Data-adaptive RKHS regularization for learning kernels in operators

Fei Lu

Department of Mathematics, Johns Hopkins University

CAM Colloquium, U Chicago December 5, 2024

Collaborators: Quanjun Lang, Qingci An, Yue Yu, Haibo Li, Jinchao Feng, Yvonne Ou

Which norm $||x||_*$ to use in $||Ax - b||^2 + \lambda ||x||_*^2$ for an ill-posed inverse problem (e.g., $\phi(r) = \sum_{i=1}^{n} x_i \phi_i(r)$)?

$$(A) \|x\|_{\mathbb{R}^n}$$

(B)
$$\|\phi\|_{L^2}$$

Identifiability and DARTR

Learning kernels

- Regression and regularization
- Identifiability and DARTR
- Iterative method

Learn the kernel ϕ :

$$R_{\phi}[u] + \epsilon = f$$

Identifiability and DARTR

from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

Operator
$$R_{\phi}[u](x) = \int \phi(|x-y|)g[u](x,y)dy$$

Learn the kernel ϕ :

$$R_{\phi}[u] + \epsilon = f$$

from data:

Learning kernels

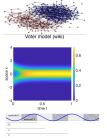
$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

Operator
$$R_{\phi}[u](x) = \int \phi(|x-y|)g[u](x,y)dy$$

• Interacting particles/agents $K_{\phi}(x) = \phi(|x|) \frac{x}{|x|} \in \mathbb{R}^d$

$$R_{\phi}[\boldsymbol{X}_t] = \left[-\frac{1}{n} \sum_{i=1}^n K_{\phi}(X_t^i - X_t^j) \right]_i = \dot{\boldsymbol{X}}_t + \sqrt{2\nu} \dot{\boldsymbol{W}}_t,$$

$$R_{\phi}[u] = \nabla \cdot [u(K_{\phi} * u)] = \partial_t u - \nu \Delta u,$$



Learn the kernel ϕ :

$$R_{\phi}[u] + \epsilon = f$$

from data:

Learning kernels

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

Operator
$$R_{\phi}[u](x) = \int \phi(|x-y|)g[u](x,y)dy$$

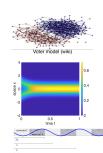
• Interacting particles/agents $K_{\phi}(x) = \phi(|x|) \frac{x}{|x|} \in \mathbb{R}^d$

$$R_{\phi}[\boldsymbol{X}_t] = \left[-rac{1}{n}\sum_{i=1}^n K_{\phi}(X_t^i - X_t^j)
ight]_i = \dot{\boldsymbol{X}}_t + \sqrt{2\nu}\dot{\boldsymbol{W}}_t,$$

$$R_{\phi}[u] = \nabla \cdot [u(K_{\phi} * u)] = \partial_t u - \nu \Delta u,$$

Nonlocal PDEs:

$$R_{\phi}[u](x) = \int_{\Omega} \phi(|x-y|)[u(y)-u(x)]dy = \partial_{tt}u$$



Learn the kernel ϕ : $R_{\bullet}[u] + \epsilon = f$

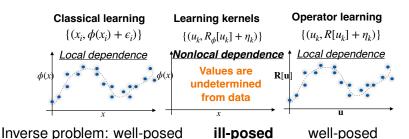
from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

Identifiability and DARTR

- Operator $R_{\phi}[u](x) = \int \phi(|x-y|)g[u](x,y)dy$: linear or nonlinear in u, but linear in ϕ
- Statistical learning \(\) inverse problem
 - random $\{(u_k, f_k)\}$: statistical learning
 - deterministic (e.g., N small): inverse problem

Learning kernels in operators



This talk: ⇒ introduce a data-adaptive RKHS regularization

Convergent estimator as mesh refines

$$\mathcal{D} = \{(u_k(x_j), f_k(x_j))\}_{k=1}^N, \quad \Delta x = |x_{j+1} - x_j| \to 0$$

Part 2: Regression and regularization

Identifiability and DARTR

Learn the kernel ϕ :

$$R_{\phi}[u] + \epsilon = f$$

from data:

$$\mathcal{D} = \{(u_k(x_i), f_k(x_i))\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

Operator $R_{\phi}[u](x) = \int \phi(|x-y|)g[u](x,y)dy$

Nonparametric regression

- Loss functional: $\mathcal{E}(\phi) = \frac{1}{N} \sum_{k=1}^{N} \|R_{\phi}[u_k] f_k\|_{\mathbb{V}}^2$
 - Crucial!
 - Derivative-free Monte Carlo suitable [Lang+Lu22SISC]
- Hypothesis space $\mathcal{H}_n = \operatorname{span}\{\phi_i\}_{i=1}^n : \phi = \sum_{i=1}^n c_i \phi_i$,

$$\mathcal{E}(\phi) = c^{\top} \overline{A}_n c - 2c^{\top} \overline{b}_n + C_N^f, \Rightarrow \widehat{\phi}_{\mathcal{H}_n} = \sum_i \widehat{c}_i \phi_i, \text{ where } \widehat{c} = \overline{A}_n^{-1} \overline{b}_n$$

