Attaching a Cell

Compare Proposition 1.26 in Hatcher.

We determine the effect on the fundamental group of attaching one cell to a general space X. We assume X is path-connected, with basepoint x_0 .

Attaching a 2-cell Attach a 2-cell to X using the attaching map $\phi: S^1 \to X$ to form the space Y, so that we have the pushout square of spaces

$$D^{2} \xrightarrow{\Phi} Y$$

$$\cup \left[i \qquad \cup \right] j$$

$$S^{1} \xrightarrow{\phi} X$$
(1)

Choose a basepoint $d_1 \in S^1$ and put $x_1 = f(d_1) \in X$. Write $\omega_1: I \to S^1$ for the standard loop in S^1 , so that $\pi_1(S^1, d_1) = \mathbb{Z}$, generated by $[\omega_1]$. Since ω_1 is nullhomotopic in D^2 , $\phi \circ \omega_1$ is nullhomotopic in Y. Take a path γ in X from x_0 to x_1 .

THEOREM 2 The homomorphism $j_*: \pi_1(X, x_0) \to \pi_1(Y, x_0)$ induced by the inclusion $j: X \subset Y$ is surjective, and induces the isomorphism of groups $\pi_1(X, x_0)/N \cong \pi_1(Y, x_0)$, where N is the smallest normal subgroup of $\pi_1(X, x_0)$ that contains the element $\beta_{\gamma}[\phi \circ \omega_1] = \beta_{\gamma}(\phi_*[\omega_1]).$

LEMMA 3 In the commutative diagram

$$\pi_{1}(D^{2}, d_{1}) \xrightarrow{\Phi_{*}} \pi_{1}(Y, x_{1}) \xrightarrow{\cong} \pi_{1}(Y, x_{0})$$

$$\uparrow^{i_{*}} \qquad \uparrow^{j_{*}} \qquad \uparrow^{j_{*}} \qquad \uparrow^{j_{*}}$$

$$\pi_{1}(S^{1}, d_{1}) \xrightarrow{\phi_{*}} \pi_{1}(X, x_{1}) \xrightarrow{\cong} \pi_{1}(X, x_{0})$$
(4)

the left square, hence the whole rectangle, are pushout squares of groups.

Proof of Theorem 2 Given homomorphisms $\psi_1: \pi_1(D^2, d_1) \to G$ and $\psi_2: \pi_1(X, x_0) \to G$ such that $\psi_1 \circ i_* = \psi_2 \circ \beta_\gamma \circ \phi_*$, where G is any group, we seek a unique homomorphism $\psi: \pi_1(Y, x_0) \to G$ such that $\psi \circ \beta_\gamma \circ \Phi_* = \psi_1$ and $\psi \circ j_* = \psi_2$. As D^2 is contractible, the first requirement is trivial and Ker ψ_2 must contain the element $\beta_\gamma \phi_*[\omega_1]$, and hence the whole of N. We have enough to identify $\pi_1(Y, x_0)$ with $\pi_1(X, x_0)/N$. \Box

Proof of Lemma 3 The given pushout square (1) does not lend itself to direct application of van Kampen's Theorem. The key idea is to *attach a collar* to X.

Define the collar $V = \{x \in D^2 : ||x|| > 1/2\}$ of S^1 in D^2 ; it contains S^1 as a deformation retract. We attach V to X using the same attaching map $\phi: S^1 \to X$ to produce the subspace $X \cup_{\phi} V$ of Y. Now we expand diagram (1) to the following diagram,

$$D^{2} - S^{1} \xrightarrow{\subset} D^{2} \xrightarrow{\Phi} Y$$

$$\downarrow \uparrow \qquad \downarrow \uparrow \qquad \downarrow \uparrow$$

$$V - S^{1} \xrightarrow{\subset} V \xrightarrow{\Phi|V} X \cup_{\phi} V$$

$$\downarrow \uparrow i \qquad \downarrow \uparrow j$$

$$S^{1} \xrightarrow{\phi} X$$

$$(5)$$

110.615 Algebraic Topology JMB File: attcell, Revision A; 12 Oct 2006; Page 1

which contains *five* pushout squares, by the stacking properties of pushout squares. (The top left square is a pushout of open subspaces.)

We need a new basepoint $d_2 = 3d_1/4 \in V \subset D^2$ that does not lie in S^1 . Now we *can* apply van Kampen, taking $A_1 = Y - X$ and $A_2 = X \cup_{\phi} V$ with basepoint $y_2 = \Phi(d_2)$, to obtain the pushout square of groups and homomorphisms induced by inclusion

$$\begin{array}{c} \pi_1(A_1, y_2) \longrightarrow \pi_1(Y, y_2) \\ \uparrow & \uparrow \\ \pi_1(A_1 \cap A_2, y_2) \longrightarrow \pi_1(A_2, y_2) \end{array}$$

The top left group is trivial, as Φ maps $D^2 - S^1$ homeomorphically to A_1 and $D^2 - S^1$ is contractible. Further, Φ maps the subspace $V - S^1$ homeomorphically to $A_1 \cap A_2$, so we may replace the bottom homomorphism by

$$(\Phi|(V-S^1))_*:\pi_1(V-S^1,d_2)\longrightarrow \pi_1(A_2,y_2).$$

As $V - S^1 \subset V$ is an obvious homotopy equivalence, we may in turn replace this by $(\Phi|V)_*: \pi_1(V, d_2) \to \pi_1(A_2, y_2).$

Finally, we reduce to the desired homomorphism ϕ_* by the commutative diagram

$$\pi_1(V, d_2) \xrightarrow{(\Phi|V)_*} \pi_1(A_2, y_2)$$

$$\cong \downarrow^{\beta_h} \cong \downarrow^{\beta_{\Phi \circ h}}$$

$$\pi_1(V, d_1) \xrightarrow{(\Phi|V)_*} \pi_1(A_2, x_1)$$

$$\cong \uparrow^{i_*} \cong \uparrow^{j_*}$$

$$\pi_1(S^1, d_1) \xrightarrow{\phi_*} \pi_1(X, x_1)$$

where h denotes a path in D^2 from d_1 to d_2 . Since S^1 is a deformation retract of V, X is a deformation retract of A_2 and we have the two lower isomorphisms. \Box

Attaching an *n*-cell We now consider attaching an *n*-cell to X to form Y, where n > 2, using an attaching map $\phi: S^{n-1} \to X$. Then diagram (4) becomes

$$\pi_1(D^n, d_1) \xrightarrow{\Phi_*} \pi_1(Y, x_1) \xrightarrow{\cong} \pi_1(Y, x_0)$$

$$\uparrow_{i_*} \qquad \uparrow_{j_*} \qquad \uparrow_{j_*}$$

$$\pi_1(S^{n-1}, d_1) \xrightarrow{\phi_*} \pi_1(X, x_1) \xrightarrow{\cong} \pi_1(X, x_0)$$

However, since $\pi_1(S^{n-1}, d_1)$ is now trivial, i_* and hence j_* are isomorphisms.

PROPOSITION 6 Form the space Y from X by attaching an n-cell using an attaching map $\phi: S^{n-1} \to X$, where n > 2. Then the inclusion map $j: X \subset Y$ induces an isomorphism $j_*: \pi_1(X, x_0) \cong \pi_1(Y, x_0)$. \Box

110.615 Algebraic Topology JMB File: attcell, Revision A; 12 Oct 2006; Page 2