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Learning kernels
e0

Learning kernels in operators

Learn the kernel ¢: Rylul +e=f

from data: N
D = {(Uk, k) } k=1, (Uk, ) € X XY

Operator Ry[u](x) = [ ¢(x — y)glul(x, y)dy
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Learning kernels
e0

Learning kernels in operators

Learn the kernel ¢: Rylul +e=f

from data: N
D = {(Uk, fc) } k=1, (U, f) € X XY

Operator R,[u](x) = [ ¢(x — y)glu](x, y)dy
@ Interacting particles/agents K, (x) = ¢(|x|) 7 € R

1 S . .
Ry[X:] = [_B Z K¢(X{—X{)]I. = Xi+Wq, R"™
=1

Ry[u] =V - [u(Ky * u)] = diu — o Au,

4/36



Learning kernels
e0

Learning kernels in operators

Learn the kernel ¢: Rylul +e=f

from data: N
D = {(Uk, fc) } k=1, (U, f) € X XY

Operator R,[u](x) = [ ¢(x — y)glu](x, y)dy
@ Interacting particles/agents K, (x) = ¢(|x|) 7 € R

1 S . .
Ry[X:] = [_B Z K¢(X{—X{)]I. = Xi+Wq, R
j=1

Ry[u] =V - [u(Ky * u)] = diu — o Au,
@ Nonlocal PDEs:
Rylul(x) = /Q o(x — Y)[u(y) — u(x)]dy = dyu
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Learning kernels
o] ]

Learning kernels in operators

Learn the kernel ¢: Rylu] +¢=f

from data:
D= {(Ulﬁ fk)}ﬁ:p (Uk, fk) eXxY

@ Operator R,[u](x) = [ ¢(x — y)glul(x, y)dy
linear or nonllnear in u, but linear in ¢

@ Statistical learning () inverse problem

» random {(ux, f)}:  statistical learning
» deterministic (e.g., N small): inverse problem
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Learning kernels
[ ]

Learning kernels in operators

Classical learning Learning kernels Operator learning
{(xi p(x) + €} {(us Ryl ] + 1)} { g Rlug] + 1))
Local dependence Nonlocal dependence t Local dependence
P ] . Values are .5 & y
..® . y ( R : &
o i o ee S undetermined [ o e ee
o e from data # oo
I X X I u
Inverse problem: well-posed ill-posed well-posed

This talk: = introduce a data-adaptive regularization norm
@ Convergent estimator as mesh refines
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Regression and regularization

Part 2: Regression and regularization
Learn the kernel ¢:

R¢[U]—|—6:f

from data:
D= {(uk, i) e, (Ui, fie) €X XY

Operator Ry[u](x) = [ ¢(x — y)g[ul(x, y)dy



Regression and regularization
[ ]

Nonparametric regression

e Loss functional:  &(¢) = 4 SN, || Rslui] — £I2
» Crucial!
» Derivative-free Monte Carlo suitable [Lang+Lu22sisc)

@ Hypothesis space H, = span{¢;}7_,: ¢ = D7 Cidi,

£(¢) = ¢ Anc—2¢"by+Cl, = du, = Y _ Cichi, Where C = A b,
i

Goal: ¢4, converges as data mesh Ax refines
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Regression and regularization
[ ]

Nonparametric regression

e Loss functional:  &(¢) = 4 SN, || Rslui] — £I2
» Crucial!
» Derivative-free Monte Carlo suitable [Lang+Lu22sisc)

@ Hypothesis space H, = span{¢;}1_,: ¢ = >_7_; Cigi,
£(¢) = ¢ Anc—2¢"by+Cl, = du, = Y _ Cichi, Where C = A b,
i

Goal: ¢4, converges as data mesh Ax refines

Challenges
@ Choice of Hp: {9} and n = n(Ax)

° Zf: ill-conditioned/singular

10/36



Regression and regularization
[ JeJele]

Regularization

Regularization is necessary:
@ A, ill-conditioned
@ b,: noise or numerical error

Tikhonov/ridge Regularization:
Ex(8) = E(6) + N|6|12 = cTAnc — 2B, ¢+ AcT B.c

9,%\-[,1 = Z/C\)\Jfbi, where G, = (A, + A\B,) " 'b,
i
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Regression and regularization
[ JeJele]

