Data-adaptive RKHS regularization for learning kernels in operators

Fei Lu

Department of Mathematics, Johns Hopkins University

Caltech May 22, 2024

Collaborators: Quanjun Lang, Qingci An, Yue Yu, Haibo Li, Jinchao Feng, Xiong Wang, Yvonne Ou, Neil Chada

Regression and regularization

Identifiability and DARTR

Iterative method

- 2 Regression and regularization
- Identifiability and DARTR

Regression and regularization

Identifiability and DARTR

Iterative method

Learning kernels in operators

Learn the kernel ϕ : $R_{\phi}[u] + \epsilon = f$

from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

Operator $R_{\phi}[u](x) = \int \phi(x-y)g[u](x,y)dy$

Regression and regularization

Identifiability and DARTR

Iterative method

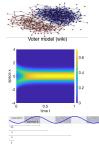
Learning kernels in operators

Learn the kernel ϕ : $R_{\phi}[u] + \epsilon = f$

from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

Operator $R_{\phi}[u](x) = \int \phi(x-y)g[u](x,y)dy$



• Interacting particles/agents $K_{\phi}(x) = \phi(|x|) \frac{x}{|x|} \in \mathbb{R}^d$

$$\begin{aligned} \mathbf{R}_{\phi}[\mathbf{X}_{t}] &= \left[-\frac{1}{n}\sum_{j=1}^{n}K_{\phi}(X_{t}^{j}-X_{t}^{j})\right]_{i} = \dot{\mathbf{X}}_{t} + \dot{\mathbf{W}}_{t}, \qquad \mathbb{R}^{nd} \\ \mathbf{R}_{\phi}[u] &= \nabla \cdot \left[u(K_{\phi} * u)\right] = \partial_{t}u - \sigma \Delta u, \end{aligned}$$

Regression and regularization

Identifiability and DARTR

Iterative method

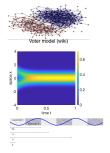
Learning kernels in operators

Learn the kernel ϕ : $R_{\phi}[u] + \epsilon = f$

from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

Operator $R_{\phi}[u](x) = \int \phi(x-y)g[u](x,y)dy$



• Interacting particles/agents $K_{\phi}(x) = \phi(|x|) \frac{x}{|x|} \in \mathbb{R}^d$

$$\begin{aligned} \boldsymbol{R}_{\phi}[\boldsymbol{X}_{t}] &= \left[-\frac{1}{n}\sum_{j=1}^{n}\boldsymbol{K}_{\phi}(\boldsymbol{X}_{t}^{j}-\boldsymbol{X}_{t}^{j})\right]_{i} = \dot{\boldsymbol{X}}_{t} + \dot{\boldsymbol{W}}_{t}, \qquad \mathbb{R}^{nd} \\ \boldsymbol{R}_{\phi}[\boldsymbol{u}] &= \nabla \cdot \left[\boldsymbol{u}(\boldsymbol{K}_{\phi} \ast \boldsymbol{u})\right] = \partial_{t}\boldsymbol{u} - \sigma \Delta \boldsymbol{u}, \end{aligned}$$

• Nonlocal PDEs:

$$R_{\phi}[u](x) = \int_{\Omega} \phi(x - y)[u(y) - u(x)]dy = \partial_{tt}u$$

Regression and regularization

Identifiability and DARTR

Iterative method

Learning kernels in operators

Learn the kernel ϕ :

$$R_{\phi}[u] + \epsilon = f$$

from data:

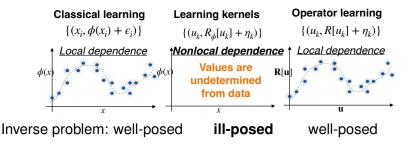
$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \hspace{1em} (u_k, f_k) \in \mathbb{X} imes \mathbb{Y}$$

- Operator R_φ[u](x) = ∫ φ(x − y)g[u](x, y)dy:
 linear or nonlinear in u, but linear in φ
- Statistical learning
 inverse problem
 - ▶ random $\{(u_k, f_k)\}$: statistical learning
 - deterministic (e.g., N small): inverse problem