Identifiability and DARTR

Goal: $\widehat{\phi}_{\mathcal{H}_n}$ converges as data mesh Δx refines

Challenges

- Choice of \mathcal{H}_n : $\{\phi_i\}_{i=1}^n$ and $n=n(\Delta x)$
- \overline{A}_n^{-1} : ill-conditioned/singular

Regularization

Regularization is necessary:

- A_n ill-conditioned
- \overline{b}_n : noise or numerical error

Tikhonov/ridge Regularization:

$$\mathcal{E}_{\lambda}(\phi) = \mathcal{E}(\phi) + \lambda \|\phi\|_{*}^{2} \Rightarrow c^{\top} \overline{A}_{n} c - 2 \overline{b}_{n}^{\top} c + \lambda c^{\top} B_{*} c$$

$$\widehat{\phi}_{\mathcal{H}_{n}}^{\lambda} = \sum_{i} \widehat{c}_{\lambda, i} \phi_{i}, \quad \text{where } \widehat{c}_{\lambda} = (\overline{A}_{n} + \lambda B_{*})^{-1} \overline{b}_{n},$$

Identifiability and DARTR

Regularization

Regularization is necessary:

- \bullet \overline{A}_n ill-conditioned
- \overline{b}_n : noise or numerical error

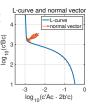
Tikhonov/ridge Regularization:

$$\mathcal{E}_{\lambda}(\phi) = \mathcal{E}(\phi) + \lambda \|\phi\|_{*}^{2} \Rightarrow c^{\top} \overline{A}_{n} c - 2 \overline{b}_{n}^{\top} c + \lambda c^{\top} B_{*} c$$
 $\widehat{\phi}_{\mathcal{H}_{n}}^{\lambda} = \sum_{i} \widehat{c}_{\lambda, i} \phi_{i}, \quad \text{where } \widehat{c}_{\lambda} = (\overline{A}_{n} + \lambda B_{*})^{-1} \overline{b}_{n},$

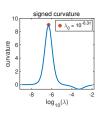
λ: L-curve[Hansen00], GCV[Golub+Heath+Wahba79]

$$(x,y) := (\log(\mathcal{E}(\widehat{c}_{\lambda})), \log(\widehat{c}_{\lambda}^{\top} B_* \widehat{c}_{\lambda})),$$

 $\lambda_* = \text{maximal curvature}$

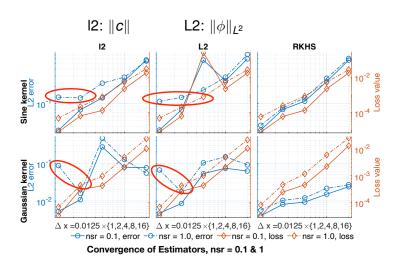


Identifiability and DARTR



Learning kernels

Identifiability and DARTR



Risk of blowing up in the small noise limit [Chada-Wang-Lang-Lu22]

Principle: [Stuart2010]

Avoid **discretization** until the last possible moment

Avoid basis selection until the last possible moment

Hypothesis space: $\phi = \sum_{i=1}^{n} c_i \phi_i \in \mathcal{H}_n = \text{span}\{\phi_i\}_{i=1}^{n}$:

$$R_{\phi}[u](x) = \int_{\Omega} \phi(|x-y|)g[u](x,y)dy = f$$

Function space of ϕ ? Identifiability?

Part 3: Identifiability & regularization

Identifiability and DARTR

DARTR: Data adpative RKHS Tikhonov regularization

Identifiability

• An exploration measure: $\rho(dr)$ $\Rightarrow \phi \in L^2_{\rho}$ $R_{\phi}[u](x) = \int_{\Omega} \phi(|x-y|)g[u](x,y)dy, \quad \rho(dr) \propto \int \int \delta_{|x-y|}(dr)|g[u](x,y)|dxdy$

