(X) and T,,: C,,(X) — C,41(X) on each generator o
by
Sno = 04.5)0,; Tho = o4T.0,. (28)

If X happens to be a convex subspace of a real vector space and o is a linear (or
affine) n-simplex, these reduce by Proposition 27 to S),o and T0.

To verify that S is a chain map, we expand, using the fact that o, and S’ are
chain maps,

0Sno = 004S, 0, = 040850, = 045, 100,

n n

Sn100 =Y (=1)'S, 1(oom) =Y (—1)'opmisS), 16 1.

i=0 =0
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6 The Cone Operator in Singular Homology

These agree, since

n n n

00, = Z(_l)i(sn °M; = Z<_1)i77i = Z(_l)ini#(sn—l (29)

1=0 =0 =0

and 7, commutes with S by Proposition 27.
A similar proof shows that T satisfies

OT,0 + 1,100 = 0 — Sp0: Cp(X) — C(X), (30)

so is a chain homotopy from S to 1. We expand each term,

0T, 0 = 00416, = 040T,,0, = 04T, 00,

T,-100 = Z(_l)iTnfl(U ° 77i) = Z(—l)ia#m#Tr/b—ldnﬂ,
i=0 i=0
0 = 040,
S,0 = O'#S;Ldn.

Since 7T}, commutes with 7,4 by Proposition 27, (30) now follows from (25).

We also need to know that S/ subdivides any linear simplex A as in (1) into
simplices that really are smaller. There are (n+1)! simplices in the barycentric sub-
division of A; one of these is

A/— v Vo + V1 Vg + U1+ Vg Vo+v1+ ...+ U,
- 0y 9 ) 3 3ty n+1 .

All the others are obtained by reordering the vertices of A. In terms of equation (2),
its image in Z C R? is

i=0 i=0

Because tj is the largest and Z?:o t; = 1, we must have t, > n+r1

LEMMA 32 We have diam \'(A") < 2 diam A(A™).

Proof  Consider the linear simplex X’ = [vg, v}, 04, ..., v], where v/ = %Hv(ﬁ—niﬂvi
for 1 < ¢ < n. This simplex is geometrically similar to A, except shrunk in all direc-
tions by the factor -7, keeping vy fixed; therefore diam \"(A") = —“odiam A(A").

Now the image \’(A™) consists of all the points of A\(A™) with ¢, >
therefore contains X' (A"™). O

1
wy1s and
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