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2.A Transformer for ICL-ILR: nonlocal attention operator (NAO) 

3.NAO learns the prior and regularization 
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1. In-context learning (ICL):

Forward prediction 

Brown et al: Language models are few-shot learners. NeuRIPS, 2020. 

(x1:n, y1:n)

(x1 x2 … xn xn+1

y1 y2 … yn ? )
Context

̂y n+1 = fθ(xn+1 ∣ x1:n, y1:n)

{(x(m)
1:n+1, y(m)

1:n+1)}M
m=1Training data: yi = f (xi) + ϵif (m)

Limited data per context
Big data of cross tasks
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1. In-context learning (ICL):

Forward prediction 

Brown et al: Language models are few-shot learners. NeuRIPS, 2020. 

(x1:n, y1:n)

(x1 x2 … xn xn+1

y1 y2 … yn ? )
Context

̂y n+1 = fθ(xn+1 ∣ x1:n, y1:n)

{(x(m)
1:n+1, y(m)

1:n+1)}M
m=1Training data: yi = f (xi) + ϵi

- Why and how do transformers work?    

- Task complexity: How large can the class of functions  be?  
(low-dimensional structure in f(Z) or Z?)  

- ….

{f (m)}

xi ∈ ℝd, yi ∈ ℝ : fθ : ℝn(d+1)+d → ℝMany open questions: 

f (m)
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1. In-context learning (ICL): linear regression

(x1:n, y1:n)

(x1 x2 … xn xn+1

y1 y2 … yn ? )
Context

̂y n+1 = fθ(xn+1 ∣ x1:n, y1:n)

{(x(m)
1:n+1, y(m)

1:n+1)}M
m=1Training data: yi = ⟨xi, w⟩ + ϵi

Forward prediction 

- Transformers as gradient descent [1,2,…] 

- Scaling limits in token/context length, task diversity [3] 

[1] Ahn et al. Transformers learn to implement preconditioned gradient descent for in-context learning. NeurIPS 2023. 
[2] Fu et al. Transformers Learn to Achieve Second-Order Convergence Rates for In-Context Linear Regression. NeurIPS 2024 
[3] Lu, Y. M., Letey, M., Zavatone-Veth, J. A., Maiti, A., Pehlevan, C.. Asymptotic theory of in-context learning by linear attention. PNAS 2025.

xi, w ∈ ℝd

n ≥ d
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1. In-context learning (ICL): linear regression

(x1:n, y1:n)

(x1 x2 … xn xn+1

y1 y2 … yn ? )
Context

̂y n+1 = fθ(xn+1 ∣ x1:n, y1:n)

{(x(m)
1:n+1, y(m)

1:n+1)}M
m=1Training data:

Inverse problem ICL of inverse linear regression

yi = ⟨xi, w⟩ + ϵi

̂w = wθ(X, Y )Y = Xw + ε, X ∈ ℝn×d .

Rank deficient:    n << d

Forward prediction 

       X
w

+ noise = Y

     → Training data encodes a prior 
         (cross‑task information)

Priors + Regularization 
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1. Motivation: Learning Kernels in Operators
Learn convolution kernels from few input–output pairs

{(u1:n0
, f1:n0

)}

Forward operator 

Inverse problem 

Integral operators 
Darcy’s equation: 
kernel = Green’s functions  
g[u](x,z) = u(x-z) 

Nonlocal Operators
nonlocal diffusion, fractional operators
g[u](x, z) = u(x + z) − u(x)

Aggregation Operators
Mean-field limits 

Rϕ[u](x) = ∫ ϕ(z)g[u](x, z)dy = f (x) + ϵ(x)

g[u](x , z) = ∂x[u(x − z)u(x)]

x y
Θ

Ω

Θ(1)

Θ(2)

αî

ũ

t

(1−α)î

Figure 1: Problems at macroscale and microscale.

micro- and macrostructure size, as well as impulse characteristics. The solution of the nonlocal

homogenization approach is obtained in the semi-analytical form in the Laplace domain and

discrete inverse Laplace transform method is employed to approximate the response fields in

the time domain. The capabilities of the proposed model are verified against the analytical

solution and the classical (local) homogenization model for accuracy and computational cost.

A parametric analysis is conducted to identify the relationship between microstructure and

heterogeneity induced attenuation under high frequency loading.

