Transformers Learn Prior and Regularization for In-context Learning of Inverse Linear Regression

Fei LuJohns Hopkins University

Joint work with Yue Yu, Lehigh University

MSML2025, University of Naples August 8, 2025

Outline

- 1.In-context learning: forward and inverse problems
- 2.A Transformer for ICL-ILR: nonlocal attention operator (NAO)
- 3.NAO learns the prior and regularization
- 4. Conclusions and outlook

1. In-context learning (ICL):

$$\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ y_1 & y_2 & \dots & y_n \end{pmatrix} \qquad \hat{y}_{n+1} = f_{\theta}(x_{n+1} \mid x_{1:n}, y_{1:n}) \qquad \text{Forward prediction}$$

$$\text{Context} \\ (x_{1:n}, y_{1:n}) \qquad \text{Training data:} \{(x_{1:n+1}^{(m)}, y_{1:n+1}^{(m)})\}_{m=1}^{M} \qquad f^{(m)} \qquad y_i = f(x_i) + \epsilon_i$$

Limited data per context Big data of cross tasks

1. In-context learning (ICL):

$$\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ y_1 & y_2 & \dots & y_n \end{pmatrix} \qquad \hat{y}_{n+1} = f_{\theta}(x_{n+1} \mid x_{1:n}, y_{1:n}) \qquad \text{Forward prediction}$$

$$\text{Context} \\ (x_{1:n}, y_{1:n}) \qquad \text{Training data:} \{(x_{1:n+1}^{(m)}, y_{1:n+1}^{(m)})\}_{m=1}^{M} \qquad f^{(m)} \qquad y_i = f(x_i) + \epsilon_i$$

Many open questions:
$$x_i \in \mathbb{R}^d$$
, $y_i \in \mathbb{R}$: $f_\theta : \mathbb{R}^{n(d+1)+d} \to \mathbb{R}$

- Why and how do transformers work?
- Task complexity: How large can the class of functions $\{f^{(m)}\}$ be? (low-dimensional structure in f(Z) or Z?)

- ...

1. In-context learning (ICL): linear regression

$$\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ y_1 & y_2 & \dots & y_n \end{pmatrix} \qquad \hat{y}_{n+1} = f_{\theta}(x_{n+1} \mid x_{1:n}, y_{1:n}) \qquad \qquad \textbf{Forward prediction}$$

$$\text{Context} \\ (x_{1:n}, y_{1:n}) \qquad \text{Training data:} \left\{ (x_{1:n+1}^{(m)}, y_{1:n+1}^{(m)}) \right\}_{m=1}^{M} \qquad \qquad y_i = \langle x_i, w \rangle + \epsilon_i \\ x_i, w \in \mathbb{R}^d$$

$$\text{- Transformers as gradient descent } [1,2,\dots] \qquad \qquad n \geq d$$

- Scaling limits in token/context length, task diversity [3]

^[1] Ahn et al. Transformers learn to implement preconditioned gradient descent for in-context learning. NeurIPS 2023.

^[2] Fu et al. Transformers Learn to Achieve Second-Order Convergence Rates for In-Context Linear Regression. NeurIPS 2024

^[3] Lu, Y. M., Letey, M., Zavatone-Veth, J. A., Maiti, A., Pehlevan, C.. Asymptotic theory of in-context learning by linear attention. PNAS 2025.

1. In-context learning (ICL): linear regression

$$\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ y_1 & y_2 & \dots & y_n \end{pmatrix}$$
Context
$$(x_{1:n}, y_{1:n})$$

$$\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ y_1 & y_2 & \dots & y_n \end{pmatrix} \qquad \hat{y}_{n+1} = f_{\theta}(x_{n+1} \mid x_{1:n}, y_{1:n})$$

Forward prediction

Training data:
$$\{(x_{1:n+1}^{(m)}, y_{1:n+1}^{(m)})\}_{m=1}^{M}$$

$$y_i = \langle x_i, w \rangle + \epsilon_i$$

ICL of inverse linear regression

$$Y = Xw + \varepsilon, \quad X \in \mathbb{R}^{n \times d}.$$
 $\widehat{w} = w_{\theta}(X, Y)$

$$\widehat{w} = w_{\theta}(X, Y)$$

Inverse problem

Rank deficient: $n \ll d$

→ Training data encodes a prior (cross-task information)