Regularization

Regularization is necessary:
@ A, ill-conditioned
@ b,: noise or numerical error

Tikhonov/ridge Regularization:
Ex(8) = E(6) + N|6|12 = cTAnc — 2B, ¢+ AcT B.c

9,%\-[,1 = Z/C\)\Jfbi, where G, = (A, + A\B,) " 'b,
i

L-curve and normal vector 10 signed curvature

—L-curve ® )\ =1063"
—normal vector 8 0

@ ) by the L-curve method [Hansenoo)

)

c'Be;

(x,) == (log(£(C»)), log(Cy B.Cx)) £

log,,
curvature

M. = maximal curvature

3 -2 -1 0

@ Which norm | - ||, to use? B, = I,? 10910(che -25¢)
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Regression and regularization
0®00

12: |[c] L2: 9]l 2

L2 error
Loss value

Sine kernel

L2 error
Loss value

Gaussian kernel

A x=0.0125%x{1,2,4,8,16} A x =0.0125x{1,2,4,8,16} A x=0.0125x{1,2,4,8,16}
—6-nsr = 0.1, error ~&nsr = 1.0, error <9—nsr = 0.1, loss ~¢-'nsr = 1.0, loss

Convergence of Estimators, nsr = 0.1 & 1

@ Risk of blowing up in the small noise limit (chada-wang-Lang-Lu22]

13/36



Regression and regularization
[e]e] o]

Principle: istarteot0]
Avoid discretization until the last possible moment

!

Avoid basis selection until the last possible moment

Hypothesis space: ¢ = Y"1, Ci¢j € Hp = span{¢;}7_,:

Rylul(x / o(1x — y)alul(x, y)ay = f

Function space of ¢? Identifiability?
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Regression and regularization
[e]e]e] )

Part 3: Identifiability & regularization

DARTR: Data adpative RKHS Tikhonov regularization

15/36



Identifiability and DARTR
o

|dentifiability

@ An exploration measure: p(dr) =¢ell
Rolul(x) = [ &(Ix — yDglul(x, y)dy, p(dr) o< [ [d)x— y|(df)|g[U X, y)|dxdy
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Identifiability and DARTR
o

|dentifiability

@ An exploration measure: p(dr) =¢ell
Ry[ul(x) = [q &(Ix — yDglul(x, y)dy, p(dr) oc [ [ d)x— y|(dr)|g[u X, y)|dxdy
@ An integral operator < the Fréchet derivative of loss functional

1 N
E(0) = 3 D_ I Rolui] = Fllf = (L0, Bhiz — 2(8°, )iz
i=1

VE(P) =2Lgp —20° =0 = d=Lg 0P
» Lg: nonnegative compact, {(\;, i)}, Ai 4 0
> ¢D — £5¢true + ¢error
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Identifiability and DARTR
o

|dentifiability

@ An exploration measure: p(dr) =¢ell
Ry[ul(x) = [q &(Ix — yDglul(x, y)dy, p(dr) oc [ [ d)x— y|(dr)|g[u X, y)|dxdy
@ An integral operator < the Fréchet derivative of loss functional

1 N
E(0) = 3 D_ I Rolui] = Fllf = (L0, Bhiz — 2(8°, )iz
i=1

VE(P) =2Lgp —20° =0 = d=Lg 0P
» Lg: nonnegative compact, {(\;, i)}, Ai 4 0

> ¢D — £5¢true + ¢error
@ Function space of identifiability (FSOI):

6= Lg (Lgbrue+d™) = H=Null(Lg)" = span{ti}in>0
» ill-defined beyond H; ill-posed in H
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Identifiability and DARTR
@00

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization:
ensure that the learning takes place in the FSOI

data-dependent H = span{¢);};.x.>0
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Identifiability and DARTR
@00

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization:
ensure that the learning takes place in the FSOI

- 2
data-dependent H = span{t;};.\~02 HGL"

o G=RKHS: Hg = £5'3(L2)
° 63, = (Lg '.0)12
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Identifiability and DARTR
@00

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization:
ensure that the learning takes place in the FSOI

data-dependent H = span{t;}.x,~02 %Li
o G=RKHS: Hg = £5'3(L2)
o 612, = (L5 "6, 0)iz

= Regularization norm: [|¢||%,  wustangsaneasy
Ex(9) = E(0) + NI8|I, = (Lg+ Mg ) D)z — 2(6°, &)1z

on=(Lg+ Mg )7100 = (L5 + A) T Lgo
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Identifiability and DARTR
(o] le}