Identifiability and DARTR

000000

<u>Identifiability</u>

- An exploration measure: $\rho(dr)$ $\Rightarrow \phi \in L^2$ $R_{\phi}[u](x) = \int_{\Omega} \phi(|x-y|) g[u](x,y) dy, \quad \rho(dr) \propto \int \int \delta_{|x-y|}(dr) |g[u](x,y)| dxdy$
- An integral operator ← the Fréchet derivative of loss functional

$$\mathcal{E}(\phi) = \frac{1}{N} \sum_{k=1}^{N} \|R_{\phi}[u_k] - f_k\|_{L^2}^2 = \langle \mathcal{L}_{\overline{G}}\phi, \phi \rangle_{L^2_{\rho}} - 2\langle \phi^D, \phi \rangle_{L^2_{\rho}} + C$$

$$\nabla \mathcal{E}(\phi) = 2\mathcal{L}_{\overline{G}}\phi - 2\phi^D = 0 \quad \Rightarrow \widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1}\phi^D$$

Identifiability and DARTR

- $\mathcal{L}_{\overline{G}}$: nonnegative compact, $\{(\lambda_i, \psi_i)\}, \lambda_i \downarrow 0$
- $\phi^D = \mathcal{L}_{\overline{c}} \phi_{true} + \phi^{error}$

<u>Identifiability</u>

- An exploration measure: $\rho(dr)$ $\Rightarrow \phi \in L^2$ $R_{\phi}[u](x) = \int_{\Omega} \phi(|x-y|) g[u](x,y) dy, \quad \rho(dr) \propto \int \int \delta_{|x-y|}(dr) |g[u](x,y)| dxdy$
- An integral operator ← the Fréchet derivative of loss functional

$$\mathcal{E}(\phi) = \frac{1}{N} \sum_{k=1}^{N} \|R_{\phi}[u_k] - f_k\|_{L^2}^2 = \langle \mathcal{L}_{\overline{G}}\phi, \phi \rangle_{L^2_{\rho}} - 2\langle \phi^D, \phi \rangle_{L^2_{\rho}} + C$$

$$\nabla \mathcal{E}(\phi) = 2\mathcal{L}_{\overline{G}}\phi - 2\phi^D = 0 \quad \Rightarrow \widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1}\phi^D$$

Identifiability and DARTR

- \triangleright $\mathcal{L}_{\overline{G}}$: nonnegative compact, $\{(\lambda_i, \psi_i)\}, \lambda_i \downarrow 0$
- $\phi^D = \mathcal{L}_{\overline{c}} \phi_{true} + \phi^{error}$
- Function space of identifiability (FSOI):

$$\widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1}(\mathcal{L}_{\overline{G}}\phi_{\mathit{true}} + \phi^{\mathit{error}}) \Rightarrow \quad \mathcal{H} = \mathrm{Null}(\mathcal{L}_{\overline{G}})^{\perp} = \overline{\mathrm{span}\{\psi_{i}\}_{i:\lambda_{i}>0}}$$

▶ ill-defined beyond H; ill-posed in H

000000

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization: ensure that the learning takes place in the FSOI

data-dependent
$$H = \overline{\operatorname{span}\{\psi_i\}_{i:\lambda_i>0}}$$

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization: ensure that the learning takes place in the FSOI

data-dependent
$$H = \overline{\operatorname{span}\{\psi_i\}_{i:\lambda_i>0}} \supseteq \overline{H_G^{L_p^2}}$$

Identifiability and DARTR

000000

•
$$\overline{G} \Rightarrow \mathsf{RKHS}$$
: $H_G = \mathcal{L}_{\overline{G}}^{-1/2}(L_\rho^2)$

$$\bullet \|\phi\|_{H_G}^2 = \langle \mathcal{L}_{\overline{G}}^{-1} \phi, \phi \rangle_{L^2_\rho}$$

DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization:

ensure that the learning takes place in the FSOI

data-dependent
$$H = \overline{\operatorname{span}\{\psi_i\}_{i:\lambda_i>0}} \supseteq \overline{H_G}^{L_p^2}$$

- $\overline{G} \Rightarrow \mathsf{RKHS}$: $H_G = \mathcal{L}_{\overline{G}}^{-1/2}(L_\rho^2)$
- $\bullet \|\phi\|_{\mathcal{H}_G}^2 = \langle \mathcal{L}_{\overline{G}}^{-1} \phi, \phi \rangle_{L^2_\rho}$
- \Rightarrow Regularization norm: $\|\phi\|_{H_G}^2$ [Lu+Lang+An22MSML]

$$\mathcal{E}_{\lambda}(\phi) = \mathcal{E}(\phi) + \lambda \|\phi\|_{\mathcal{H}_{G}}^{2} = \langle (\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-1})\phi, \phi \rangle_{\mathcal{L}_{\rho}^{2}} - 2 \langle \phi^{D}, \phi \rangle_{\mathcal{L}_{\rho}^{2}}$$

$$\widehat{\phi}_{\lambda} = (\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-1})^{-1} \phi^{D} = (\mathcal{L}_{\overline{G}}^{2} + \lambda I)^{-1} \mathcal{L}_{\overline{G}} \phi^{D}$$