Priors + Regularization

1. Motivation: Learning Kernels in Operators

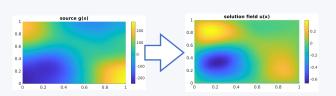
Learn convolution kernels from few input-output pairs

$$R_{\phi}[u](x) = \int \phi(z)g[u](x,z)dy = f(x) + \epsilon(x)$$

$$\{(u_{1:n_0}, f_{1:n_0})\}$$

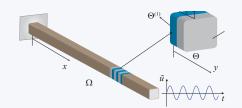
Integral operators

Darcy's equation: kernel = Green's functions g[u](x,z) = u(x-z)



Nonlocal Operators

nonlocal diffusion, fractional operators g[u](x, z) = u(x + z) - u(x)



Aggregation Operators

Mean-field limits

$$g[u](x,z) = \partial_x [u(x-z)u(x)]$$

Popkin. Nature(2016)

1. Motivation: Learning Kernels in Operators

Learn convolution kernels from few input-output pairs

$$R_{\phi}[u](x) = \int_{-\phi}^{\phi} (z)g[u](x,z)dy = f(x) + \epsilon(x)$$

$$\{(u_{1:n_0}, f_{1:n_0})\}$$

Forward operator

Inverse problem

Limited data per task: $X_w = Y + \epsilon$; $X \in \mathbb{R}^{n \times d}$, n < d Rank deficient

Big data of cross tasks:
$$\{(u_{1:n_0}^{(m)}, f_{1:n_0}^{(m)})\}_{m=1}^M \leftrightarrow \phi^{(m)}$$

 $\{(X^{(m)}, Y^{(m)})\}_{m=1}^M \leftrightarrow w^{(m)}$

→ Training data encodes a prior (cross-task information) **Priors + Regularization**

1. ICL of inverse linear regression

- High-dimensional, nonlinear: $w_{\theta}: \mathbb{R}^{n(d+1)} \to \mathbb{R}^{d \times 1}$
 - Do transformers learn the prior and regularization?
 - Do we need low task complexity (low-dimensional structure)?
 - How to determine if a transformer is working well?

2. A variant transformer: nonlocal attention operator (NAO)

$$Y = Xw + \varepsilon, \quad X \in \mathbb{R}^{n \times d}$$
.

$$\widehat{w} = w_{\theta}(X, Y)$$

Input

$$E^{\ell=0} = E = (X, Y) \in \mathbb{R}^{n \times (d+1)}$$

Linear Attention

$$\operatorname{Attn}(E) = W_V E(W_K E + B_K \mathbf{1}_{d+1})^{\mathsf{T}} (W_Q E + B_Q \mathbf{1}_{d+1})$$

LayerNorm with Multi-heads

$$E^{\ell+1} = E^{\ell} + \text{LayerNorm}(\Delta E^{\ell})$$

Output

$$\Delta E^{\ell} = \sum_{h=1}^{M} \operatorname{Attn}(E^{\ell,h})$$

$$w_{\theta}(X, Y) = \operatorname{Attn}^{inv}(E^{\ell=L})$$

$$Attn^{inv}(E) = (W_K E + B_K \mathbf{1}_{d+1})^{\mathsf{T}} (W_Q E + B_Q \mathbf{1}_{d+1}) W_P$$

 $\theta = \left((W_K^{\ell}, W_O^{\ell}, W_V^{\ell}, B_K^{\ell}, B_O^{\ell})_{\ell=1}^L, W_P^L \right)$

$$L(\theta) = \mathbb{E}_{Data} ||Xw_{\theta}(X, Y) - Y||_{2}^{2}$$

2. A variant transformer: nonlocal attention operator (NAO)

$$Y = Xw + \varepsilon, \quad X \in \mathbb{R}^{n \times d}.$$

$$\widehat{w} = w_{\theta}(X, Y)$$

Input

$$E^{\ell=0} = E = (X, Y) \in \mathbb{R}^{n \times (d+1)}$$

Linear Attention

$$\operatorname{Attn}(E) = W_V E (W_K E + B_K \mathbf{1}_{d+1})^{\top} (W_Q E + B_Q \mathbf{1}_{d+1})$$

- Outperforms softmax attention in tests
- $W_V \in \mathbb{R}^{n \times n}, W_K, W_Q \in \mathbb{R}^{d_k \times n}$
- Computationally efficient: O(n^2) → O(n) [1]
- E^{T} v.s. E: converges to RKHS as $d \to \infty$ (n < d)

[1] Katharopoulos, A., Vyas, A., Pappas, N. and Fleuret, F.. Transformers are RNNs: Fast autoregressive transformers with linear attention. ICML, 2020.