Identifiability and DARTR

Iterative method

Learning kernels in operators



This talk: \Rightarrow introduce a data-adaptive regularization norm

Convergent estimator as mesh refines

Identifiability and DARTR

Part 2: Regression and regularization

Learn the kernel ϕ :

$$R_{\phi}[u] + \epsilon = f$$

from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

Operator $R_{\phi}[u](x) = \int \phi(x-y)g[u](x,y)dy$

Regression and regularization

Identifiability and DARTR

Iterative method

Nonparametric regression

- Loss functional: $\mathcal{E}(\phi) = \frac{1}{N} \sum_{i=1}^{N} ||R_{\phi}[u_i] f_i||_{\mathbb{Y}}^2$
 - Crucial!
 - Derivative-free Monte Carlo suitable [Lang+Lu22SISC]
- Hypothesis space $\mathcal{H}_n = \operatorname{span}\{\phi_i\}_{i=1}^n$: $\phi = \sum_{i=1}^n c_i \phi_i$,

$$\mathcal{E}(\phi) = c^{\top} \overline{A}_{n} c - 2c^{\top} \overline{b}_{n} + C_{N}^{f}, \Rightarrow \widehat{\phi}_{\mathcal{H}_{n}} = \sum_{i} \widehat{c}_{i} \phi_{i}, \text{ where } \widehat{c} = \overline{A}_{n}^{-1} \overline{b}_{n}$$

Goal: $\widehat{\phi}_{\mathcal{H}_n}$ converges as data mesh Δx refines

Regression and regularization

Identifiability and DARTR

Iterative method

Nonparametric regression

- Loss functional: $\mathcal{E}(\phi) = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{R}_{\phi}[u_i] f_i||_{\mathbb{Y}}^2$
 - Crucial!
 - Derivative-free Monte Carlo suitable [Lang+Lu22SISC]
- Hypothesis space $\mathcal{H}_n = \operatorname{span}\{\phi_i\}_{i=1}^n$: $\phi = \sum_{i=1}^n c_i \phi_i$,

$$\mathcal{E}(\phi) = c^{\top} \overline{A}_n c - 2c^{\top} \overline{b}_n + C_N^f, \Rightarrow \widehat{\phi}_{\mathcal{H}_n} = \sum_i \widehat{c}_i \phi_i, \text{ where } \widehat{c} = \overline{A}_n^{-1} \overline{b}_n$$

Goal: $\widehat{\phi}_{\mathcal{H}_n}$ converges as data mesh Δx refines

Challenges

- Choice of \mathcal{H}_n : $\{\phi_i\}_{i=1}^n$ and $n = n(\Delta x)$
- \overline{A}_n^{-1} : ill-conditioned/singular

Regression and regularization

Identifiability and DARTR

Iterative method

Regularization

Regularization is necessary:

- \overline{A}_n ill-conditioned
- \overline{b}_n : noise or numerical error

Tikhonov/ridge Regularization:

$$\mathcal{E}_{\lambda}(\phi) = \mathcal{E}(\phi) + \lambda \|\phi\|_{*}^{2} \Rightarrow c^{\top} \overline{A}_{n} c - 2\overline{b}_{n}^{\top} c + \lambda c^{\top} B_{*} c$$
$$\widehat{\phi}_{\mathcal{H}_{n}}^{\lambda} = \sum_{i} \widehat{c}_{\lambda,i} \phi_{i}, \quad \text{where } \widehat{c}_{\lambda} = (\overline{A}_{n} + \lambda B_{*})^{-1} \overline{b}_{n},$$

Identifiability and DARTR

Iterative method

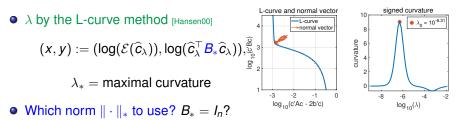
Regularization

Regularization is necessary:

- \overline{A}_n ill-conditioned
- \overline{b}_n : noise or numerical error

Tikhonov/ridge Regularization:

