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Numerical experiments
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The state trajectory is well estimated by the sample ensemble. The figure below shows the 
ensemble of trajectories at an observed node (left) and an unobserved node (right), with 
marginal distributions at different time instants (bottom row). The ensemble trajectories (in 
cyan) spread around the true trajectory, and the ensemble mean (blue diamond with one 
stand derivation in magenta) is close to the true path for most of the time. The ensemble 
mean filtered out the noise in observations (red circles), reducing the relative error by 30%.

Ill-posedness of the inverse problem and sparse noisy data are two major 
challenges in the modeling of high-dimensional spatiotemporal processes. We 
introduce a Bayesian inference method with a strongly regularized posterior 
to overcome these challenges, enabling joint state-parameter estimation with 
uncertainty quantification. We demonstrate the method on a physically motivated 
nonlinear stochastic partial differential equation (SPDE) arising from 
paleoclimate construction.

Summary

Future work

• Re-parametrization or nonparametric inference to avoid ill-posedness
• Modify model and apply the method for cases with field data 

We introduced a strongly regularized posterior that overcomes the ill-posedness in 
parameter estimation for an SPDE model from sparse noisy data, and investigate joint 
state-parameter estimation of a stochastic energy balance model arising in paleoclimate 
field reconstructions. 

Accurate state estimation from sparse and noisy data is achieved
Large uncertainty presents in the parameter estimation, due to the ill-posedness

The equation is discretized in space by finite element, and integrated in time by a semi-
backward Euler scheme so as to be stable. 

We consider a stochastic energy balance model (SEBM) deduced from the process based a 
deterministic model of Fanning and Weaver (1996). It contains a diffusive transport term, an 
external forcing term, a linear term that models atmosphere-ocean fluxes, a forth order term 
that corresponds to outgoing long-wave radiation, and a stochastic forcing: 

The stochastic forcing f(t,x) is smooth in space and white in time, and it is represented by 
the Gaussian Markov random fields approximation of Matern noise [Lindgren et al. 2011]. 

@tu(t, x)� v�u(t, x)) = (✓0 + ✓1u+ ✓2u
4) + f(t, x).

The data are noisy observations at sparse nodes of the spatiotemporal process.  We 
assume that the noises, representing measurement errors, are independent identically 
distributed Gaussian.  

Simplified protocol model settings:  

Consider here a tiny mesh with only 12 
nodes and 20 elements on the unit sphere.
A typical solution is shown in the right figure. 
The temperature oscillates around one (non-
dimensionalized). 
Data: at each time, only 6 out of 12 nodes 
are observed (sparse), with additive 
independent Gaussian noises.  

Joint state and parameter estimation: 
we estimate jointly the states and parameters. 

Posterior = Prior × Normalized Likelihood

p(θ, u |y) = p(θ)( p(u |θ)p(y |u, θ)
p(y) )

1/N

The strongly regularized posterior normalizes the likelihood so that the prior can sufficiently 
constrain the parameters into the physical range. We also enforce a prior for the states 
according to the climatological distribution. The posterior quantifies the uncertainty in state 
and parameter estimation.

The posterior is of extremely high-dimensional. For example, for a tiny mesh with 12 nodes 
and 100 time steps of observations, the discrete state variable is of dimension (1200 +3). This 
number growths to millions as the mesh refines and time steps increases.  A major challenge is 
to generate samples for such a high dimensional distribution.

A family of sampling methods that combines the advantages of both Sequential Monte Carlo 
(SMC)  and Markov Chain Monte Carlo [Andrieu, Doucet & Holensetin 2010]:

The chain: moves from one SMC ensemble to another 
• Each chain step: sample from the SMC ensemble 
• With the target distribution as invariant measure (improving SMC)

Transition through conditional SMC
• Previous chain as a reference path in the next SMC. The reference path is retained 

over the resampling steps, and interacts with other paths by contributing its weight. 
Particle Gibbs with Ancestor Sampling (PGAS) [Lindstein, Jordan & Schon 2014]

• Sample the ancestor of the reference path to increase mixing of the chain
• Gibbs sampling for the parameter using the reference path

Settings: 
Observe 100 time steps, each time step observing 6 nodes. The noise to signal ratio is 1%. 
PGAS uses 5 particles for the SMC and a Markov chain of length 10000.  

Parameter settings (Prior) 
We derive upper/lower bounds of parameters from physical 
principles, and use them to set a prior probability density: a 
Gaussian distribution with mean = (upper bound + lower 
bound)/2 and with std = (upper bound - lower bound)/2 .   

Bound

Lower 27.64 -25.46 -6.00

Upper 32.57 -22.70 -4.80

θ0 θ1 θ2

Inverse problem: ill-posed. 
Due to the strong correlation between the terms 
in the parametric form, the inverse problem is ill-
posed. Numerically, this means that the Fisher 
information matrix is ill-conditioned. As a result, 
large estimation errors appear for both perfect 
and noisy observations, leading to estimators out 
of physical ranges (see in the right figure) and 
failure of model identification. 2 3 4 5
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The mean and standard deviation of the relative errors in trajectory estimation in 100 
independent experiments is 1.14% (0.41%) over all observed and unobserved nodes. 

State estimation: 

Parameter estimation: 
The posterior of the parameters is represented by the samples, shown below in a scatter plot 
and marginal density plots. Large uncertainty presents in the posterior, due to the ill-posedness 
and the need of regularization. The true values of the first two parameters are in the high 
probability region, but the true value of the last parameter is of low posterior possibility.

Mean -0.32 0.02 0.03

Std 0.61 0.42 0.21

θ0 θ1 θ2

The left table shows means and standard deviations of the 
errors of the maximum of posterior (MAP) in 100 independent 
simulations. Relatively large uncertainties in MAP’s are seen, 
due to the ill-posedness. Therefore, it is important to quantify 
the uncertainty by the posterior. 
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