Problem Set I for 110.615:

In class [week of $1 / 9 / 011$] we calculated the fundamental group

$$
\pi_{1}\left(\mathbb{R}_{+}^{3}-K,+\right) \cong\langle x, y \mid x y x=y x y\rangle
$$

of the complement of the trefoil knot K, and in the following week we calculated the fundamental group

$$
\pi_{1}\left(\operatorname{Config}^{n}(\mathbb{C}) / \Sigma_{n}, *\right) \cong\left\langle\sigma_{1}, \cdots, \sigma_{n-1} \mid \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}\right\rangle
$$

of the space of n distinct unordered points in the plane. [The basepoint $*$ is the unordered configuration $\{1, \ldots, n\} \subset \mathbb{R} \subset \mathbb{C}$.]

When $n=3$ these groups are isomorphic (via $\sigma_{1} \mapsto x, \sigma_{2} \mapsto y$). In fact there is a nice map (due to Quillen, but written up by Milnor)

$$
\mathbf{z} \mapsto \mathbf{q}: \operatorname{Config}^{n}(\mathbb{C}) / \Sigma_{n} \rightarrow \mathbb{R}_{+}^{3}-K \subset S^{1} \times S^{1} \subset S^{3}
$$

from the space of three distinct unordered points in the plane, to the complement of the trefoil, drawn as a knot on a torus in the three-sphere.

This problem set sketches the construction of this map [which is in fact a homotopy equivalence. It can't be a homeomorphism, since its domain is a six-dimensional real manifold, while its range is three-dimensional. In fact \mathbf{q} is the projection of a fiber bundle, the quotient by an action of the affine group

$$
\mathrm{Aff}=\left\{(\lambda, w) \in \mathbb{R}_{+}^{\times} \rtimes \mathbb{C} \mid z \mapsto \lambda z+w\right\}
$$

on the space of configurations ...]
At places where the argument seems straightforward, I've replaced some details with the symbol • ?; your mission (should you choose to accept it) is to fill in these dots. Please get your answers to me by e-mail [a single .pdf file, please; scans of handwritten writeups are perfectly acceptable] by 6 AM Saturday 1 October.

§II Configuration spaces and symmetric functions

Definition:

$$
\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right) \in \operatorname{Config}^{n}(\mathbb{C}) \text { iff } i \neq k \Rightarrow z_{i} \neq z_{k}
$$

is the space of n distinct labeled points in the plane $\mathbb{R}^{2} \cong \mathbb{C}$; alternately,

$$
\operatorname{Config}^{n}(\mathbb{C})=\mathbb{C}^{n}-\bigcup_{i, k}\left\{\mathbf{z} \in \mathbb{C}^{n} \mid z_{i}=z_{k}\right\}
$$

The map

$$
\mathbf{z} \mapsto \mathbf{e}: \operatorname{Config}^{n}(\mathbb{C}) \rightarrow \mathbb{C}^{n}
$$

defined by

$$
\prod_{1 \leq i \leq n}\left(t-z_{i}\right):=p_{\mathbf{z}}(t)=t^{n}-e_{1} t^{n-1}+e_{2} t^{n-2}-\cdots \pm e_{n} \in \mathbb{C}[t],
$$

goes back to Newton; it sends the configuration \mathbf{z} to the monic polynomial with the z_{i} 's as its roots. The e_{k} 's are the elementary symmetric function of the unordered set of coordinates z_{i} :

$$
e_{1}=\bullet ?, e_{2}=\bullet ?, e_{n}=\bullet ?,
$$

so this construction factors through a map

$$
\operatorname{Config}^{n}(\mathbb{C}) / \Sigma_{n} \rightarrow \mathbb{C}^{n}
$$

defined on the space of n distinct unlabelled points in the plane.
Observe that if $t=T+\frac{1}{n} e_{1}$ then

$$
p_{\mathbf{z}}(t)=\sum_{0 \leq k \leq n}(-1)^{n-k} e_{n-k} t^{k} \mapsto T^{n}+\sum_{0 \leq k \leq n-2}(-1)^{n-k} g_{n-k} T^{k}
$$

defines a map

$$
\mathbf{e} \mapsto \mathbf{g}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1} ;
$$

for example, if $n=3$ then

$$
\left(e_{1}, e_{2}, e_{3}\right) \mapsto \bullet ? .
$$

Note, if $\lambda \in \mathbb{C}^{\times}$and $\mathbf{z} \mapsto \lambda \mathbf{z}$ then

$$
e_{k} \mapsto \bullet ?, g_{k} \mapsto \bullet ? .
$$

§III The discriminant locus

Definition, the discriminant of \mathbf{z} is

$$
\Delta_{(\mathbf{z})}=(-1)^{n} \prod_{i \neq k}\left(z_{i}-z_{k}\right)=\prod_{i>k}\left(z_{i}-z_{k}\right)^{2} \in \mathbb{C}[\mathbf{e}] .
$$

The discriminant is symmetric, and hence is expressible in terms of the e's:

$$
\Delta\left(z_{1}, z_{2}\right)=\bullet ? \Delta\left(z_{1}, z_{2}, z_{3}\right)=\bullet ?
$$