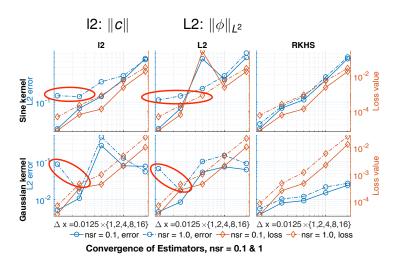
$$\begin{split} \mathcal{E}_{\lambda}(\phi) &= \mathcal{E}(\phi) + \lambda \|\phi\|_{*}^{2} \Rightarrow \boldsymbol{c}^{\top} \overline{\boldsymbol{A}}_{n} \boldsymbol{c} - 2\overline{\boldsymbol{b}}_{n}^{\top} \boldsymbol{c} + \lambda \boldsymbol{c}^{\top} \boldsymbol{B}_{*} \boldsymbol{c} \\ \widehat{\phi}_{\mathcal{H}_{n}}^{\lambda} &= \sum_{i} \widehat{\boldsymbol{c}}_{\lambda,i} \phi_{i}, \quad \text{where } \widehat{\boldsymbol{c}}_{\lambda} &= (\overline{\boldsymbol{A}}_{n} + \lambda \boldsymbol{B}_{*})^{-1} \overline{\boldsymbol{b}}_{n}, \end{split}$$



Regression and regularization

Identifiability and DARTR

Iterative method



Risk of blowing up in the small noise limit [Chada-Wang-Lang-Lu22]

Principle: [Stuart2010] Avoid **discretization** until the last possible moment \downarrow Avoid basis selection until the last possible moment

Hypothesis space: $\phi = \sum_{i=1}^{n} c_i \phi_i \in \mathcal{H}_n = \operatorname{span} \{\phi_i\}_{i=1}^{n}$:

$$R_{\phi}[u](x) = \int_{\Omega} \phi(|x-y|)g[u](x,y)dy = f$$

Function space of ϕ ? Identifiability?

Identifiability and DARTR

Part 3: Identifiability & regularization

DARTR: Data adpative RKHS Tikhonov regularization

Learning	kernels

Identifiability and DARTR

Identifiability

• An exploration measure: $\rho(dr) \Rightarrow \phi \in L^2_{\rho}$ $R_{\phi}[u](x) = \int_{\Omega} \phi(|x-y|)g[u](x,y)dy, \quad \rho(dr) \propto \int \int \delta_{|x-y|}(dr) |g[u](x,y)| dxdy$

Learning	kernels

Identifiability and DARTR

Iterative method

Identifiability

- An exploration measure: $\rho(dr) \Rightarrow \phi \in L^2_{\rho}$ $R_{\phi}[u](x) = \int_{\Omega} \phi(|x-y|)g[u](x,y)dy, \quad \rho(dr) \propto \int \int \delta_{|x-y|}(dr) |g[u](x,y)| dxdy$
- An integral operator \leftarrow the Fréchet derivative of loss functional

$$\mathcal{E}(\phi) = \frac{1}{N} \sum_{i=1}^{N} \|R_{\phi}[u_i] - f_i\|_{L^2}^2 = \langle \mathcal{L}_{\overline{G}}\phi, \phi \rangle_{L^2_{\rho}} - 2\langle \phi^D, \phi \rangle_{L^2_{\rho}}$$
$$\nabla \mathcal{E}(\phi) = 2\mathcal{L}_{\overline{G}}\phi - 2\phi^D = 0 \quad \Rightarrow \widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1}\phi^D$$

• $\mathcal{L}_{\overline{G}}$: nonnegative compact, $\{(\lambda_i, \psi_i)\}, \lambda_i \downarrow \mathbf{0}$

$$\bullet \ \phi^{D} = \mathcal{L}_{\overline{G}}\phi_{true} + \phi^{\text{error}}$$

Learning	kernels

Identifiability and DARTR

Iterative method

Identifiability

- An exploration measure: $\rho(dr) \Rightarrow \phi \in L^2_{\rho}$ $R_{\phi}[u](x) = \int_{\Omega} \phi(|x-y|)g[u](x,y)dy, \quad \rho(dr) \propto \int \int \delta_{|x-y|}(dr) |g[u](x,y)| dxdy$
- An integral operator \leftarrow the Fréchet derivative of loss functional

$$\mathcal{E}(\phi) = \frac{1}{N} \sum_{i=1}^{N} \|R_{\phi}[u_i] - f_i\|_{L^2}^2 = \langle \mathcal{L}_{\overline{G}}\phi, \phi \rangle_{L^2_{\rho}} - 2\langle \phi^D, \phi \rangle_{L^2_{\mu}}$$
$$\nabla \mathcal{E}(\phi) = 2\mathcal{L}_{\overline{G}}\phi - 2\phi^D = 0 \quad \Rightarrow \widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1}\phi^D$$

