
The Alexander–Whitney chain map

The formula There is a well-known natural transformation α, which consists of
homomorphisms

α(X, Y ):C(X × Y ) −−→ C(X)⊗ C(Y )

for all spaces X and Y , where C(X) denotes the singular chain complex of X. In
degree n, it is defined on any singular simplex σ: ∆n → X × Y , with coordinates
σ1: ∆

n → X and σ2: ∆
n → Y , by the Alexander–Whitney formula:

αnσ =
∑

k+l=n

σ1 ◦ λn
k ⊗ σ2 ◦ ρn

l in C(X)⊗ C(Y ), (1)

where λn
k : ∆k ⊂ ∆n and ρn

l : ∆l ⊂ ∆n are the linear maps defined on the vertices by
λn

k(ei) = ei (for 0 ≤ i ≤ k) and ρn
l (ei) = en−l+i (for 0 ≤ i ≤ l). The map λn

k embeds
∆k as the “lowest” k-dimensional face of ∆n and ρn

l embeds ∆l as the “highest”
l-dimensional face of ∆n.

Proposition 2 The homomorphisms αn do in fact form an augmented chain map.

Iterated face maps We can easily express the maps λn
k and ρn

l in terms of the
standard face inclusions ηi: ∆

n ⊂ ∆n+1 (for 0 ≤ i ≤ n+ 1), where ηi omits the vertex
ei from its image, as follows:

λn
k = ηn ◦ ηn−1 ◦ . . . ◦ ηk+2 ◦ ηk+1: ∆

k ⊂ ∆n

and
ρn

l = η0 ◦ η0 ◦ . . . ◦ η0: ∆
l ⊂ ∆n (with n− l factors).

We need to know how they interact with the maps ηi. [The following results may
also be proved by induction, using the standard formula

ηi ◦ ηj = ηj ◦ ηi−1: ∆
n ⊂ ∆n+2 for 0 ≤ j < i ≤ n+ 2. (3)

Both these composites omit ej and ei from their images.]

Lemma 4 We have the following relations:

(a) For maps ∆k → ∆n+1 involving λ:

ηi ◦ λn
k =

{
λn+1

k+1
◦ ηi, if i ≤ k;

λn+1
k , if i > k.

(5)

and
λn+1

k+1
◦ ηk+1 = λn+1

k . (6)

(b) For maps ∆l → ∆n+1 involving ρ:

ηi ◦ ρn
l =

{
ρn+1

l , if i ≤ n− l;
ρn+1

l+1
◦ ηi−n+l, if i > n− l.

(7)

and
ρn+1

l+1
◦ η0 = ρn+1

l . (8)
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2 The Alexander–Whitney chain map

Proof In (a), (5) is clear for i > k, as the image of λn
k is spanned by e0, e1, . . . ek,

which does not include ei. If i ≤ k, the image of ηi ◦ λn
k omits ei and is spanned by

e0, e1, . . . , ei−1, ei+1, . . . ek+1; we get the same effect by first applying ηi: ∆
k → ∆k+1

and then λn+1
k+1 . In (6), ηk+1 leaves e0, e1, . . . , ek fixed, and so do λn+1

k+1 and λn+1
k .

Part (b) can be proved analogously. Alternatively, it is useful to introduce the
inversion linear map un: ∆n → ∆n (not part of the standard simplicial structure)
given by un(ei) = en−i for all i. We observe that ρn

l = un ◦λn
l ◦ul, un+1 ◦ηi ◦un = ηn+1−i,

and un ◦ un = id; then (b) follows immediately from (a).

Proof of the chain map

Proof of Proposition 2 Given a singular simplex τ : ∆n+1 → X×Y , with coordinates
τ1: ∆

n+1 → X and τ2: ∆
n+1 → Y , we have to show that ∂αn+1(X, Y ) τ = αn(X,Y ) ∂τ .

From (1),

∂αn+1τ =
∑

r+s=n+1

∂(τ1 ◦ λn+1
r ⊗ τ2 ◦ ρn+1

s )

=
∑

r+s=n+1

∂(τ1 ◦λ
n+1
r )⊗ τ2 ◦ρ

n+1
s +

∑
r+s=n+1

(−1)r τ1 ◦λ
n+1
r ⊗ ∂(τ2 ◦ρ

n+1
s )

=
∑

r+s=n+1

r∑
i=0

(−1)i τ1 ◦ λn+1
r ◦ ηi ⊗ τ2 ◦ ρn+1

s

+
∑

r+s=n+1

s∑
j=0

(−1)r+j τ1 ◦ λn+1
r ⊗ τ2 ◦ ρn+1

s ◦ ηj

and

αn∂τ =
n+1∑
m=0

(−1)mαn(τ ◦ ηm) =
n+1∑
m=0

∑
r+s=n

(−1)m τ1 ◦ ηm ◦ λn
r ⊗ τ2 ◦ ηm ◦ ρn

s .