What DARTR has done:
remove error outside FSOI + regularize in FSOI

@ No regularization:

(E: £§_1¢D — £ ( G¢true+¢/-/or+ urm)

® DARTR: |42, = oo
(Le+ AL )"0 = (Lg+ Mg ) (Lgdme + 65°)
@ /2 or L2 regularizer: with C =" ¢; ® ¢jor C = |

(Lg+AC)'¢P = (L5 + AC) ™ (Lgbime + 57 + 051")
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Identifiability and DARTR
[e]e] ]

DARTR: computation

Ex(¢) = E(9) + M9lIfy, = ¢ Anc —2b, ¢+ Al[c|B,,

Input: A, by and By, = ((¢7, &) 12 )i -
Output: reguarized estimator

EA = (An + )\*Brkhs)_1bn
@ Generalized eigenvalue problem (Ap, By) < L
A,V =B,VAand VT B,V = I,

Bins = (VAVT): Buss = Al when B, = I,
@ L-curve to select A,
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Identifiability and DARTR
[ le]

Interaction kernel in a nonlinear operator

X

Rolu] = V- [u(Ky x u)] = f, Ky = ¢(!X\)m

@ Recover kernel from discrete noisy data
@ Robust in accuracy, consistent rates as mesh refines

12 L2 RKHS 1

P —— - <
%
= E] AN
g 2 2os RN
3. N
=H107 4 -k ~2
£ - L2 ~3
@ ~& RKHS 1
= <
N -
Ts10” E] bo— — o v p-—"
€9 T 205
85 > @ \
I g | il
2 8

= = 0
g 10*
s
8

Ax=0.0125%{1,2,4,8,16} A x=0.0125x{1,2,4,8,16} A x=0.0125x{1,2,4,8,16} 05 7 p

~©-nsr =0.1, error ~&-nsr = 1.0, error —o-nsr=0.1, loss ~¢ nsr=1.0, loss nsr
Typical estimattr)rs, Ax =0.05 Convergence of Estimators, nsr=0.1 & 1 Convergence Rates
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Identifiability and DARTR
°

More robust L-curve

12 L2 RKHS

L-curve with norm: 2 5 Signed curvature L-curve with norm: L2 4 5 Signed curvature L-curve with norm: RKHS 5o -Signed curvature
® ), =000031084 3 2
1 15
2 2 2 15
05 1
1 1
o1 b O © 10
=0 H = § [ 1,=00013042
) ] 05 g o =0
g 3 s

4 0 i} - )
2 4 3 15 15 0

- 2
-3 @ ) =0.0074011

3 2 A
log,  (I1AX-bll)

-1

3 -2
10° 10° log,(IIAX-bll)

o -4 2
log (I1AX-bl)

5 0
10° 10 10 10
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Identifiability and DARTR
[ ]

Homogenization of wave propagation in meta-material

@ heterogeneous bar with microstructure + DNS =- Data

@ Homogenization: jusansvuzs)
Ry[u] = [q o(lyDlu(x + y) — u(x)]dy = dgu — v.

(c) Refgularizer 12 Regularizer L2 Regularizer RKHS
4 x10
A 200
(a) Wave propagation in % 100 2 N
a heterogeneous bar Z O [ '\/v\/V 10 \
Bl o BZR E» -100 VJ 0 \/ \/\/\/\’
| e B
— 0 1 2 2 0 1 2
— r r r
100 20
e @ 50
R ~y 50 0 10 —
- ) - - -50
A -100 | o
0 50 100 0 50 100 0 50 100
Wave number Wave number Wave number
——DNS coarse dataset 1 coarse dataset 2 fine dataset

@ (c): resolution-invariant
@ (e): 2 and L2 leading to non-physical kernel
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Iterative method

Part 4: lterative method

Large scale Ax = b, A e R™"ill-conditioned, n >> 1
b: noisy
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Iterative method

Direct method: DARTR for Ax = b

An=ATAb,=A"b:= Apnx=by

QA = (An + )\*Brkhs)i1 bn

@ p o )i |Aj|: measure of A exploring x
@ B, = diag(p): pre-conditioning

@ Generalized eigenvalue problem (Ap, Bp)
AV =B,VAand VT B,V = I, = Byps = (VAVT)T
Bins = Al, when B, = I,

@ L-curve to select ),
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Iterative method

