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Which norm ||x|. to use in ||Ax — b||? + A||x||2
for an ill-posed inverse problem (e.g., ¢(r) = -7 xipi(r))?

(A) lIx][ren (B) 191l 12
(C) Total variation (D) RKHS
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o Learning kernels
9 Regression and regularization
e Identifiability and DARTR

0 lterative method
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Learning kernels
®0

Learning kernels in operators

Learn the kernel ¢: Rylul +e=f

from data: N
D= {(Ulﬁ fk)}k:1, (Uk, fk) ceXxY

Operator Ry[u](x) = [ ¢(Ix — yI)glul(x, y)dy
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Learning kernels
®0

Learning kernels in operators

Learn the kernel ¢: Rylul +e=f

from data: N
D= {(Ulﬁ fk)}k:1, (Uk, fk) ceXxY

Operator Ry[u](x) = [ &(Ix — y)glul(x, y)dy
@ Interacting particles/agents K,(x) = ¢(|x|)ﬁ € R4

1 S . .
RolXi) = [~ > Ko(X{=XD)], = Xe+V2uW,, R’
j=1
Ry[u] =V - [u(Ky * u)] = 6iu — vAu,

5/36



Learning kernels
®0

Learning kernels in operators

Learn the kernel ¢: Rylul +e=f

from data: N
D= {(Ulﬁ fk)}k:1, (Uk, fk) ceXxY

Operator Ry[u](x) = [ &(Ix — y)glul(x, y)dy
@ Interacting particles/agents K,(x) = ¢(|x|)ﬁ € R4

1 S . .
RolXi) = [~ > Ko(X{=XD)], = Xe+V2uW,, R’
j=1
Ry[u] =V - [u(Ky * u)] = 6iu — vAu,

é"’ |u4
- i, @ Nonlocal PDEs:

Ry[ul(x / o(1x — y)u(y) — u(x)ldy = pu
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Learning kernels
oce

Learning kernels in operators

Learn the kernel ¢: Rylul +e=f

from data: N
D = {(u, k) ket> (Ui, fx) € X XY

@ Operator Ry[u](x) = [ ¢(|x — y)glul(x, y)dy
linear or nonlinear in u, but linear in ¢

@ Statistical learning () inverse problem

> random {(uk, fs)}:  statistical learning
» deterministic (e.g., N small): inverse problem
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Learning kernels
.

Learning kernels in operators

Classical learning Learning kernels Operator learning
{( () + €)1} {(t Ry lue] + 1)} { (g, R[] + 1))
Local dependence Nonlocal dependence t Local dependence
P . Values are o 1 v
.. ® . o ( R . S5
o . o ee S undetermined [ o Sl e
¥ e from data » oo
I X X I u
Inverse problem: well-posed ill-posed well-posed

This talk: = introduce a data-adaptive RKHS regularization
@ Convergent estimator as mesh refines

D = {(uk(%), )Mz, AX = x40 — x| = 0
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Regression and regularization
[ ]

Part 2: Regression and regularization

Learn the kernel ¢: Rylu] + ¢ = f

from data:
D = {(uk(x), (X)) ko1, (Uko f) € X x Y

Operator Ry[ul(x) = [ ¢(|x — y|)glul(x,y)dy
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Regression and regularization
o

Nonparametric regression

o Loss functional:  €(¢) = & S84 [IRslux] — |3
» Crucial!
» Derivative-free Monte Carlo suitable jLang:+Luz2sisc)

@ Hypothesis space H, = span{¢;}7_,: ¢ = .7, Cidi,
£(¢) = ¢ Anc—2¢"by+Cl, = bu, = Y _ Cii, Where C = 4, b,
i

Goal: ¢4, converges as data mesh Ax refines

Challenges
@ Choice of Hp: {¢i}]L; and n = n(Ax)

° Z,ﬂ: ill-conditioned/singular
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Regression and regularization
[ JeJele]

Regularization

Regularization is necessary:
@ A, ill-conditioned
@ b,: noise or numerical error

Tikhonov/ridge Regularization:
Ex(8) = £(6) + N|¢|2 = cTAnc — 2B, ¢+ AcT B.c

QA% = ZE)\,/(b/, where ¢ = (A, + AB,) " 'bp,
i
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Regression and regularization
[ JeJele]

Regularization

Regularization is necessary:

@ A, ill-conditioned

@ b,: noise or numerical error
Tikhonov/ridge Regularization:

