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5.6 The Kerr solution

In general, astronomical bodies are rotating and so one would not
expect the solution outside them to be exactly spherically symmetric.
The Kerr solutions are the only known family of exact solutions which
could represent the stationary axisymmetric asymptotically flat fleld
outside a rotating massive object. They will be the exterior solutions
only for massive rotating bodies with a particular combination of
multipole moments; bodies with different combinations of moments

" will have other exterior solutions. The Kerr solutions do however

appear to be the only possible exterior solutions for black holes {see
§9.2 and §9.3),

The solutions can be given in Boyer and Lindquist coordinates
(r.0,,t) in which the metric takes the form

2
de? = p2 (92, gpe +(r*+0?) sin?0 dg? — a2+ 2™ (g iz 9 g —~arp,
A P

(5.29)
where  pr, @) = 72+ g2 ops28 and  A(r) = 72— 2mp 4 g2,

m and a are constants, m Tepresenting the mass and ma_the angular
momentum as measared from infinity (Boyer and Price (1 965)); when
@ = 0 the solution reduces to the Schwarzschild solution. This metric
form is clearly invariant under simultaneous inversion of ¢ and @,
ie. under the transformation ¢-» t, ¢~>—¢, although it is not
invariant under inversion of ¢ alone (except when a = 0), This is what
one would expect, since time inversion of a rotating object produces
an object rotating in the opposite direction.
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When @2 > m?, A > 0 and the above metric is singular only when
7 = 0. The singularity at r = 0 is not in fact a point but a ring, as can
be seen by transforming to Kerr-Schild coordinates (z,y,2,7), where

r+iy = (r+ia)sinﬂexpif{d¢+aA—1d,.)’
z = rcosd, f“f(di+(rg+a2)A*ldr)wg»_

In these coordinates, the metric takes the form
ds? = da?+ dy? + dz? — di?

_ - ]
r‘z-}-mar:z“ (r{xdmydy) a(zdy yd“’).i,ff_‘_%dz) . (5.30)

ri+q? r
where ¢ is determined implicitly, up to a sign, in terms of =, y, z by
ri— {2+ P+ 22 —a?)ri-a%? = 0,

For r 4 0, the surfaces {r = constant} are confocal ellipsoids in the
{x,y.z) plane, which degenerate for r = 0 to the dige 22+ ¥ <atz=0
The ring z*+ y* = a* z = 0 which is the boundary of this disc, is a real
curvature singularity as the scalar polynomial R, ,B*? diverges
there. However no scalar polynomial diverges on the dise except at
the boundary ring. The function 7 can in fact be analytically con-
tinued from positive to negative values through the interior of the disc
#+y? < a?, z =0, to obtain a maximal analytic extension of the
solution.

To do this, one attaches another plang defined by ecoordinates
{«',¥’,%') where a point on the top side of the disc 22+ 4% < a? 2= 0
in the (x,y,2) plane is identified with a point with the same z and y
coordinates on the mgpbndmg disc in the
(', ¥',2') plane, Similarly a point on the bottom side of the disc in the
{x,y,z) plane is identified with a point on the top side of the dise in the
(', y', ') plane (see figure 27). The metric (5.30) extends in the obvious
way to this larger manifold, The metric on the (z',y’, z’) region is again
of the form (5.29), but with negative rather than positive values of r.
At large negative values of r, the space is again asymptotically flat
but this time with negative mass. For small negative values of » near
the ring singularity, the vector 9/d¢ is timelike, so the circles
(t = constant, r = constant, § = constant) are closed timelike curves.
These closed timelike curves can be deformed to pass through any
point of the extended space (Carter (1968a)). This solution is geodesic-

r == constant
{r > 0}
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ally incomplete at the ring singularity. However the only timelike and
null geodesics which reach this singularity are those in the equatorial
plane on the positive 7 side (Carter (1968a)).

8
Symmetry a':;? metty
ZJ:: 0 ¢ == conatant # = constant 0 =0

Identify

{x, z) plane (', 2') plane

Fraurk 27. The maximal extension of the Kerr solution for a® > m? is obtained
by identifying the top of the dise o+ ¥" < g%,z = 0in the (z, ¥, 2) plane with the
bottom of the corresponding disc in the (2, ¥, 2') plane, and vice versa. The
ﬁgurf? shows the sections y = 0, y’ = 0 of these planes. On circling twice round
the singularity at 2*4 y2 == a?, z = 0 one passes from the (2, y, z) plane to the

(m‘,‘y', 2’} plane (where r is negative) and back to the (z, ¥, 2) plane (where 7 is
positive}.