Direct method: DARTR for Ax = b

An=ATAb,=A"b:= Apnx=by

QA = (An + )\*Brkhs)i1 bn

@ p o )i |Aj|: measure of A exploring x
@ B, = diag(p): pre-conditioning

@ Generalized eigenvalue problem (Ap, Bp)
AV =B,VAand VT B,V = I, = Byps = (VAVT)T
Bins = Al, when B, = I,

@ L-curve to select ),

Direct method: based on costly matrix decomposition.
Iterative method: without computing Byns?
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Iterative method

Iterative Data Adaptive RKHS regularization

Solve: xx = argmin || X|| g,
xeXy

Sk = span{(B/,, ;AT A B, ATb}k

Xk = {x : minxes, [|Ax — b||}

e Use B/, not Byps: Bl,,. = B~ 1ATAB"!
@ generalized Golub-Kahan bidiagonalization (gGKB)
= construct Sy only using matrix-vector product

@ Si = RKHS-restricted Krylov subspace
@ Early stopping: select k
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Iterative method

Computational complexity

Direct method: DARTR, O(n®)
lterative method: iDARR, O(3mnk)

4 T ' ' v v ' )
~%-DARTR

3 -©-iDARR |1
*O(n3)

2 —O0(n)

3 - ="

Iog10 Computational Time (seconds)
o

200 400 800 1600 3200 6400 12800
n
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Iterative method

Fredholm integral equation: 1st kind

lterative method =~ direct method

eigenvalues of A and (A.8)
—egvaa
- [-=—eigval a8)

True function outside FSOI

True function in FSOI
Estimated solution Estimated y Estimated solution 08 Estimatedy
0.7
4 —True 1 Observed [—True Observed
IR-2 —True 06| IR2 —True
IRL2 IR2 IR-L2 IR2
2 iDARR 05 ’r/\- IR-L2 05 iDARR! IR-L2
rho / iDARR tho 025/ | iDARR
5 = f S04 s
EX) / 2 = {
/ 03 02t | A A i b
o/ LIV AAANAA
/ | V
2| \ 02 sl §
-4 -0.5 L o4
1 2 4 5 0 1 2 3 4 5 1 2 3 4 5 0 1 2 3 4 5
u t u t
2 15 15 ¥
| SR lterative Methods| | A Direct Methods " |F% | Iterative Methods A Direct Methods
5 -0 IDARR 1| -0 RKHS . -0 IDARR ~6 RKHS
g o5 05 05
N;\ ] 4
L 0 T A 0
g 05 > 05 L ? 05
g i ¥
4 . & 4 4
d--& 1
-15
1 0.06250.125 025 0.5 1

0.06250.125 0.25 0.5
nsr

1

05

0.06250.125 0.25

0.06250.125 0.25

05

nsr
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Image deblurring

I, relative error

15 relative error

True image

Image
deblurring

Gazzola+Hansen+Nagy2019
256x256; 320x320

LSQR recons., k = 133 iDARR recons., k = 111

25

20

151

100

LSQR recons., k = 102 hybrid-12 recons., k = 21

40 B0 B0 100 120 140 160 180 B
Iteration - o

Iterative method

33/36



Iterative method

Regularization:

Is DA-RKHS better than other norms?

@ Small noise analySiS [Chada+Lang+Lu+Wang22,Lu+Ou23,LangLu23]
» Data-Adaptive is important (as regularizer/prior)
fractional space HS = LS‘G/2L§
» Convergence rate: same as L2, a smaller factor
» Robust for selection of hyper-parameter

@ Open: is there a regularizer universally "best"?
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Iterative method

Summary

Learning kernels in operators:
Rolul =f < D= {(Uk )i
Nonlocal dependence
@ Identifiability
@ DARTR: data adaptive RKHR Tikhonov-Reg

» Synthetic data: convergent, robust to noise
» Homogenization: resolution-invariant

@ lterative method: iDARR
Regularization: Anx, = by = Xa.n = (An + M, )b,
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Iterative method

Future directions

Learning with nonlocal dependence

Classical learning Learning kernel
@ Convergence: Ax, N {03 4 06) + €} {4 Ryl + 1)
Local dependence tNonlocal dependence
@ Automatic kernel for GPR v 2T e
° Regg larization for ML: Inversion 7 = 1-'g? 7= Log
Hd)erkhS’ not |4 Regularization ¢ =(+10)'¢°?  § =Le+iLz)'¢”

Thank you for your attention!
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