The remainder of this manuscript is organized as follows: Section 2 presents the description

of the multiscale problem in the time and Laplace domains. Section 3 derives the governing

equations for the nonlocal homogenization model based on the high-order asymptotic expansion

method in the Laplace domain. Section 4 presents the solution methodologies employed to

evaluate the nonlocal and local homogenization models as well as direct analytical evaluation of

the governing equations of motion. This section also provides the implementation of dissipated

energy computation and the discrete inverse Laplace transform method. Section 5 includes

numerical results for heterogeneous beam structures subjected to step and sinusoidal boundary

conditions, and concluding remarks are presented in Section 6.
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1. Motivation: Learning Kernels in Operators
Learn convolution kernels from few input–output pairs

Rϕ[u](x) = ∫ ϕ(z)g[u](x, z)dy = f (x) + ϵ(x)

{(u1:n0
, f1:n0

)}

Limited data per task: Xw = Y + ϵ; X ∈ ℝn×d, n < < d

Big data of cross tasks: {(u(m)
1:n0

, f (m)
1:n0

)}M
m=1

     → Training data encodes a prior 
         (cross‑task information)

Rank deficient

Priors + Regularization 
{(X(m), Y (m))}M

m=1

↔ ϕ(m)

↔ w(m)

Forward operator 

Inverse problem 
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- Do transformers learn the prior and regularization?  

- Do we need low task complexity (low-dimensional structure)? 

- How to determine if a transformer is working well?    

wθ : ℝn(d+1) → ℝd×1High-dimensional, nonlinear:  

1. ICL of inverse linear regression

̂w = wθ(X, Y )Y = Xw + ε, X ∈ ℝn×d .        X
w

+ noise = Y
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2. A variant transformer: nonlocal attention operator (NAO)
̂w = wθ(X, Y )Y = Xw + ε, X ∈ ℝn×d .

Linear Attention

Output

Attn(E ) = WV E(WK E + BK1d+1)⊤(WQ E + BQ1d+1)

ΔEℓ =
H

∑
h=1

Attn(Eℓ,h)

LayerNorm with Multi-heads Eℓ+1 = Eℓ + LayerNorm(ΔEℓ)

Input Eℓ=0 = E = (X, Y ) ∈ ℝn×(d+1)

wθ(X, Y ) = Attninv(Eℓ=L)

Attninv(E ) = (WK E + BK1d+1)⊤(WQ E + BQ1d+1)WP

Loss function L(θ) = 𝔼Data∥Xwθ(X, Y ) − Y∥2
2

θ = ((Wℓ
K, Wℓ

Q, Wℓ
V , Bℓ

K, Bℓ
Q)L

ℓ=1, WL
P)

Yu, Y., Liu, N., Lu, F., Gao, T., Jafarzadeh, S., and Silling, S. A.. Nonlocal attention operator: … NeurIPS, 2024. 10

https://proceedings.neurips.cc/paper_files/paper/2024/file/ce5b4f79f4752b7f8e983a80ebcd9c7a-Paper-Conference.pdf


2. A variant transformer: nonlocal attention operator (NAO)
̂w = wθ(X, Y )Y = Xw + ε, X ∈ ℝn×d .

Linear Attention

Output

ΔEℓ =
H

∑
h=1

Attn(Eℓ,h)

LayerNorm with Multi-heads Eℓ+1 = Eℓ + LayerNorm(ΔEℓ)

Input

wθ(X, Y ) = Attninv(Eℓ=L)

Attninv(E ) = (WK E + BK)⊤(WQ E + BQ)WP

Loss function L(θ) = 𝔼Data∥Xwθ(X, Y ) − Y∥2
2

- Outperforms softmax attention in tests

- Computationally efficient: O(n^2)           O(n)   [1]

- : converges to RKHS as  (n < d)  

 

E⊤ v.s. E d → ∞

Eℓ=0 = E = (X, Y ) ∈ ℝn×(d+1)

[1] Katharopoulos, A., Vyas, A., Pappas, N. and Fleuret, F.. Transformers are RNNs: Fast autoregressive transformers with linear 
attention. ICML, 2020. 

