A Covering Space of the Circle

This note fills in details in Hatcher, §1.1, page 30.

We take S^1 to be the unit circle in \mathbb{C} , the complex numbers, or equivalently, in the plane \mathbb{R}^2 . Consider the map $p: \mathbb{R} \to S^1$ given by $p(t) = e^{2\pi i t} \in \mathbb{C}$, or equivalently (as in Hatcher) $p(t) = (\cos 2\pi t, \sin 2\pi t) \in \mathbb{R}^2$. Informally, it wraps the real line around the circle. We note that p is periodic, p(t+1) = p(t) for all t, so that we need discuss in detail only values of t that lie in (or near) the unit interval, [0, 1].

DEFINITION 1 Given a map $p: E \to B$, a *local section* of p is any map $s: U \to E$, where U is open in B, such that $p \circ s: U \to B$ is the inclusion, i. e. $s(x) \in p^{-1}(x)$ for all $x \in U$. The map s is a (global) section if U = B.

DEFINITION 2 Given a map $p: E \to B$, the open set $U \subset B$ is evenly covered by p if $p^{-1}(U)$ is the disjoint union of open sets \widetilde{U}_{λ} in E with local sections $s_{\lambda}: U \to \widetilde{U}_{\lambda}$ that are bijections (and hence homeomorphisms, with inverses $p|\widetilde{U}_{\lambda}$).

THEOREM 3 The map $p: \mathbb{R} \to S^1$ is a covering map, i.e. there exists a covering of S^1 by open sets U_i , each of which is evenly covered by p.

Remark The map p admits no global section, as will be clear later.

Remark The terminology is unfortunately confusing; the word *covering* has two quite different meanings here. In French, there are two separate words: *recouvrement* for an open covering of a space, and *revêtement* for a covering space.

The proof of Theorem 3 is essentially Calculus I.

Proof We use *four* open sets, U_0 , U_1 , U_2 and U_3 , described in terms of \mathbb{R}^2 rather than \mathbb{C} .

Take $U_0 = \{(x,y) \in S^1 : x > 0\}$. As $x^2 + y^2 = 1$, y determines x on U_0 by $x = \sqrt{1-y^2}$. We have the local section $s_{0,0}: U_0 \to \widetilde{U}_{0,0} = (-\frac{1}{4}, \frac{1}{4})$ given by $s_{0,0}(x,y) = \frac{1}{2\pi} \sin^{-1} y$; as y increases from -1 to 1, $\sin^{-1} y$ increases from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$ and $s_{0,0}(x,y)$ increases from $-\frac{1}{4}$ to $\frac{1}{4}$. More generally, we have for any integer n the local section $s_{0,n}: U_0 \to \widetilde{U}_{0,n} = (n-\frac{1}{4}, n+\frac{1}{4})$ given by $s_{0,n}(x,y) = n + s_{0,0}(x,y)$. For other points of \mathbb{R} , e.g. $n + \frac{1}{4} \leq t \leq n + \frac{3}{4}$, $\cos 2\pi t = \cos 2\pi (t-n) \leq 0$ and $p(t) \notin U_0$. So U_0 is evenly covered by the intervals $(n-\frac{1}{4}, n+\frac{1}{4})$.

Take $U_1 = \{(x, y) \in S^1 : y > 0\}$. Here, x determines $y = \sqrt{1-x^2}$. We have the local section $s_{1,0}: U_1 \to \widetilde{U}_{1,0} = (0, \frac{1}{2})$ given by $s_{1,0}(x, y) = \frac{1}{2\pi} \cos^{-1} x$; as x decreases from 1 to -1, $\cos^{-1} x$ increases from 0 to π and $s_{1,0}(x, y)$ increases from 0 to $\frac{1}{2}$. As with U_0, U_1 is evenly covered by the intervals $\widetilde{U}_{1,n} = (n, n + \frac{1}{2})$.

110.615 Algebraic Topology JMB File: circov, Revision A; 28 Sept 2006; Page 1

Take $U_2 = \{(x, y) \in S^1 : x < 0\}$. Here, y determines $x = -\sqrt{1-y^2}$. We have the local section $s_{2,0}: U_2 \to \widetilde{U}_{2,0} = (\frac{1}{4}, \frac{3}{4})$ given by $s_{2,0}(x, y) = \frac{1}{2} + \frac{1}{2\pi} \sin^{-1}(-y)$; as y decreases from 1 to -1, -y increases from -1 to 1, $\sin^{-1}(-y)$ increases from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$ and $s_{2,0}(x, y)$ increases from $\frac{1}{4}$ to $\frac{3}{4}$. Then U_2 is evenly covered by the intervals $\widetilde{U}_{2,n} = (n + \frac{1}{4}, n + \frac{3}{4})$.

Take $U_3 = \{(x, y) \in S^1 : y < 0\}$. Here, x determines $y = -\sqrt{1-x^2}$. We have the local section $s_{3,0}: U_3 \to \widetilde{U}_{3,0} = (\frac{1}{2}, 1)$ given by $s_{3,0}(x, y) = \frac{1}{2} + \frac{1}{2\pi} \cos^{-1}(-x)$; as x increases from -1 to 1, -x decreases from 1 to $-1, \cos^{-1}(-x)$ increases from 0to π and $s_{3,0}(x, y)$ increases from $\frac{1}{2}$ to 1. Then U_3 is evenly covered by the intervals $\widetilde{U}_{3,n} = (n + \frac{1}{2}, n + 1)$. \Box