We choose k and l such that k+ l = n and pick out the terms that lie in Ck(X)⊗
Cl(Y ). In ∂αn+1τ we find

k+1∑
i=0

(−1)i Ui +
l+1∑
j=0

(−1)k+j Vj,

where Ui = τ1 ◦ λn+1
k+1

◦ ηi ⊗ τ2 ◦ ρn+1
l and Vj = τ1 ◦ λn+1

k ⊗ τ2 ◦ ρn+1
l+1

◦ ηj. In αn∂τ we

find
∑n+1

m=0(−1)mWm, where Wm = τ1 ◦ ηm ◦ λn
k ⊗ τ2 ◦ ηm ◦ ρn

l .

We note that ∂αn+1τ provides k + l + 4 = n+ 4 terms, while αn∂τ provides only
n + 2 terms. Equations (5) and (7) show that Ui = Wi for 0 ≤ i ≤ k, where Ui and
Wi have the same sign. These equations also show that Vj = Wk+j for 1 ≤ j ≤ l+ 1,
again with the same sign. The two remaining terms are Uk+1 and V0; (6) and (8)
show that Uk+1 = V0, and these terms appear with opposite signs and so cancel.

For n = 0, (1) reduces to α0τ = τ1 ⊗ τ2, which obviously preserves the augmenta-
tion.
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The Alexander–Whitney chain map 3

Applications We deduce the derivation formula for the cup product,

δ(φ ∪ ψ) = (δφ) ∪ ψ + (−1)kφ ∪ (δψ) in Ck+l+1(X;R), (9)

where φ ∈ Ck(X;R), ψ ∈ C l(X;R) and R is any coefficient ring. Equivalently, we
have the derivation formula for the cross product,

δ(φ× ψ) = (δφ)× ψ + (−1)kφ× δψ in Ck+l+1(X × Y ;R), (10)

where φ ∈ Ck(X;R) and ψ ∈ C l(Y ;R). (In fact, either formula is essentially equiva-
lent to Proposition 2.)

Let us abbreviate (1) to αnσ =
∑

k σ
′
k ⊗ σ′′n−k, where σ′k ∈ Ck(X) and σ′′n−k ∈

Cn−k(Y ). Then given φ ∈ Ck(X;R) and ψ ∈ C l(Y ;R), their cross product φ × ψ is
defined on a singular (k+l)-simplex σ: ∆k+l → X × Y as

〈φ× ψ, σ〉 = 〈φ, σ′k〉〈ψ, σ′′l 〉. (11)

Since α is a chain map, we have the commutative diagram

Ck+l+1(X × Y )

∂
��

αk+l+1 // C(X)⊗ C(Y )

∂
��

Ck+l(X × Y )
αk+l // C(X)⊗ C(Y )

which we evaluate on a singular (k+l+1)-simplex τ : ∆k+l+1 → X × Y , and then
apply 〈φ,−〉:Ck(X) → R and 〈ψ,−〉:Cl(Y ) → R and multiply. The lower route
yields 〈φ×ψ, ∂τ〉 = 〈δ(φ×ψ), τ〉. If we take the upper route and recall the boundary
∂ in C(X)⊗ C(Y ), the resulting terms that lie in Ck(X)⊗ Cl(Y ) are

∂τ ′k+1 ⊗ τ ′′l + (−1)kτ ′k ⊗ ∂τ ′′l+1.

We apply φ and ψ and multiply to obtain

〈φ, ∂τ ′k+1〉〈ψ, τ ′′l 〉+ (−1)k〈φ, τ ′k〉〈ψ, ∂τ ′′k+1〉
= 〈δφ, τ ′k+1〉〈ψ, τ ′′l 〉+ (−1)k〈φ, τ ′k〉〈δψ, τ ′′l+1〉
= 〈δφ× ψ, τ〉+ (−1)k〈φ× δψ, τ〉.

Since τ is arbitrary, we have (10).
From this, (9) follows by setting Y = X and writing φ ∪ ψ = ∆#(φ×ψ), where

∆:X → X ×X denotes the diagonal map.
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