Data-adaptive RKHS regularization for learning kernels in operators

Fei Lu

Department of Mathematics, Johns Hopkins University

Caltech
May 22, 2024

Collaborators: Quanjun Lang, Qingci An, Yue Yu, Haibo Li, Jinchao Feng, Xiong Wang, Yvonne Ou, Neil Chada

U N I V ER S I T Y
(1) Learning kernels
(2) Regression and regularization
(3) Identifiability and DARTR

4 Iterative method

Learning kernels in operators

Learn the kernel $\phi: \quad \boldsymbol{R}_{\phi}[u]+\epsilon=f$
from data:

$$
\mathcal{D}=\left\{\left(u_{k}, f_{k}\right)\right\}_{k=1}^{N}, \quad\left(u_{k}, f_{k}\right) \in \mathbb{X} \times \mathbb{Y}
$$

Operator $R_{\phi}[u](x)=\int \phi(x-y) g[u](x, y) d y$

Learning kernels in operators

Learn the kernel $\phi: \quad R_{\phi}[u]+\epsilon=f$
from data:

$$
\mathcal{D}=\left\{\left(u_{k}, f_{k}\right)\right\}_{k=1}^{N}, \quad\left(u_{k}, f_{k}\right) \in \mathbb{X} \times \mathbb{Y}
$$

Operator $R_{\phi}[u](x)=\int \phi(x-y) g[u](x, y) d y$

- Interacting particles/agents $K_{\phi}(x)=\phi(|x|) \frac{x}{|x|} \in \mathbb{R}^{d}$

$$
\begin{aligned}
R_{\phi}\left[\boldsymbol{X}_{t}\right] & =\left[-\frac{1}{n} \sum_{j=1}^{n} K_{\phi}\left(X_{t}^{i}-X_{t}^{j}\right)\right]_{i}=\dot{\boldsymbol{X}}_{t}+\dot{\mathbf{W}}_{t} \\
R_{\phi}[u] & =\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]=\partial_{t} u-\sigma \Delta u
\end{aligned}
$$

Learning kernels in operators

Learn the kernel $\phi: \quad R_{\phi}[u]+\epsilon=f$
from data:

$$
\mathcal{D}=\left\{\left(u_{k}, f_{k}\right)\right\}_{k=1}^{N}, \quad\left(u_{k}, f_{k}\right) \in \mathbb{X} \times \mathbb{Y}
$$

Operator $R_{\phi}[u](x)=\int \phi(x-y) g[u](x, y) d y$

- Interacting particles/agents $K_{\phi}(x)=\phi(|x|) \frac{x}{|x|} \in \mathbb{R}^{d}$

$$
\begin{aligned}
R_{\phi}\left[\boldsymbol{X}_{t}\right] & =\left[-\frac{1}{n} \sum_{j=1}^{n} K_{\phi}\left(X_{t}^{i}-X_{t}^{j}\right)\right]_{i}=\dot{\boldsymbol{X}}_{t}+\dot{\mathbf{W}}_{t} \\
R_{\phi}[u] & =\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]=\partial_{t} u-\sigma \Delta u
\end{aligned}
$$

- Nonlocal PDEs:

$$
\overline{R_{\phi}[u](x)}=\int_{\Omega} \phi(x-y)[u(y)-u(x)] d y=\partial_{t t} u
$$

Learning kernels in operators

Learn the kernel ϕ :

$$
R_{\phi}[u]+\epsilon=f
$$

from data:

$$
\mathcal{D}=\left\{\left(u_{k}, f_{k}\right)\right\}_{k=1}^{N}, \quad\left(u_{k}, f_{k}\right) \in \mathbb{X} \times \mathbb{Y}
$$

- Operator $R_{\phi}[u](x)=\int \phi(x-y) g[u](x, y) d y$: linear or nonlinear in u, but linear in ϕ
- Statistical learning \bigcap inverse problem
- random $\left\{\left(u_{k}, f_{k}\right)\right\}$: statistical learning
- deterministic (e.g., N small): inverse problem