Proposition: There is a homeomorphism

$$
\operatorname{Config}^{n}(\mathbb{C}) / \Sigma_{n} \rightarrow \mathbb{C}^{n}-\Delta^{-1}(0)
$$

where the discriminant locus

$$
\Delta^{-1}(0)=\left\{\mathbf{z} \in \mathbb{C}^{n} \mid \Delta(\mathbf{z})=0\right\}
$$

can be identified with the set of polynomials $p_{\mathbf{z}}$ with repeated roots.
Note that

$$
p_{\mathbf{z}}(t)=\prod_{1 \leq i \leq n}\left(t-z_{i}\right)=\prod_{1 \leq i \leq n}\left(T-\tilde{z}_{i}\right)
$$

where

$$
\tilde{z}_{i}=z_{i}-\frac{1}{n}\left(z_{1}+\cdots+z_{n}\right) ;
$$

Note also that $\sum t z_{i}=0$, and that if $z_{i} \neq z_{k}$ then $\tilde{z}_{i} \neq \tilde{z}_{k}$, so the \tilde{z}^{\prime} s are what physicists call 'center-of-mass' coordinates. Note finally that the affine translation $\mathbf{z} \mapsto \mathbf{z}+w \cdot(1, \ldots, 1)$ doesn't change the discriminant.

If $n \geq 3$ define the reduced discriminant to be $D(\mathbf{g})=\Delta(\mathbf{e})$, eg

$$
D_{3}=\bullet ?
$$

This defines a map

$$
\mathbf{e} \mapsto \mathbf{g}: \mathbb{C}^{n}-\Delta^{-1}(0) \rightarrow \mathbb{C}^{n-1}-D^{-1}(0)
$$

§IV Quillen's normalization

Proposition: If $a, b \geq 0$ are not both 0 , then there is a unique $x(a, b)>$ $0 \in \mathbb{R}$ such that

$$
a x^{2}+b x^{3}=400 .
$$

Proof: The function $h(x)=a x^{2}+b x^{3}-400$ has derivative $h^{\prime}(x)=2 a x+$ $3 b x^{2}>0$ if $x>0$, so $h(x)$ is increasing on the positive real line. Since h is negative at $x=0$, and positive when x is large, its graph crosses the x-axis at a unique point $x(a, b)$.

Moreover, the implicit function theorem tells us that $x=x(a, b)$ satisfies the equations

$$
\frac{\partial x}{\partial a}=\bullet ?, \frac{\partial x}{\partial b}=\bullet ?
$$

and since $2 a+3 b x=\bullet ?>0,(a, b) \mapsto x(a, b)$ is a smooth function (on the first quadrant of the (a, b)-plane).

Define $\mathbf{g} \mapsto \mathbf{q}: \mathbb{C}^{2}-D^{-1}(0) \rightarrow S^{3}(20)$ by

$$
\left(g_{2}, g_{3}\right) \mapsto\left(x g_{2}, x^{3 / 2} g_{3}\right),
$$

where $x:=x\left(\left|g_{2}\right|^{2},\left|g_{3}\right|^{2}\right)$ is as in the proposition above. Since $x>0[\bullet ?]$ and

$$
\left|\mathbf{q}\left(g_{2}, g_{3}\right)\right|^{2}=\bullet ?=20^{2}
$$

this function takes values in the 3 -dimensional sphere of radius 20 in \mathbb{C}^{2}.
$\left[\right.$ Check • ? that if $Z_{i}=\lambda z_{i}+w$, with $(\lambda, w) \in$ Aff, then $\mathbf{q}(\mathbf{g}(\mathbf{Z}))=\mathbf{q}(\mathbf{g}(\mathbf{z}))$.]
Moreover, we have

$$
4 q_{1}^{3}+27 q_{2}^{2}=\bullet ? \cdot D \neq 0,
$$

so \mathbf{q} maps the complement of the reduced discriminant locus to the complement in $S^{3}(20)$ of the set

$$
K=\left\{\left.\left(q_{1}, q_{2}\right) \in \mathbb{C}^{2}| | q_{1}\right|^{2}+\left|q_{2}\right|^{2}=20^{2}, 4 q_{1}^{3}+27 q_{2}^{2}=0\right\} .
$$

This is the zero-set of three equations in four-dimensional space, which we expect to be one-dimensional. In fact K is parametrized by

$$
t \mapsto(\bullet ? \exp (\bullet ? t), \bullet ? \exp (\bullet ? t)) \in \mathbb{C}^{2},
$$

which lies on the torus $S^{1}(12) \times S^{1}(16) \subset S^{3}(20)$ defined by the product of two circles, one of radius 12 , the other of radius 16 . The projection

$$
S^{1}=\mathbb{R} / 2 \pi \mathbb{Z} \ni t \mapsto q_{1}(t) \in S^{1}(12)
$$

has winding number three, while

$$
S^{1}=\mathbb{R} / 2 \pi \mathbb{Z} \ni t \mapsto q_{2}(t) \in S^{1}(16)
$$

has winding number two; thus K is a (2,3)-torus knot, ie the trefoil.