3. The transformer learns the prior: Gaussian settings

$$y_i = \langle x_i, w \rangle + \epsilon_i, \quad 1 \le i \le n < d \qquad x_i \sim \mathcal{N}(0, \Sigma_x) \quad w \sim \mathcal{N}(w_0, \Sigma_w) \quad \epsilon_i \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

$$Y = Xw + \epsilon, \quad X \in \mathbb{R}^{n \times d}. \qquad \Sigma_x, \Sigma_w \in \mathbb{R}^{d \times d} \quad \text{rank}(\Sigma_w) = r_w$$

- The transformer outputs approximate the posterior
- Gaussian: Extract the prior from the transformer outputs
 - + draw new samples of test contexts (X^j, Y^j) ;
 - + get posterior samples $\hat{w}^j = w_{\theta}(X^j, Y^j)$;
 - + Extract the prior mean and covariance: \widehat{w}_0 , $\widehat{\Sigma}_w$

3. The transformer learns the prior: Gaussian settings

$$y_i = \langle x_i, w \rangle + \epsilon_i, \quad 1 \le i \le n < d \qquad x_i \sim \mathcal{N}(0, \Sigma_x) \quad w \sim \mathcal{N}(w_0, \Sigma_w) \quad \epsilon_i \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$$

$$Y = Xw + \epsilon, \quad X \in \mathbb{R}^{n \times d}. \qquad \Sigma_x, \Sigma_w \in \mathbb{R}^{d \times d} \quad \text{rank}(\Sigma_w) = r_w \quad d=100$$

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

$$x_i \sim \mathcal{N}(0, \Sigma_x)$$

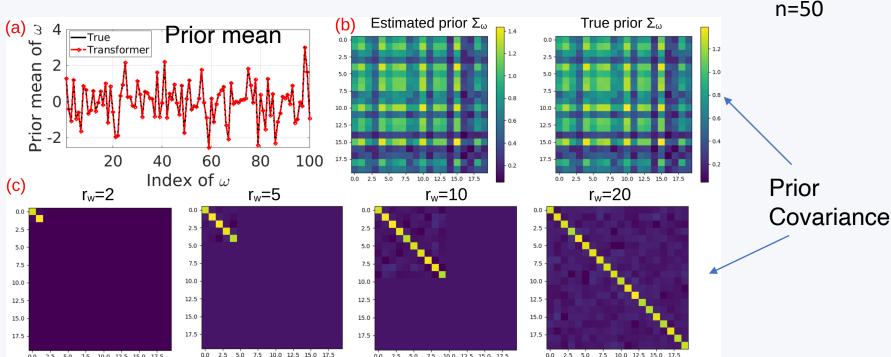
$$w \sim \mathcal{N}(w_0, \Sigma_w)$$

$$\epsilon_i \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

$$\Sigma_{r}, \Sigma_{w} \in \mathbb{R}^{d \times d} \quad \operatorname{rank}(\Sigma_{w}) = r_{w}$$

$$\operatorname{rank}(\Sigma_w) = r_1$$

d=100



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

3. The transformer learns the regularization: baselines

$$y_i = \langle x_i, w \rangle + \epsilon_i, \quad 1 \le i \le n < d \qquad x_i \sim \mathcal{N}(0, \Sigma_x) \quad w \sim \mathcal{N}(w_0, \Sigma_w) \quad \epsilon_i \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

$$Y = Xw + \epsilon, \quad X \in \mathbb{R}^{n \times d}. \qquad \Sigma_x, \Sigma_w \in \mathbb{R}^{d \times d} \quad \text{rank}(\Sigma_w) = r_w$$