The extension in the case a2 < m? is rather more complicated,
because of the existence of the two values r, = m+ (m?—a®t and
.= m—~(m?—-a?} of r at which A7) vanishes. These surfaces are
similar to the surfaces r = ¢ + =7, in the Reissner-Nordstrom
solution. To extend the metric across these surfaces, one transforms
to the Kerr coordinates (7, 6, $.,u,), where

du, = di+(r24a?) A-1dr, d¢, = dg+aA-1dr.
The metric then takes the form
ds? = p2de — 2asin*Gdrdg, +2drdu,
+p7¥(r? +a?)? — Aa2sin? 6] sin? ¢ dg, 2
—dap~mrsin? 0 dg, du, — (1 — 2mrp~?)du,® (5.31)
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CONSTRUCTION OF THE CYCLIC GOVERINGS OF A KNOT COMPLEMENT USING SEIFERT
SURFACES.

There is an important class of covering spaces of a knot

+2

complement X = st - l(n, vhich will be used in the next chapter to

- define certain abelian invariants of "K. Readers unfamiliar with covering

space theory will find a synopsis in Appendix A.
. Seifert surfaces give a convenient means of comstructing these
covering spaces, in a manner entirely analogous to 'cuts' in the classical

theory of Riemann surfaces. i
: - +
Let Mn+l be a Seifert surface for the knot & in S® 2

2

and let N : ‘h?( x (-'l,l) - Sn+ be an 6pen bicollar of the interior

o
M=M-K 80 ﬁ-N(I_{XO). We denote: .
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OF A KNOT COMPLEMENT USING SEIFERT SURFACES

TN~ NG X (-1,1))
N X (0,1))

N X (-1,0))

Y =%y

X _sn+2_K

-]
[ ]

1
[ ]

Thus we have two triples (N

‘countably many copies of each, denoted

" o
1#0, £1;, £2, ++2, Let =1 N and ¥=J ¥

oo

+ - -
NN and (0,858 . Porm

4 - . -
(8NN and (¥,,NLND),

N 1 be the

im—ce

disjoint unions. Finally, form an ideantification space by identifying

+ +
NiC Yi with NiC Ni via the identi

" identi N,
ent: gfy each NiCYi with Ni+1<.‘.N

Rl

Z

{ EXERCISE. Verify the following facts.

(n+2) - manifold. There {s a map p @

ty homeomorphism, and likewise

441 " Call the resulting space X.

X is a path-connected open

X + X which is a regular covering




 whichis infinite cycitc.

5, SEIFERT SURFACES

space. There is a covering automorphism T * x> i, which takes

Yi to Y:H'l and «Ni to Ni+1’ and .1: generates the group Aut(X),

DEFINITION. X 18 called the infinite cyclic cover of X .

PROPOSITION. % is the universal abelian cover of X o
COROLLARY . X depends (up to covering isomorphism) _only on the knot
type of K, and not on the choice of Seifert surface or other choices

in the above construction.

PROOF OF THE ‘PROPOSITION. We peed only the fact that Aut(X) * 2 .
The exacﬁ sequence .
Z

1

. Px 4
> “1(5{) —— -nl(x) > Aut(X) —> 1

shows that p*ﬂl(f() contains the commutator subgroup C of ﬂl(X) .

Now the induced map

™, (%) -
zZ & ——6-————> Aut(X) * Z
Py (0
has kernel -~~~ » and (being surjective) must be an isomorphism.

Hence p*-rrl()'() s C and the proposition follows.

REMARK. This construction can be streamlined by eliminating reference

|

%

to the N n which glue the Y N together. Let ¥ 1 denote the closure |g
: ~

of Y; inm X.

EXERCISE @ ?i ig homeomorphic with Sm'2 - (K N). This latter space

n+2

aight be called "0 - K cut open along W'; ¢ has two boundary CORPORENER

e
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o
each homeomorphic with M , and we may regard X as the union of copies

of these cut open spaces, suitably sewn together.

A similar construction yilelds the finite cyclic covering

n+2 n
spaces of X =S - k% .. Choose a fixed integer k > 1 and consider

+ o + -
copies (Ni’Ni’Ni) and (Yi’Ni’Ni) as above,

i=0,1,...,k = 1. Let
. k-1 k-1
Y-iuovi and § = \J N, and make
= i=0
the same idem:igications as before, except that N‘: 1C Yk 1 ig identi-~

fied with N CN_ . —_
o -] ~

v,
)

7

Call the resulting / Ys
b= "
\ oyt /X
N (:‘,'_ oy K4
N -

EXERCISE. Show that X covers each ‘ik’ so that ik may be regarded

space Xk . Itis a
k-fold 'cyclic' cover

of X with Aut(X) * z/k.

as a quotient space of X .

EXERCISE. Prove that ' f(k corresponds to the kernel of the composite .
homomorphism '

b

. 1(5()
wl(x) r—g—dZ Z/k

where C <& frl(X) is the commutator subgroup and the right-hand map is

the canonical projection.

¢ -
OROLLARY. X, depends omly on k and the knot type of . K .
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