The Alexander—Whitney chain map

The formula There is a well-known natural transformation «, which consists of
homomorphisms

a(X,Y):C(X xY) — C(X)C(Y)
for all spaces X and Y, where C'(X) denotes the singular chain complex of X. In

degree n, it is defined on any singular simplex o: A" — X x Y, with coordinates
o1: A" — X and 09: A" — Y, by the Alexander—Whitney formula:

,0 = Z Ulo)\Z@O'Qopln in C(X)@C(Y), (1)
k+l=n

where A\7: A¥ € A™ and p': A! € A™ are the linear maps defined on the vertices by
Ar(e;) = e; (for 0 <i < k) and p}'(e;) = eypy4i (for 0 < i <[). The map A} embeds
AF as the “lowest” k-dimensional face of A" and p!' embeds Al as the “highest”
[-dimensional face of A".

PROPOSITION 2 The homomorphisms «,, do in fact form an augmented chain map.

Iterated face maps We can easily express the maps A} and p;' in terms of the
standard face inclusions n;: A C A" (for 0 <4 < n+ 1), where 7; omits the vertex
e; from its image, as follows:
)\Z =MNpoNp-1°... onk+2077k+1:Ak C A"
and
P =mgonge...on: Al C A" (with n — [ factors).

We need to know how they interact with the maps 7;. [The following results may

also be proved by induction, using the standard formula

mionj=mnomi_ A" C A" for0<j<i<n+2 (3)
Both these composites omit e; and e; from their images.|

LEMMA 4 We have the following relations:
(a) For maps A* — A" involving \:

oo [N em, i<k

e A= {AZH, ifi> k. (5)

and
)\er_ll ° Me+1 = /\Z+1. (6)

(b) For maps Al — A" involving p:
n+1 P )

oo P ifi <n-—1; -
e {pln—:_lloninﬂa ifi>n-—1. (7)

and
Pl emo=p " (8)
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2 The Alexander—Whitney chain map

Proof In (a), (5) is clear for i > k, as the image of A} is spanned by eg, e1, ... e,
which does not include e;. If ¢ < k, the image of 7; o A} omits e; and is spanned by
€0y €15+ €i1,€i41,---€kr1; We get the same effect by first applying ni: AF — AR
and then A\PT1. In (6), my41 leaves eg, €1, ..., ey fixed, and so do A}T] and AP

Part (b) can be proved analogously. Alternatlvely, it is useful to introduce the
inversion linear map wu,: A" — A™ (not part of the standard simplicial structure)
given by uy,(e;) = e,—; for all i. We observe that p' = w,, 0 A} oy, Upt1°7;0Up = Npy1—i,
and u, o u, = id; then (b) follows immediately from (a). O

Proof of the chain map

Proof of Proposition 2 Given a singular simplex 7: A" — X x Y, with coordinates
710 AM — X and 7p: A" — V' we have to show that day, 4 1(X,Y) 7 = a,(X,Y) 0.
From (1),

Oy T = Z (11 0 X' @ 150 p 1)

r4+s=n+1

e Z 8 TloA ntl )®T Opn+1+ Z (—1)"7'10/\;7’“@3(7' op;H_l)
r+s=n+1 r4+s=n+1

_ Z Z(_1>z’ T o )\?—H o1 @ Ty o IO?+1
r+s=n+1 =0

+ D D )N @ e gl oy,
r+s=n+1 j=0
and
n+1 n+1
anaT:Z<_1) OénTO’f]m Z Z 7'1°7Im°)\3®72077m°P?-

m=0 m=0r+s=n

We choose k and [ such that k+1 = n and pick out the terms that lie in Cj(X) ®
Cy(Y). In Oaiq 7 we find

k+1 ‘ I+1 .
S (DU ()Y,
i=0 j=0

where U; = 11 o /\Zill °01); ® Ty o pl"+1 and V; = 71y o )\ZLH ® Ty o p?:ll on;. In v, 01 we
find ZnH (=)™ W,,, where W, = T4 0 0y 0 AR @ T2 0 1)y © p}.

We note that Oa, 17 provides k + [ + 4 = n + 4 terms, while «,,07 provides only
n + 2 terms. Equations (5) and (7) show that U; = W, for 0 < i < k, where U; and
W; have the same sign. These equations also show that V; = Wi, for 1 < j <[41,
again with the same sign. The two remaining terms are U,y and Vp; (6) and (8)
show that Up,, = Vj, and these terms appear with opposite signs and so cancel.

For n =0, (1) reduces to agT = 71 ® 72, which obviously preserves the augmenta-
tion. 0O
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The Alexander—Whitney chain map 3

Applications We deduce the derivation formula for the cup product,

J(pUr) = (60) U+ (=1)*o U (dy)  in C*HH(X;R), (9)
where ¢ € C¥(X; R), 1 € CY(X;R) and R is any coefficient ring. Equivalently, we
have the derivation formula for the cross product,

§(p x ) = (6¢) x Y+ (=1)f¢ x 0 in CHHHY(X x Y R), (10)

where ¢ € C*(X; R) and ¢ € C'(Y; R). (In fact, either formula is essentially equiva-
lent to Proposition 2.)

Let us abbreviate (1) to a0 = >, 0}, ® op_,, where o), € Cy(X) and o/_, €
Cp_1(Y). Then given ¢ € C*(X; R) and v € CY(Y; R), their cross product ¢ x 1 is
defined on a singular (k-+1)-simplex o: A¥! — X x Y as

(0 x 1, 0) = (9, 0) (¢, 7). (11)

Since « is a chain map, we have the commutative diagram

Char (X x V) L 5 (X)) @ C(Y)

| I

Cru(X xY)—2 s 0(X) @ C(Y)

which we evaluate on a singular (k+[+1)-simplex 7: A¥+1 — X x Y, and then
apply (¢, —):Cx(X) — R and (¢, —):Ci(Y) — R and multiply. The lower route
yields (¢ x 1, 01) = (§(¢x1), 7). If we take the upper route and recall the boundary
din C(X) ® C(Y), the resulting terms that lie in Cyx(X) ® C)(Y) are

Ot @1 + (=17, @ o1l
We apply ¢ and ¢ and multiply to obtain

<¢7 aTl;+1> <,¢7 Tl”> + (_1)k<¢7 TI;) <Q/)a 87—];/4-1)
= (00, i) (¥, 1) + (_1)k<¢> ) (0%, T1)
= (06 x ¢, 7) + (=1)"(¢ x 0, 7).
Since 7 is arbitrary, we have (10).

From this, (9) follows by setting Y = X and writing ¢ U ¢ = A#(¢x1)), where
A: X — X x X denotes the diagonal map.
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