Ridge estimator (RE):

$$\hat{w}^{RE} = (X^{\mathsf{T}}X + \lambda I_d)^{-1}X^{\mathsf{T}}Y$$

Two-stage Ridge estimator (TRE): 1. Estimate the prior; 2. Ridge regression

$$\hat{w}^{TRE} = (X^{\mathsf{T}}X + \lambda \hat{\Sigma}_{w}^{\dagger})^{\dagger} X^{\mathsf{T}} (Y - X\hat{w}_{0}) + \hat{w}_{0}$$

$$\hat{w}^{ORE} = (X^{\top}X + \sigma_{\varepsilon}^{2} \Sigma_{w}^{\dagger})^{\dagger} X^{\top} (Y - Xw_{0}) + w_{0}$$
= Posterior mean Unknown

3. The transformer learns the regularization: optimal bounds

$$y_i = \langle x_i, w \rangle + \epsilon_i, \quad 1 \le i \le n < d \qquad x_i \sim \mathcal{N}(0, \Sigma_x) \quad w \sim \mathcal{N}(w_0, \Sigma_w) \quad \epsilon_i \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

$$Y = Xw + \epsilon, \quad X \in \mathbb{R}^{n \times d}. \qquad \Sigma_x, \Sigma_w \in \mathbb{R}^{d \times d} \quad \text{rank}(\Sigma_w) = r_w$$

As n increases (with $r_w/n < 1/2$),

$$\mathbb{E} \| \widehat{w}^{\text{ORE}} - w \|^2 = O\left(\frac{r_w \sigma_{\varepsilon}^2}{n \, \lambda_{\min}(\Sigma_x)}\right).$$

- Error $\sim r_w/n$ (task dimension/context length)
- Importance of well-conditioned contexts

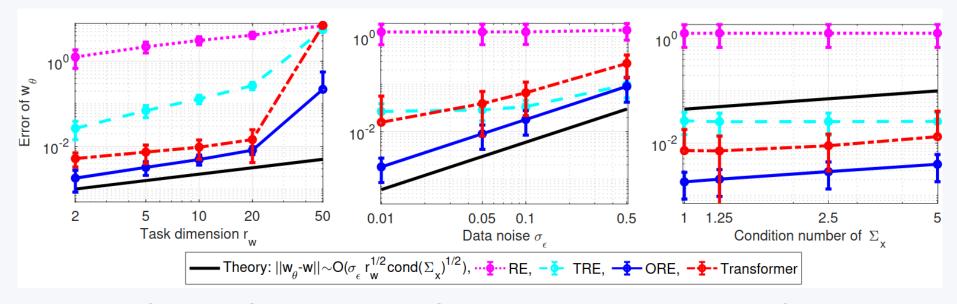
Oracle Ridge estimator (ORE):

$$\hat{w}^{ORE} = (X^{\mathsf{T}}X + \sigma_{\varepsilon}^{2}\Sigma_{w}^{\dagger})^{\dagger}X^{\mathsf{T}}(Y - Xw_{0}) + w_{0}$$
= Posterior mean

3. The transformer learns the regularization

$$y_i = \langle x_i, w \rangle + \epsilon_i, \quad 1 \le i \le n < d \qquad x_i \sim \mathcal{N}(0, \Sigma_x) \quad w \sim \mathcal{N}(w_0, \Sigma_w) \quad \epsilon_i \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$$

$$Y = Xw + \epsilon, \quad X \in \mathbb{R}^{n \times d}. \qquad \Sigma_x, \Sigma_w \in \mathbb{R}^{d \times d} \quad \text{rank}(\Sigma_w) = r_w$$



- ORE > NAO > TRE > RE: NAO achieves scalings aligning with ORE.

3. None-Gaussian prior / noise

NAO works for non-Gaussian distributions

- + It does not use any distribution information
- + Tests on a Uniform prior: the scaling patterns remain

$$O\left(\frac{\sigma_{\epsilon}^2 r_w}{n \lambda_{min}(\Sigma_x)}\right)$$

It leads to a new regularization strategy tailored to each setting.

4. Conclusion and outlook

ICL-ILR via transformers:

- The transformers learn priors and regularization strategies
- Low task dimensionality relative to context length is essential
- Errors scale with noise and condition number

4. Conclusion and outlook

ICL-ILR via transformers:

- The transformers learn priors and regularization strategies
- Low task dimensionality relative to context length is essential
- Errors scale with noise and condition number

Future work:

- ICL for ill-conditioned inverse problems (learning kernels in operators)
- Understand why and how transformers work for inverse problems
- Scaling limits, sample complexity, OOD

A new area, many important questions open.