Learning kernels in operators

This talk: \Rightarrow introduce a data-adaptive regularization norm

- Convergent estimator as mesh refines

Part 2: Regression and regularization

Learn the kernel ϕ :

$$
R_{\phi}[u]+\epsilon=f
$$

from data:

$$
\mathcal{D}=\left\{\left(u_{k}, f_{k}\right)\right\}_{k=1}^{N}, \quad\left(u_{k}, f_{k}\right) \in \mathbb{X} \times \mathbb{Y}
$$

Operator $R_{\phi}[u](x)=\int \phi(x-y) g[u](x, y) d y$

Nonparametric regression

- Loss functional: $\quad \mathcal{E}(\phi)=\frac{1}{N} \sum_{i=1}^{N}\left\|R_{\phi}\left[u_{i}\right]-f_{i}\right\|_{\mathbb{Y}}^{2}$
- Crucial!
- Derivative-free Monte Carlo suitable [Lang+Lu22sIsc]
- Hypothesis space $\mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}: \phi=\sum_{i=1}^{n} c_{i} \phi_{i}$,

$$
\mathcal{E}(\phi)=c^{\top} \bar{A}_{n} c-2 c^{\top} \bar{b}_{n}+C_{N}^{f}, \Rightarrow \widehat{\phi}_{\mathcal{H}_{n}}=\sum_{i} \widehat{c}_{i} \phi_{i}, \text { where } \widehat{c}=\bar{A}_{n}^{-1} \bar{b}_{n}
$$

Goal: $\widehat{\phi}_{\mathcal{H}_{n}}$ converges as data mesh Δx refines

Nonparametric regression

- Loss functional: $\quad \mathcal{E}(\phi)=\frac{1}{N} \sum_{i=1}^{N}\left\|R_{\phi}\left[u_{i}\right]-f_{i}\right\|_{\mathbb{Y}}^{2}$
- Crucial!
- Derivative-free Monte Carlo suitable [Lang+Luz2sIsc]
- Hypothesis space $\mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}: \phi=\sum_{i=1}^{n} c_{i} \phi_{i}$,

$$
\mathcal{E}(\phi)=c^{\top} \bar{A}_{n} c-2 c^{\top} \bar{b}_{n}+C_{N}^{f} \Rightarrow \widehat{\phi}_{\mathcal{H}_{n}}=\sum_{i} \widehat{c}_{i} \phi_{i}, \text { where } \widehat{c}=\bar{A}_{n}^{-1} \bar{b}_{n}
$$

Goal: $\widehat{\phi}_{\mathcal{H}_{n}}$ converges as data mesh Δx refines

Challenges

- Choice of $\mathcal{H}_{n}:\left\{\phi_{i}\right\}_{i=1}^{n}$ and $n=n(\Delta x)$
- \bar{A}_{n}^{-1} : ill-conditioned/singular

Regularization

Regularization is necessary:

- \bar{A}_{n} ill-conditioned
- \bar{b}_{n} : noise or numerical error

Tikhonov/ridge Regularization:

$$
\begin{gathered}
\mathcal{E}_{\lambda}(\phi)=\mathcal{E}(\phi)+\lambda\|\phi\|_{*}^{2} \Rightarrow c^{\top} \bar{A}_{n} c-2 \bar{b}_{n}^{\top} c+\lambda c^{\top} B_{*} c \\
\widehat{\phi}_{\mathcal{H}_{n}}^{\lambda}=\sum_{i} \widehat{c}_{\lambda, i} \phi_{i}, \quad \text { where } \widehat{c}_{\lambda}=\left(\bar{A}_{n}+\lambda B_{*}\right)^{-1} \bar{b}_{n},
\end{gathered}
$$

Regularization

Regularization is necessary:

- \bar{A}_{n} ill-conditioned
- \bar{b}_{n} : noise or numerical error

Tikhonov/ridge Regularization:

$$
\begin{gathered}
\mathcal{E}_{\lambda}(\phi)=\mathcal{E}(\phi)+\lambda\|\phi\|_{*}^{2} \Rightarrow c^{\top} \bar{A}_{n} c-2 \bar{b}_{n}^{\top} c+\lambda c^{\top} B_{*} c \\
\widehat{\phi}_{\mathcal{H}_{n}}^{\lambda}=\sum_{i} \widehat{c}_{\lambda, i} \phi_{i}, \quad \text { where } \widehat{c}_{\lambda}=\left(\bar{A}_{n}+\lambda B_{*}\right)^{-1} \bar{b}_{n},
\end{gathered}
$$

- λ by the L-curve method [Hansenoo]

$$
\begin{aligned}
& (x, y):=\left(\log \left(\mathcal{E}\left(\widehat{c}_{\lambda}\right)\right), \log \left(\widehat{c}_{\lambda}^{\top} B_{*} \widehat{c}_{\lambda}\right)\right), \\
& \lambda_{*}=\text { maximal curvature }
\end{aligned}
$$

- Which norm $\|\cdot\|_{*}$ to use? $B_{*}=I_{n}$?