•
$$\mathcal{L}_{\overline{G}}$$
: nonnegative compact, $\{(\lambda_i, \psi_i)\}, \lambda_i \downarrow \mathbf{0}$

$$\bullet \ \phi^{D} = \mathcal{L}_{\overline{G}}\phi_{true} + \phi^{\text{error}}$$

• Function space of identifiability (FSOI):

 $\widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1}(\mathcal{L}_{\overline{G}}\phi_{true} + \phi^{error}) \Rightarrow \quad H = \operatorname{Null}(\mathcal{L}_{\overline{G}})^{\perp} = \overline{\operatorname{span}\{\psi_i\}_{i:\lambda_i > 0}}$

► ill-defined beyond *H*; ill-posed in *H*

Regression and regularization

Identifiability and DARTR

Iterative method

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization: ensure that the learning takes place in the FSOI

data-dependent $H = \overline{\operatorname{span}\{\psi_i\}_{i:\lambda_i>0}}$

Regression and regularization

Identifiability and DARTR

Iterative method

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization: ensure that the learning takes place in the FSOI

data-dependent $H = \overline{\operatorname{span}\{\psi_i\}_{i:\lambda_i>0}} \supseteq \overline{H_G}^{L^2_{\rho}}$

•
$$\overline{G} \Rightarrow \mathsf{RKHS}: H_G = \mathcal{L}_{\overline{G}}^{1/2}(L_{\rho}^2)$$

•
$$\|\phi\|_{H_G}^2 = \langle \mathcal{L}_{\overline{G}}^{-1}\phi, \phi \rangle_{L^2_{\rho}}$$

Regression and regularization

Identifiability and DARTR

Iterative method

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization: ensure that the learning takes place in the FSOI

data-dependent $H = \overline{\operatorname{span}\{\psi_i\}_{i:\lambda_i>0}} \supseteq \overline{H_G}^{L^2_{\rho}}$

•
$$\overline{G} \Rightarrow \mathsf{RKHS}: H_G = \mathcal{L}_{\overline{G}}^{1/2}(L_{\rho}^2)$$

•
$$\|\phi\|_{H_G}^2 = \langle \mathcal{L}_{\overline{G}}^{-1}\phi, \phi \rangle_{L^2_{\rho}}$$

 $\Rightarrow \text{ Regularization norm: } \|\phi\|_{H_{G}}^{2} \text{ [Lu+Lang+An22MSML]} \\ \mathcal{E}_{\lambda}(\phi) = \mathcal{E}(\phi) + \lambda \|\phi\|_{H_{G}}^{2} = \langle (\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-1})\phi, \phi \rangle_{L^{2}_{\rho}} - 2\langle \phi^{D}, \phi \rangle_{L^{2}_{\rho}}$

$$\widehat{\phi}_{\lambda} = (\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-1})^{-1} \phi^{D} = (\mathcal{L}_{\overline{G}}^{2} + \lambda I)^{-1} \mathcal{L}_{\overline{G}} \phi^{D}$$

Identifiability and DARTR

What DARTR has done:

remove error outside FSOI + regularize in FSOI

• No regularization:

$$\widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1} \phi^{D} = \mathcal{L}_{\overline{G}}^{-1} (\mathcal{L}_{\overline{G}} \phi_{\textit{true}} + \phi_{H}^{\textit{error}} + \phi_{H^{\perp}}^{\textit{error}})$$

• DARTR: $\|\phi_{H^{\perp}}^{\text{error}}\|_{H_G}^2 = \infty$

$$(\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-1})^{-1} \phi^{D} = (\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-1})^{-1} (\mathcal{L}_{\overline{G}} \phi_{true} + \phi_{H}^{error})$$

• I^2 or L^2 regularizer: with $C = \sum \phi_i \otimes \phi_j$ or C = I

$$(\mathcal{L}_{\overline{G}} + \lambda C)^{-1} \phi^{D} = (\mathcal{L}_{\overline{G}} + \lambda C)^{-1} (\mathcal{L}_{\overline{G}} \phi_{true} + \phi_{H}^{error} + \phi_{H^{\perp}}^{error})$$