Ex(8) = £(6) + N|¢|2 = cTAnc — 2B, ¢+ AcT B.c

QA% = ZE)\,/(b/, where ¢ = (A, + AB,) " 'bp,
i

L-curve and normal vector 10 signed curvature

—Lcurve ) =103
—normal vector 0

@ )\: L-curveiHansenoo, GCV(Golub+Heath+Wahba79

(x.9) = (log(£(64)). log(& B.€1)). £

curvature

o M & O ®

. = maximal curvature

-3 -2 -1 0
Iogm(c'Ac - 2b'c)

@ Which norm || - || to use? ||c||, ||#]|?
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Sine kernel
L2 error

L2 error

Gaussian kernel

Regression and regularization
[e] le]e]

12: || L2: 4]l 2

Loss value

Loss value

%

A x=0.0125x{1,2,4,8,16} A x=0.0125x{1,2,4,8,16} A x =0.0125x{1,2,4,8,16}
—©-nsr = 0.1, error ~©nsr = 1.0, error <9—nsr = 0.1, loss ~¢- nsr = 1.0, loss

Convergence of Estimators, nsr =0.1 & 1

@ Risk of blowing up in the small noise limit (chada-wang-Lang-Lu22]
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Regression and regularization
[e]e] o]

Principle: istartco10]
Avoid discretization until the last possible moment

0

Avoid basis selection until the last possible moment

Hypothesis space: ¢ = >_7; ci¢j € Hp = span{¢;}] ;:

Rylul(x / o(1x — y)alul(x. y)dy = f

Function space of ¢? Identifiability?
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Regression and regularization
[e]e]e] ]

Part 3: Identifiability & regularization

DARTR: Data adpative RKHS Tikhonov regularization
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Identifiability and DARTR
(]

|dentifiability

@ An exploration measure: p(dr) =¢el?
Ry[ul(x) = [q #(Ix — yDalul(x, y)dy, p(dr) o< [ [6)x— y|(df)|g[U (x,y)|axdy
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Identifiability and DARTR
(]

|dentifiability

@ An exploration measure: p(dr) =¢el?
Ry[ul(x) = [q &(Ix — yDglul(x, y)dy, p(dr) oc [ [ d)x— y|(dr)|g[u (x, y)|dxdy
@ An integral operator < the Fréchet derivative of loss functional
N
1
£(0) = 5 2 | Rolun] = fllfz = (L0, 0)iz —2(6°, 6}z + C
k=1

VE(p) =2Lgp —20° =0 = =Lg 0P
> Lz nonnegative compact, {(\;, i)}, Ai L 0
> 00 = Lodme + ™
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Identifiability and DARTR
(]

|dentifiability

@ An exploration measure: p(dr) =¢el?
Ry[ul(x) = Jq &(1x — yI)glul(x, y)dy, p(dr) o< [ [ dx— y|(dr)|g[u (x, y)| axdy
@ An integral operator < the Fréchet derivative of loss functional

1 N
£(0) = 5 2 | Rolun] = fllfz = (L0, 0)iz —2(6°, 6}z + C
k=1

VE(p) =2Lgp —20° =0 = =Lg 0P
> Lz nonnegative compact, {(\;, i)}, Ai L 0

> ¢P = Lgbume + o™
@ Function space of identifiability (FSOI):

5 = £5_1 (Lgdtrueto™™) = H= Null(ﬁa)L = span{®;}j:x>0
> ill-defined beyond H; ill-posed in H
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Identifiability and DARTR
®00

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization:
ensure that the learning takes place in the FSOI

data-dependent H = span{¢);};.x.>0

19/36



Identifiability and DARTR
®00

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization:
ensure that the learning takes place in the FSOI

- 2
data-dependent H = span{t;};.\~02 HGLP

o G=RKHS: Hg = L5'3(L2)
o [[6l%, = (Lg ¢ d)i
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Identifiability and DARTR
®00

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization:
ensure that the learning takes place in the FSOI

data-dependent H = span{t);}.x,>02 /TGL%
o G=RKHS: Hg = L5'3(L2)
o [[6l%, = (Lg ¢ d)i

= Regularization norm: [|¢||%,  wustangsaneausy

Ex(9) = E(8) + N|SlI, = (Lg+ Mg ) d)iz —2(67, 0) 12

O = (Lg+ Mg )ToP = (L2 + M) T Lg0P
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Identifiability and DARTR
oceo

What DARTR has done:
remove error outside FSOI + regularize in FSOI

@ No regularization:
¢ = L5 0P = L5 (Lgdme + S5 + 051)
@ DARTR: Lo = 0 or |57, = oo
(Lg+ Mg ')7167 = (Lg+ALg ) (Ladme + oi™)
@ /2 or L2 regularizer: with C =" ¢;® ¢jor C =/