- Risk of blowing up in the small noise limit [Chada-Wang-Lang-Lu22]

Principle: [stuart200]
Avoid discretization until the last possible moment \downarrow
Avoid basis selection until the last possible moment
Hypothesis space: $\phi=\sum_{i=1}^{n} c_{i} \phi_{i} \in \mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}$:

$$
R_{\phi}[u](x)=\int_{\Omega} \phi(|x-y|) g[u](x, y) d y=f
$$

Function space of ϕ ? Identifiability?

Part 3: Identifiability \& regularization

DARTR: Data adpative RKHS Tikhonov regularization

Identifiability

- An exploration measure: $\rho(d r) \quad \Rightarrow \phi \in L_{\rho}^{2}$

$$
R_{\phi}[u](x)=\int_{\Omega} \phi(|x-y|) g[u](x, y) d y, \quad \rho(d r) \propto \iint \delta_{|x-y|}(d r)|g[u](x, y)| d x d y
$$

Identifiability

- An exploration measure: $\rho(d r) \quad \Rightarrow \phi \in L_{\rho}^{2}$

$$
R_{\phi}[u](x)=\int_{\Omega} \phi(|x-y|) g[u](x, y) d y, \quad \rho(d r) \propto \iint \delta_{|x-y|}(d r)|g[u](x, y)| d x d y
$$

- An integral operator \Leftarrow the Fréchet derivative of loss functional

$$
\mathcal{E}(\phi)=\frac{1}{N} \sum_{i=1}^{N}\left\|R_{\phi}\left[u_{i}\right]-f_{i}\right\|_{L^{2}}^{2}=\left\langle\mathcal{L}_{\bar{G}} \phi, \phi\right\rangle_{L_{\rho}^{2}}-2\left\langle\phi^{D}, \phi\right\rangle_{L_{\rho}^{2}}
$$

$$
\nabla \mathcal{E}(\phi)=2 \mathcal{L}_{\bar{G}} \phi-2 \phi^{D}=0 \quad \Rightarrow \widehat{\phi}=\mathcal{L}_{\bar{G}}{ }^{-1} \phi^{D}
$$

- $\mathcal{L}_{\bar{G}}:$ nonnegative compact, $\left\{\left(\lambda_{i}, \psi_{i}\right)\right\}, \lambda_{i} \downarrow 0$
- $\phi^{D}=\mathcal{L}_{\bar{G}} \phi_{\text {true }}+\phi^{\text {error }}$

Identifiability

- An exploration measure: $\rho(d r) \quad \Rightarrow \phi \in L_{\rho}^{2}$

$$
R_{\phi}[u](x)=\int_{\Omega} \phi(|x-y|) g[u](x, y) d y, \quad \rho(d r) \propto \iint \delta_{|x-y|}(d r)|g[u](x, y)| d x d y
$$

- An integral operator \Leftarrow the Fréchet derivative of loss functional

$$
\begin{aligned}
\mathcal{E}(\phi) & =\frac{1}{N} \sum_{i=1}^{N}\left\|R_{\phi}\left[u_{i}\right]-f_{i}\right\|_{L^{2}}^{2}=\left\langle\mathcal{L}_{\bar{G}} \phi, \phi\right\rangle_{L_{\rho}^{2}}-2\left\langle\phi^{D}, \phi\right\rangle_{L_{\rho}^{2}} \\
\nabla \mathcal{E}(\phi) & =2 \mathcal{L}_{\bar{G}} \phi-2 \phi^{D}=0 \quad \Rightarrow \widehat{\phi}=\mathcal{L}_{\bar{G}}^{-1} \phi^{D}
\end{aligned}
$$