Regression and regularization

Identifiability and DARTR

Iterative method

DARTR: computation

$$\mathcal{E}_{\lambda}(\phi) = \mathcal{E}(\phi) + \lambda \|\phi\|_{H_{G}}^{2} \Rightarrow c^{\top} A_{n} c - 2b_{n}^{\top} c + \lambda \|c\|_{B_{rkhs}}^{2}$$

Input: A_n, b_n and $B_n = (\langle \phi_i, \phi_j \rangle_{L_\rho^2})_{i,j}$. **Output:** reguarized estimator

$$\widehat{c}_{\lambda} = (A_n + \lambda_* B_{rkhs})^{-1} b_n$$

• Generalized eigenvalue problem $(A_n, B_n) \leftrightarrow \mathcal{L}_{\overline{G}}$ $A_n V = B_n V \wedge \text{ and } V^\top B_n V = I_n$ $B_{rkhs} = (V \wedge V^\top)^{\dagger}$: $B_{rkhs} = A_n^{\dagger}$ when $B_n = I_n$

L-curve to select λ_{*}

Regression and regularization

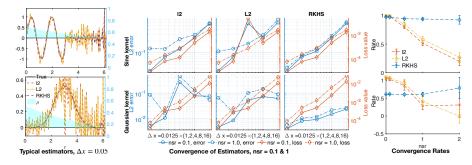
Identifiability and DARTR

Iterative method

Interaction kernel in a nonlinear operator

$$R_{\phi}[u] = \nabla \cdot [u(K_{\phi} * u)] = f, \quad K_{\phi} = \phi(|x|) \frac{x}{|x|}$$

- Recover kernel from discrete noisy data
- Robust in accuracy, consistent rates as mesh refines

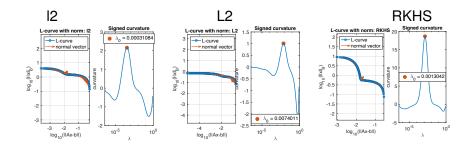


Regression and regularization

Identifiability and DARTR

Iterative method

More robust L-curve



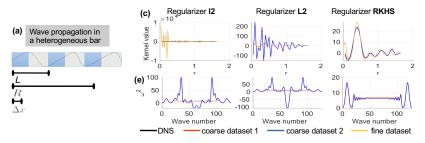
Regression and regularization

Identifiability and DARTR

Iterative method

Homogenization of wave propagation in meta-material

- heterogeneous bar with microstructure + DNS \Rightarrow Data
- Homogenization: [Lu+An+Yu23]
 - $R_{\phi}[u] = \int_{\Omega} \phi(|y|)[u(x+y) u(x)]dy = \partial_{tt}u v.$



- (c): resolution-invariant
- (e): I² and L2 leading to non-physical kernel

Regression and regularization

Identifiability and DARTR

Iterative method

Part 4: Iterative method

Large scale Ax = b, $A \in \mathbb{R}^{m \times n}$ ill-conditioned , n >> 1b: noisy

Regression and regularization

Identifiability and DARTR

Iterative method

Direct method: DARTR for Ax = b

$$A_n = A^{\top}A, b_n = A^{\top}b$$
 $\Rightarrow A_nx = b_n$

$$\widehat{x}_{\lambda} = (A_n + \lambda_* B_{rkhs})^{-1} b_n$$

- $\rho \propto \sum_{j} |A_{ij}|$: measure of A exploring x
- $B_n = \text{diag}(\rho)$: pre-conditioning
- Generalized eigenvalue problem (A_n, B_n) $A_n V = B_n V \Lambda$ and $V^{\top} B_n V = I_n \Rightarrow B_{rkhs} = (V \Lambda V^{\top})^{\dagger}$ $B_{rkhs} = A_n^{\dagger}$ when $B_n = I_n$
- L-curve to select λ_{*}

Regression and regularization

Identifiability and DARTR

Iterative method

Direct method: DARTR for Ax = b

$$A_n = A^{\top}A, b_n = A^{\top}b$$
 $\Rightarrow A_nx = b_n$

$$\widehat{x}_{\lambda} = (A_n + \lambda_* B_{rkhs})^{-1} b_n$$

- $\rho \propto \sum_{j} |A_{ij}|$: measure of A exploring x
- $B_n = \text{diag}(\rho)$: pre-conditioning
- Generalized eigenvalue problem (A_n, B_n) $A_n V = B_n V \Lambda$ and $V^{\top} B_n V = I_n \Rightarrow B_{rkhs} = (V \Lambda V^{\top})^{\dagger}$ $B_{rkhs} = A_n^{\dagger}$ when $B_n = I_n$
- L-curve to select λ_{*}

Direct method: based on costly matrix decomposition.