(Lg+AC) 6% = (Lg+ AC)  (Lgbme + S5 + &)
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Identifiability and DARTR
ocoe

DARTR: computation

Ex(¢) = E(¢) + M9llfy, = ¢ Anc —2b, ¢+ A[c|B,,

Input: A, by and By, = ((¢7, ¢j) 12 )i /-
Output: reguarized estimator
EA = (An + )\*Brkhs)i1 bn

@ Generalized eigenvalue problem (Ap, By) < L&
AV =B,VAand VT B,V = I,
Bins = (VAVT)T; (Buns = Al if By = 1)

@ L-curve to select )\,
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Identi lity and DARTR

[ ]}

Interaction kernel in a nonlinear operator

Rylu] = V- [u(Ky x )] = £, Ky = o(|x])

@ Recover kernel from discrete noisy data

X
|X]

@ Robust in accuracy, consistent rates as mesh refines

I}
il

Ly
it
i

IRV
Tl

Typical estimattr)rs, Ax =0.05

L2 error

Sine kernel
=1

L2 error

Gaussian kernel

12 L2 RKHS
R 1SR SRR SE—— $
g,
23 AN
T N
> 505 ¥2
2 “Fr Sz
4 L2 N
~§ RKHS 1
0
N
N -
g bo o s g
T A
o & [
@ 1
g
- 0
Ax=00125x{1,24,8,16) Ax=0.0125x{1,24,8,16} Ax=0.0125x{1,2,4,8,16} 057 7 p

~©-nsr =0.1, error ~&-nsr = 1.0, error —o-nsr=0.1, loss ~¢ nsr=1.0, loss
Convergence of Estimators, nsr = 0.1 & 1

nsr
Convergence Rates
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Identifiability and DARTR
oce

More robust L-curve

12 L2 RKHS

L-curve with norm: 12 5  Signed curvature L-curve with norm: L2 ¢ 5 _Signed curvature L-curve with norm: RKHS 5o Signed curvature
® ), =000031084 3 2
1 15
2 2 15
05 1
s
e 1 b O 210
2 E % A, =0.0013042]
g 05 g ® A, =0
3o 4 805 3 s
-1
2 4 3 15 15 0
4 -2 -2
3 L) )‘n =0.0074011 5
2 25 -3 2 -1 - .
8 -1 . -4 -2 § 10% 100
10° 10° 10° 10° log,  (I1AX-bll)
log,  (I1AX-bll) N log (I1AX-bll) N 10 A
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Identifiability and DARTR
.

Homogenization of wave propagation in meta-material

@ heterogeneous bar with microstructure + DNS =- Data

@ Homogenization: ju+anvuz3
Rsul = [o o(lyDlu(x + y) — u(x)ldy = Onu — v.

(c) Rggularizer 12 Regularizer L2 Regularizer RKHS
%10
A 200
(a) Wave propagation in % 100 20 [\
a heterogeneous bar 207 /V\/\F Ao 10 \
2
— = g, -100 0 \/ \/“\/\J\’
// — 0 1 2 0 1 2
— r r
100 20
L (©) sl
I ~, 50 0 10
L) 0 = = -50
A -100 | o
0 50 100 0 50 100 [ 50 100
Wave number Wave number Wave number
——DNS coarse dataset 1 coarse dataset 2 fine dataset

(c): resolution-invariant
(e): 2 and L2 leading to non-physical kernel
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lterative method
900000000

Part 4: lterative method

Large scale Ax = b, A< R™"ill-conditioned, n >> 1
b: noisy
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lterative method
0@0000000

Direct method: DARTR for Ax = b

An=ATAb,=A"b:= Apx=b,
/)?/\ = (An + )\*Brkhs)i1 bn

® pox ) ;| Aj|: measure of A exploring x
@ B, = diag(p): pre-conditioning

@ Generalized eigenvalue problem (Ap, By)
Bns = Al when B, = I,

@ L-curve to select A\,
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lterative method
0@0000000

Direct method: DARTR for Ax = b

An=ATAb,=A"b:= Apx=b,
/)?/\ = (An + )\*Brkhs)i1 bn

® pox ) ;| Aj|: measure of A exploring x
@ B, = diag(p): pre-conditioning

@ Generalized eigenvalue problem (Ap, By)
Bns = Al when B, = I,

@ L-curve to select A\,

Direct method: based on costly matrix decomposition, O(n®).
Iterative method: without computing Byns?
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lterative method
[e]e] lelele]ele]e)