- $\mathcal{L}_{\bar{G}}:$ nonnegative compact, $\left\{\left(\lambda_{i}, \psi_{i}\right)\right\}, \lambda_{i} \downarrow 0$
- $\phi^{D}=\mathcal{L}_{\bar{G}} \phi_{\text {true }}+\phi^{\text {error }}$
- Function space of identifiability (FSOI):

$$
\widehat{\phi}=\mathcal{L}_{\bar{G}}{ }^{-1}\left(\mathcal{L}_{\bar{G}} \phi_{\text {true }}+\phi^{\text {error }}\right) \Rightarrow \quad H=\operatorname{Null}\left(\mathcal{L}_{\bar{G}}\right)^{\perp}=\overline{\operatorname{span}\left\{\psi_{i}\right\}_{i: \lambda_{i}>0}}
$$

- ill-defined beyond H; ill-posed in H

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization: ensure that the learning takes place in the FSOI

$$
\text { data-dependent } \quad H=\overline{\operatorname{span}\left\{\psi_{i}\right\}_{i: \lambda_{i}>0}}
$$

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization: ensure that the learning takes place in the FSOI

$$
\text { data-dependent } \quad H=\overline{\operatorname{span}\left\{\psi_{i}\right\}_{i: \lambda_{i}>0}} \supseteq{\overline{H_{G}}}^{L_{\rho}^{2}}
$$

- $\bar{G} \Rightarrow$ RKHS: $H_{G}=\mathcal{L}_{\bar{G}}{ }^{1 / 2}\left(L_{\rho}^{2}\right)$
- $\|\phi\|_{H_{G}}^{2}=\left\langle\mathcal{L}_{\bar{G}}{ }^{-1} \phi, \phi\right\rangle_{L_{\rho}^{2}}$

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization: ensure that the learning takes place in the FSOI

$$
\text { data-dependent } \quad H=\overline{\operatorname{span}\left\{\psi_{i}\right\}_{i: \lambda_{i}>0}} \supseteq{\overline{H_{G}}}^{L_{\rho}^{2}}
$$

- $\bar{G} \Rightarrow$ RKHS: $H_{G}=\mathcal{L}_{\bar{G}}{ }^{1 / 2}\left(L_{\rho}^{2}\right)$
- $\|\phi\|_{H_{G}}^{2}=\left\langle\mathcal{L}_{\bar{G}^{-1}}{ }^{-1} \phi, \phi\right\rangle_{L_{\rho}^{2}}$
\Rightarrow Regularization norm: $\|\phi\|_{H_{G}}^{2}$ [Lutlang+An2zMsML]

$$
\begin{gathered}
\mathcal{E}_{\lambda}(\phi)=\mathcal{E}(\phi)+\lambda\|\phi\|_{H_{G}}^{2}=\left\langle\left(\mathcal{L}_{\bar{G}}+\lambda \mathcal{L}_{\bar{G}}{ }^{-1}\right) \phi, \phi\right\rangle_{L_{\rho}^{2}}-2\left\langle\phi^{D}, \phi\right\rangle_{L_{\rho}^{2}} \\
\widehat{\phi}_{\lambda}=\left(\mathcal{L}_{\bar{G}}+\lambda \mathcal{L}_{\bar{G}}{ }^{-1}\right)^{-1} \phi^{D}=\left(\mathcal{L}_{\bar{G}}{ }^{2}+\lambda /\right)^{-1} \mathcal{L}_{\bar{G}^{G}} \phi^{D}
\end{gathered}
$$

What DARTR has done:

remove error outside FSOI + regularize in FSOI

- No regularization:

$$
\widehat{\phi}=\mathcal{L}_{\bar{G}^{-1}} \phi^{D}=\mathcal{L}_{\bar{G}^{-1}}{ }^{-1}\left(\mathcal{L}_{\bar{G}} \phi_{\text {true }}+\phi_{H}^{\text {error }}+\phi_{H^{\perp}}^{\text {error }}\right)
$$