Iterative method: without computing *B_{rkhs}*?

Identifiability and DARTR

Iterative method

Iterative Data Adaptive RKHS regularization

Solve:
$$x_k = \underset{x \in \mathcal{X}_k}{\operatorname{arg min}} \|x\|_{B_{rkhs}}, \ \mathcal{X}_k = \{x : \min_{x \in \mathcal{S}_k} \|Ax - b\|\}$$

 $\mathcal{S}_k = \operatorname{span}\{(B_{rkhs}^{\dagger}A^{\top}A)^i B_{rkhs}^{\dagger}A^{\top}b\}_{i=0}^k$

- Use B_{rkhs}^{\dagger} , not B_{rkhs} : $B_{rkhs}^{\dagger} = B^{-1}A^{\top}AB^{-1}$
- generalized Golub-Kahan bidiagonalization (gGKB) \Rightarrow construct S_k only using matrix-vector product
- S_k = RKHS-restricted Krylov subspace
- Early stopping: select k

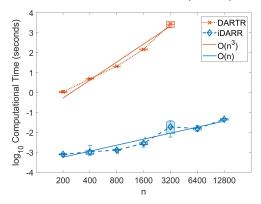
Regression and regularization

Identifiability and DARTR

Iterative method

Computational complexity

Direct method: DARTR, $O(n^3)$ Iterative method: iDARR, O(3mnk)

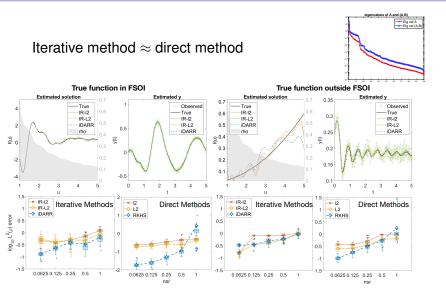


Regression and regularization

Identifiability and DARTR

Iterative method

Fredholm integral equation: 1st kind

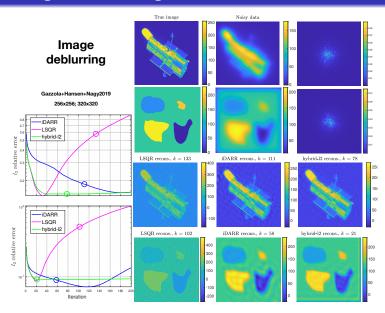


Regression and regularization

Identifiability and DARTR

Iterative method

Image deblurring



Regularization:

Is DA-RKHS better than other norms?

Small noise analysis [Chada+Lang+Lu+Wang22,Lu+Ou23,LangLu23]

- Data-Adaptive is important (as regularizer/prior) fractional space H^s_G = L^{s/2}_GL²_ρ
- Convergence rate: same as L^2 , a smaller factor
- Robust for selection of hyper-parameter
- Open: is there a regularizer universally "best"?

Learning	kernels

Identifiability and DARTR

Iterative method

Summary

Learning kernels in operators:

$$R_{\phi}[u] = f \quad \Leftarrow \quad \mathcal{D} = \{(u_k, f_k)\}_{k=1}^N$$

Nonlocal dependence

- Identifiability
- DARTR: data adaptive RKHR Tikhonov-Reg
 - Synthetic data: convergent, robust to noise
 - Homogenization: resolution-invariant
- Iterative method: iDARR

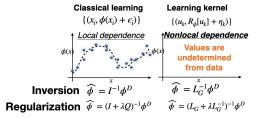
Regularization: $A_n x_n = b_n \Rightarrow x_{\lambda,n} = (A_n + \lambda A_n^{-1})b_n$

Identifiability and DARTR

Future directions

Learning with nonlocal dependence

- Convergence: $\Delta x, N$
- Automatic kernel for GPR
- Regularization for ML: $\|\phi_{\theta}\|_{rkhs}^{2}$, not $\|\theta\|$



Thank you for your attention!