Iterative Data Adaptive RKHS regularization

Solve: xx = arg min ||X||g 4.
XEXy

Sk = span{(B/,, ;AT A) B!, AT b}

X = {X : minges, | Ax — b|}

e Use B/, not Byps: Bl,,. = B 1ATAB"!
@ generalized Golub-Kahan bidiagonalization (gGKB)
= construct S only using matrix-vector product

@ Sy = RKHS-restricted Krylov subspace
@ Early stopping: select k

[Li+Feng+Lu, arXiv2401: Scalable iterative data-adaptive RKHS regularization ]
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lterative method

[e]e]e] lelelele]e]

Computational complexity

Direct method: DARTR, O(n®)
lterative method: iDARR, O(3mnk)

4 . .
~%-DARTR

3F -©-iDARR |-
4O(n3)

2 —0(n)

3k - ="

Iog10 Computational Time (seconds)
o

200 400 800 1600 3200 6400 12800
n
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lterative method
[e]e]ele] leelele)

Fredholm integral equation: 1st kind

lterative method ~ direct method

True function in FSOI

Estimated solution Estimated y
4 —True 1 Observed
IR-12 —True
IR-L2 IR-12
2 iDARR 05 IR-L2
rho - iDARR
2o = o\ 7\
oA | \ / N
2| \ | \/
-4 ' -0.5
1 2 4 5 0 1 2 3 4 5
t
15 2
| SR lterative Methods| | 2 Direct Methods:
5 -& iDARR| 1:|-0 RKHS ‘
% 05 b
< 0 . A
L Lk
5 -05 >
g & 2
l g : &
! i-&
4 L
0.06250.125 0.25 0.5 1 0.0625 0.125 025 05 1

nsr

1

Estimated solution

——True
IR-12
IR-L2
iDARR
rho

True function outside FSOI

cigenvalues of A and (A8)
—egvaa
» [-=—eigval a8)

035 Estimated y
Observed
—True
IR12
IR-L2
| IDARR
02§ A A A i
P VAAANAA
015! |
0.1

1 2 3 4 5 0 1 2 3 4 5
u t
15 H
nZ, | lterative Methods e Direct Methods
-0 iDARR o mHs
05
— 0 .
e & 05
o
-1
-15
0.06250.125 0.25 0.5 1 0.06250.125 025 05 1
nsr
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lterative method
00000e000

Image deblurring

True image Noisy data

Image ‘
deblurring AN ,
Gazzola+Hansen+Nagy2019
256x256; 320x320

LSQR recons., k = 13: iDARR recons., k = 111 hybrid-12 recons., k = 78

25

1, relative error

20

151

100

LSQR recons., 2 iDARR recons., k hybrid-12 recons., k = 21

10!
0 2 4 6 e 10 120 10 160 180
Iteration -

Iy relative error
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lterative method
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Which norm || x||. to use in ||Ax — b||? + A x||?
when solving ill-posed inverse problems ?

(B) |#ll2 for ¢(r) = ZX,-e,-(r)

(A) [Ix]

(C) Total variation

(D) -RKHS DA-RKHS

Is DA-RKHS better than other norms?

Small noise analysis

[Chada+Lang+Lu+Wang22,Lu+Ou23,LangLu23]
; s _ 1S/2)2.
) fr%ctlongll H1G = LG Lp.
HG = Lp, HG = Hg
@ Rate and A\, dependon s, r

error convergence rate

[
o

=
o

I
IS

=
w

I
N

11

2

r=07
r=17 —— Theoertical
Approximated ~
o  Threshold
=12 g -
l o IS12 B LS L r=12
2
S A
g s i1
< M 7 -
=07
0.5
0 o5 15 0 0.5 1
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lterative method
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Summary

Learning kernels in operators:
Rolu] = f < D= {(uk )}y

Nonlocal dependence
@ |dentifiability

@ DARTR: data adaptive RKHR Tikhonov-Reg

» Synthetic data: convergent, robust to noise
» Homogenization: resolution-invariant

@ lterative method: iDARR

Regularization: A,x, = by = “xa.n = (An + M, )by
“What doesn’t kill you makes you stronger.”
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lterative method
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Future directions
Learning with nonlocal dependence

Classical learning Learning kernel
@ Minimax rate: Ax, N {6 $00) + €} (G Ryli] + 1}
Local dependence Nonlocal dependence
@ Automatic kernel regression TR e
° Reglélarization for ML: Inversion 7 = 1-'g? L
= =lc
1@017ns, nOt (16 Regularization @ = (+10)'0"  # = (Lg+ L5 ¢

Thank you for your attention!
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