- DARTR: $\left\|\phi_{H^{\perp}}^{\text {error }}\right\|_{H_{G}}^{2}=\infty$

$$
\left(\mathcal{L}_{\bar{G}}+\lambda \mathcal{L}_{\bar{G}}{ }^{-1}\right)^{-1} \phi^{D}=\left(\mathcal{L}_{\bar{G}}+\lambda \mathcal{L}_{\bar{G}}{ }^{-1}\right)^{-1}\left(\mathcal{L}_{\bar{G}} \phi_{\text {true }}+\phi_{H}^{\text {error }}\right)
$$

- I^{2} or L^{2} regularizer: with $C=\sum \phi_{i} \otimes \phi_{j}$ or $C=I$

$$
\left(\mathcal{L}_{\bar{G}}+\lambda C\right)^{-1} \phi^{D}=\left(\mathcal{L}_{\bar{G}}+\lambda C\right)^{-1}\left(\mathcal{L}_{\bar{G}} \phi_{\text {true }}+\phi_{H}^{\text {error }}+\phi_{H^{\perp}}^{\text {error }}\right)
$$

DARTR: computation

$$
\mathcal{E}_{\lambda}(\phi)=\mathcal{E}(\phi)+\lambda\|\phi\|_{H_{G}}^{2} \Rightarrow c^{\top} A_{n} c-2 b_{n}^{\top} c+\lambda\|c\|_{B_{r k h s}}^{2}
$$

Input: A_{n}, b_{n} and $B_{n}=\left(\left\langle\phi_{i}, \phi_{j}\right\rangle_{L_{\rho}^{2}}\right)_{i, j}$.
Output: reguarized estimator

$$
\widehat{c}_{\lambda}=\left(A_{n}+\lambda_{*} B_{r k h s}\right)^{-1} b_{n}
$$

- Generalized eigenvalue problem $\left(A_{n}, B_{n}\right) \leftrightarrow \mathcal{L}_{\bar{G}}$
$A_{n} V=B_{n} V \wedge$ and $V^{\top} B_{n} V=I_{n}$
$B_{r k h s}=\left(V \wedge V^{\top}\right)^{\dagger}: B_{r k h s}=A_{n}^{\dagger}$ when $B_{n}=I_{n}$
- L-curve to select λ_{*}

Interaction kernel in a nonlinear operator

$$
R_{\phi}[u]=\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]=f, \quad K_{\phi}=\phi(|x|) \frac{x}{|x|}
$$

- Recover kernel from discrete noisy data
- Robust in accuracy, consistent rates as mesh refines

Typical estimators, $\Delta x=0.05$

More robust L-curve

L2

RKHS

Homogenization of wave propagation in meta-material

- heterogeneous bar with microstructure + DNS \Rightarrow Data
- Homogenization: [Lu+An+Yu23]

$$
R_{\phi}[u]=\int_{\Omega} \phi(|y|)[u(x+y)-u(x)] d y=\partial_{t t} u-v .
$$

- (c): resolution-invariant
- (e): I^{2} and $L 2$ leading to non-physical kernel

Part 4: Iterative method

Large scale $A x=b, \quad A \in \mathbb{R}^{m \times n}$ ill-conditioned , $n \gg 1$ b : noisy

Direct method: DARTR for $A x=b$

$A_{n}=A^{\top} A, b_{n}=A^{\top} b: \Rightarrow A_{n} x=b_{n}$

$$
\widehat{x}_{\lambda}=\left(A_{n}+\lambda_{*} B_{r k h s}\right)^{-1} b_{n}
$$

- $\rho \propto \sum_{j}\left|A_{i j}\right|$: measure of A exploring x
- $B_{n}=\operatorname{diag}(\rho)$: pre-conditioning
- Generalized eigenvalue problem $\left(A_{n}, B_{n}\right)$
$A_{n} V=B_{n} V \wedge$ and $V^{\top} B_{n} V=I_{n} \Rightarrow B_{r k h s}=\left(V \wedge V^{\top}\right)^{\dagger}$
$B_{r k h s}=A_{n}^{\dagger}$ when $B_{n}=I_{n}$
- L-curve to select λ_{*}

Direct method: DARTR for $A x=b$

$A_{n}=A^{\top} A, b_{n}=A^{\top} b: \Rightarrow A_{n} x=b_{n}$

$$
\widehat{x}_{\lambda}=\left(A_{n}+\lambda_{*} B_{r k h s}\right)^{-1} b_{n}
$$