WV ∈ ℝn×n, WK, WQ ∈ ℝdk×n

Attn(E ) = WV E(WK E + BK1d+1)⊤(WQ E + BQ1d+1)
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3. The transformer learns the prior: Gaussian settings
yi = ⟨xi, w⟩ + ϵi, 1 ≤ i ≤ n < d

Y = Xw + ε, X ∈ ℝn×d .

xi ∼ 𝒩(0,Σx) w ∼ 𝒩(w0, Σw) ϵi ∼ 𝒩(0,σ2
ε )

rank(Σw) = rwΣx, Σw ∈ ℝd×d

- The transformer outputs approximate the posterior   

- Gaussian: Extract the prior from the transformer outputs  
 + draw new samples of test contexts ;  
 + get posterior samples ;  
 + Extract the prior mean and covariance:  

(Xj, Yj)
ŵ j = wθ(Xj, Yj)

̂w 0, ̂Σ w
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3. The transformer learns the prior: Gaussian settings
yi = ⟨xi, w⟩ + ϵi, 1 ≤ i ≤ n < d

Y = Xw + ε, X ∈ ℝn×d .

xi ∼ 𝒩(0,Σx) w ∼ 𝒩(w0, Σw) ϵi ∼ 𝒩(0,σ2
ε )

rank(Σw) = rwΣx, Σw ∈ ℝd×d

Prior mean  

Prior 
Covariance  
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3. The transformer learns the regularization: baselines
yi = ⟨xi, w⟩ + ϵi, 1 ≤ i ≤ n < d

Y = Xw + ε, X ∈ ℝn×d .

xi ∼ 𝒩(0,Σx) w ∼ 𝒩(w0, Σw) ϵi ∼ 𝒩(0,σ2
ε )

rank(Σw) = rwΣx, Σw ∈ ℝd×d

Ridge estimator (RE):    

Two-stage Ridge estimator (TRE):    

ŵRE = (X⊤X + λId)−1X⊤Y

ŵTRE = (X⊤X + λΣ̂†
w)†X⊤(Y − X ̂w0) + ̂w0

 1. Estimate the prior;  2. Ridge regression

Oracle Ridge estimator (ORE):    ŵORE = (X⊤X+σ2
ε Σ†

w)†X⊤(Y − Xw0)+w0

= Posterior mean Unknown
14F. Lu and Y. Yu. Transformers learn cross-task prior and regularization for ICL-ILR. 2025. 

https://arxiv.org/abs/2505.12138


3. The transformer learns the regularization: optimal bounds
yi = ⟨xi, w⟩ + ϵi, 1 ≤ i ≤ n < d

Y = Xw + ε, X ∈ ℝn×d .

xi ∼ 𝒩(0,Σx) w ∼ 𝒩(w0, Σw) ϵi ∼ 𝒩(0,σ2
ε )

rank(Σw) = rwΣx, Σw ∈ ℝd×d

Ridge estimator (RE):    

Two-stage Ridge estimator (TRE):    

ŵRE = (X⊤X + λId)−1X⊤Y

ŵTRE = (X⊤X + λΣ̂†
w)†X⊤(Y − X ̂w0) + ̂w0

 1. Estimate the prior;  2. Ridge regression

Oracle Ridge estimator (ORE):    ŵORE = (X⊤X+σ2
ε Σ†

w)†X⊤(Y − Xw0)+w0

= Posterior mean 

       X
w

+ noise = YAs n increases (with ),    rw /n < 1/2

𝔼 ̂w ORE − w 2 = O( rw σ2
ε

n λmin(Σx)
) .

- Error ~   (task dimension/context length)
- Importance of well-conditioned contexts 

rw /n
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3. The transformer learns the regularization
yi = ⟨xi, w⟩ + ϵi, 1 ≤ i ≤ n < d

Y = Xw + ε, X ∈ ℝn×d .

xi ∼ 𝒩(0,Σx) w ∼ 𝒩(w0, Σw) ϵi ∼ 𝒩(0,σ2
ε )

rank(Σw) = rwΣx, Σw ∈ ℝd×d

- ORE > NAO > TRE > RE:  NAO achieves scalings aligning with ORE.
16



3. None-Gaussian prior / noise

NAO works for non-Gaussian distributions  
 
  + It does not use any distribution information  

  + Tests on a Uniform prior: the scaling patterns remain  
                                 

                                     

  It leads to a new regularization strategy tailored to each setting. 

O( σ2
ϵ rw

nλmin(Σx)
)
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4. Conclusion and outlook

• The transformers learn priors and regularization strategies 

• Low task dimensionality relative to context length is essential 

• Errors scale with noise and condition number

ICL-ILR via transformers: 

18



4. Conclusion and outlook

• The transformers learn priors and regularization strategies 

• Low task dimensionality relative to context length is essential 

• Errors scale with noise and condition number

ICL-ILR via transformers: 

• ICL for ill-conditioned inverse problems  

(learning kernels in operators)  

• Understand why and how transformers work for inverse problems 

• Scaling limits, sample complexity, OOD 

Future work: 

19
A new area, many important questions open. 


