
Problem Set I for 110.615:

In class [week of 1/9/011] we calculated the fundamental group

π1(R3
+ −K, +) ∼= 〈x, y | xyx = yxy〉

of the complement of the trefoil knot K, and in the following week we
calculated the fundamental group

π1(Confign(C)/Σn, ∗) ∼= 〈σ1, · · · , σn−1 | σiσi+1σi = σi+1σiσi+1〉

of the space of n distinct unordered points in the plane. [The basepoint ∗
is the unordered configuration {1, . . . , n} ⊂ R ⊂ C.]

When n = 3 these groups are isomorphic (via σ1 7→ x, σ2 7→ y). In fact
there is a nice map (due to Quillen, but written up by Milnor)

z 7→ q : Confign(C)/Σn → R3
+ −K ⊂ S1 × S1 ⊂ S3

from the space of three distinct unordered points in the plane, to the com-
plement of the trefoil, drawn as a knot on a torus in the three-sphere.

This problem set sketches the construction of this map [which is in fact a
homotopy equivalence. It can’t be a homeomorphism, since its domain is a
six-dimensional real manifold, while its range is three-dimensional. In fact
q is the projection of a fiber bundle, the quotient by an action of the affine
group

Aff = {(λ, w) ∈ R×
+ o C | z 7→ λz + w}

on the space of configurations . . . ]

At places where the argument seems straightforward, I’ve replaced some
details with the symbol • ?; your mission (should you choose to accept it)
is to fill in these dots. Please get your answers to me by e-mail [a single
.pdf file, please; scans of handwritten writeups are perfectly acceptable] by
6 AM Saturday 1 October.
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§II Configuration spaces and symmetric functions

Definition:

z = (z1, . . . , zn) ∈ Confign(C) iff i 6= k ⇒ zi 6= zk ,

is the space of n distinct labeled points in the plane R2 ∼= C; alternately,

Confign(C) = Cn −
⋃
i,k

{z ∈ Cn | zi = zk} .

The map
z 7→ e : Confign(C) → Cn

defined by∏
1≤i≤n

(t− zi) := pz(t) = tn − e1t
n−1 + e2t

n−2 − · · · ± en ∈ C[t] ,

goes back to Newton; it sends the configuration z to the monic polynomial
with the zi’s as its roots. The ek’s are the elementary symmetric function
of the unordered set of coordinates zi:

e1 = • ?, e2 = • ?, en = • ? ,

so this construction factors through a map

Confign(C)/Σn → Cn

defined on the space of n distinct unlabelled points in the plane.

Observe that if t = T + 1
ne1 then

pz(t) =
∑

0≤k≤n

(−1)n−ken−kt
k 7→ Tn +

∑
0≤k≤n−2

(−1)n−kgn−kT
k

defines a map
e 7→ g : Cn → Cn−1 ;

for example, if n = 3 then

(e1, e2, e3) 7→ • ? .

Note, if λ ∈ C× and z 7→ λz then

ek 7→ • ?, gk 7→ • ? .
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§III The discriminant locus

Definition, the discriminant of z is

∆(z) = (−1)n
∏
i6=k

(zi − zk) =
∏
i>k

(zi − zk)2 ∈ C[e] .

The discriminant is symmetric, and hence is expressible in terms of the e’s:

∆(z1, z2) = • ? ∆(z1, z2, z3) = • ? .

Proposition: There is a homeomorphism

Confign(C)/Σn → Cn −∆−1(0)

where the discriminant locus

∆−1(0) = {z ∈ Cn |∆(z) = 0}

can be identified with the set of polynomials pz with repeated roots.

Note that
pz(t) =

∏
1≤i≤n

(t− zi) =
∏

1≤i≤n

(T − z̃i) ,

where
z̃i = zi −

1
n

(z1 + · · ·+ zn) ;

Note also that
∑

tzi = 0, and that if zi 6= zk then z̃i 6= z̃k, so the z̃’s are
what physicists call ‘center-of-mass’ coordinates. Note finally that the affine
translation z 7→ z + w · (1, . . . , 1) doesn’t change the discriminant.

If n ≥ 3 define the reduced discriminant to be D(g) = ∆(e), eg

D3 = • ? .

This defines a map

e 7→ g : Cn −∆−1(0) → Cn−1 −D−1(0) .
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§IV Quillen’s normalization

Proposition: If a, b ≥ 0 are not both 0, then there is a unique x(a, b) >
0 ∈ R such that

ax2 + bx3 = 400 .

Proof: The function h(x) = ax2 + bx3 − 400 has derivative h′(x) = 2ax +
3bx2 > 0 if x > 0, so h(x) is increasing on the positive real line. Since h is
negative at x = 0, and positive when x is large, its graph crosses the x-axis
at a unique point x(a, b).

Moreover, the implicit function theorem tells us that x = x(a, b) satisfies
the equations

∂x

∂a
= • ?,

∂x

∂b
= • ?

and since 2a + 3bx = • ? > 0 , (a, b) 7→ x(a, b) is a smooth function (on the
first quadrant of the (a, b)-plane).

Define g 7→ q : C2 −D−1(0) → S3(20) by

(g2, g3) 7→ (xg2, x
3/2g3) ,

where x := x(|g2|2, |g3|2) is as in the proposition above. Since x > 0 [• ?]
and

|q(g2, g3)|2 = • ? = 202 ,

this function takes values in the 3-dimensional sphere of radius 20 in C2.

[Check • ? that if Zi = λzi +w, with (λ, w) ∈ Aff, then q(g(Z)) = q(g(z)).]

Moreover, we have
4q3

1 + 27q2
2 = • ? ·D 6= 0 ,

so q maps the complement of the reduced discriminant locus to the com-
plement in S3(20) of the set

K = {(q1, q2) ∈ C2 | |q1|2 + |q2|2 = 202, 4q3
1 + 27q2

2 = 0} .

This is the zero-set of three equations in four-dimensional space, which we
expect to be one-dimensional. In fact K is parametrized by

t 7→ (• ? exp(• ?t), • ? exp(• ?t)) ∈ C2 ,
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which lies on the torus S1(12)× S1(16) ⊂ S3(20) defined by the product of
two circles, one of radius 12, the other of radius 16. The projection

S1 = R/2πZ 3 t 7→ q1(t) ∈ S1(12)

has winding number three, while

S1 = R/2πZ 3 t 7→ q2(t) ∈ S1(16)

has winding number two; thus K is a (2, 3)-torus knot, ie the trefoil.
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