- $\rho \propto \sum_{j}\left|A_{i j}\right|$: measure of A exploring x
- $B_{n}=\operatorname{diag}(\rho)$: pre-conditioning
- Generalized eigenvalue problem $\left(A_{n}, B_{n}\right)$

$$
\begin{aligned}
& A_{n} V=B_{n} V \wedge \text { and } V^{\top} B_{n} V=I_{n} \Rightarrow B_{r k h s}=\left(V \wedge V^{\top}\right)^{\dagger} \\
& B_{r k h s}=A_{n}^{\dagger} \text { when } B_{n}=I_{n}
\end{aligned}
$$

- L-curve to select λ_{*}

Direct method: based on costly matrix decomposition. Iterative method: without computing $B_{r k h s}$?

Iterative Data Adaptive RKHS regularization

Solve: $x_{k}=\arg \min \|x\|_{B_{r k h s}}, \mathcal{X}_{k}=\left\{x: \min _{x \in \mathcal{S}_{k}}\|A x-b\|\right\}$

$$
x \in \mathcal{X}_{k}
$$

$$
\mathcal{S}_{k}=\operatorname{span}\left\{\left(B_{r k h s}^{\dagger} A^{\top} A\right)^{i} B_{r k h s}^{\dagger} A^{\top} b\right\}_{i=0}^{k}
$$

- Use $B_{r k h s}^{\dagger}$, not $B_{r k h s}$: $B_{r k h s}^{\dagger}=B^{-1} A^{\top} A B^{-1}$
- generalized Golub-Kahan bidiagonalization (gGKB) \Rightarrow construct \mathcal{S}_{k} only using matrix-vector product
- $\mathcal{S}_{k}=$ RKHS-restricted Krylov subspace
- Early stopping: select k

Computational complexity

Direct method: DARTR, $O\left(n^{3}\right)$
Iterative method: iDARR, O(3mnk)

Fredholm integral equation: 1st kind

Iterative method \approx direct method

True function in FSOI

True function outside FSOI

Image deblurring

Regularization:

Is DA-RKHS better than other norms?

- Small noise analysis [Chadatlang+Lu+Wang22,Lu+ouz3, LangLuz3]
- Data-Adaptive is important (as regularizer/prior) fractional space $H_{G}^{s}=L_{G}^{s / 2} L_{\rho}^{2}$
- Convergence rate: same as L^{2}, a smaller factor
- Robust for selection of hyper-parameter
- Open: is there a regularizer universally "best"?

Summary

Learning kernels in operators:

$$
R_{\phi}[u]=f \Leftarrow \mathcal{D}=\left\{\left(u_{k}, f_{k}\right)\right\}_{k=1}^{N}
$$

Nonlocal dependence

- Identifiability
- DARTR: data adaptive RKHR Tikhonov-Reg
- Synthetic data: convergent, robust to noise
- Homogenization: resolution-invariant
- Iterative method: iDARR

Regularization: $A_{n} x_{n}=b_{n} \Rightarrow x_{\lambda, n}=\left(A_{n}+\lambda A_{n}^{-1}\right) b_{n}$

Future directions

Learning with nonlocal dependence

- Convergence: $\Delta x, N$
- Automatic kernel for GPR
- Regularization for ML: $\left\|\phi_{\theta}\right\|_{\text {rkhs }}^{2}$, not $\|\theta\|$

Classical learning $\left\{\left(x_{i}, \phi\left(x_{i}\right)+\epsilon_{i}\right)\right\}$	Learning kernel $\left\{\left(u_{k}, R_{\phi}\left[u_{k}\right]+\eta_{k}\right)\right\}$
$\phi(x) \left\lvert\, \begin{array}{ll} \text { Local dependence } \\ \because & \ddots \\ \ddots & \ddots \end{array}\right.$	\uparrow Nonlocal dependence Values are undetermined from data
Inversion $\widehat{\phi}=I^{-1} \phi^{D}$	$\widehat{\phi}=L_{G}^{-1} \phi^{D}$
Regularization $\widehat{\phi}=(I+\lambda Q)^{-1} \phi^{D}$	$\widehat{\phi}=\left(L_{G}+\lambda L_{G}^{-1}\right)^{-1} \phi$

Thank you for your attention!