What DARTR has done:

remove error outside FSOI + regularize in FSOI

No regularization:

$$\widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1} \phi^D = \mathcal{L}_{\overline{G}}^{-1} (\mathcal{L}_{\overline{G}} \phi_{true} + \phi_H^{error} + \phi_{H^{\perp}}^{error})$$

Identifiability and DARTR

• DARTR: $\mathcal{L}_{\overline{G}}\phi_{\mu_{\perp}}^{\text{error}} = 0$ or $\|\phi_{\mu_{\perp}}^{\text{error}}\|_{\mu_{\alpha}}^2 = \infty$

$$(\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-1})^{-1} \phi^{D} = (\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-1})^{-1} (\mathcal{L}_{\overline{G}} \phi_{\textit{true}} + \phi_{\textit{H}}^{\textit{error}})$$

• I^2 or L^2 regularizer: with $C = \sum \phi_i \otimes \phi_i$ or C = I

$$(\mathcal{L}_{\overline{G}} + \lambda C)^{-1} \phi^{D} = (\mathcal{L}_{\overline{G}} + \lambda C)^{-1} (\mathcal{L}_{\overline{G}} \phi_{true} + \phi_{H}^{error} + \phi_{H^{\perp}}^{error})$$

DARTR: computation

$$\mathcal{E}_{\lambda}(\phi) = \mathcal{E}(\phi) + \lambda \|\phi\|_{H_{G}}^{2} \Rightarrow c^{\top} A_{n} c - 2b_{n}^{\top} c + \lambda \|c\|_{B_{rkhs}}^{2}$$

Identifiability and DARTR

Input: A_n, b_n and $B_n = (\langle \phi_i, \phi_j \rangle_{L^2})_{i,j}$.

Output: reguarized estimator

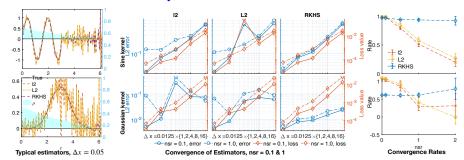
$$\widehat{c}_{\lambda} = (A_n + \lambda_* B_{rkhs})^{-1} b_n$$

- Generalized eigenvalue problem $(A_n, B_n) \leftrightarrow \mathcal{L}_{\overline{G}}$ $A_nV=B_nV\Lambda$ and $V^\top B_nV=I_n$ $B_{rkhs} = (V \wedge V^{\top})^{\dagger}; (B_{rkhs} = A_n^{\dagger} \text{ if } B_n = I_n)$
- L-curve to select λ_{**}

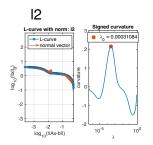
Interaction kernel in a nonlinear operator

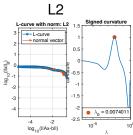
$$R_{\phi}[u] = \nabla \cdot [u(K_{\phi} * u)] = f, \quad K_{\phi} = \phi(|x|) \frac{x}{|x|}$$

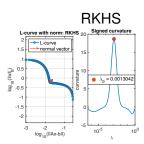
- Recover kernel from discrete noisy data
- Robust in accuracy, consistent rates as mesh refines



More robust L-curve



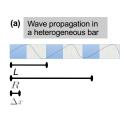


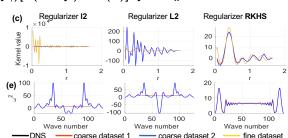


Homogenization of wave propagation in meta-material

- heterogeneous bar with microstructure + DNS ⇒ Data
- Homogenization: [Lu+An+Yu23]

$$R_{\phi}[u] = \int_{\Omega} \phi(|y|)[u(x+y) - u(x)]dy = \partial_{tt}u - v.$$





Identifiability and DARTR

- (c): resolution-invariant
- (e): I² and L2 leading to non-physical kernel

Learning kernels

Identifiability and DARTR

Large scale Ax = b, $A \in \mathbb{R}^{m \times n}$ ill-conditioned, n >> 1b: noisy

Direct method: DARTR for Ax = b

$$A_n = A^{\top}A, b_n = A^{\top}b$$
: $\Rightarrow A_nx = b_n$
$$\widehat{x}_{\lambda} = (A_n + \lambda_*B_{rkhs})^{-1}b_n$$

- $\rho \propto \sum_{i} |A_{ij}|$: measure of A exploring x
- $B_n = \operatorname{diag}(\rho)$: pre-conditioning
- Generalized eigenvalue problem (A_n, B_n) $A_n V = B_n V \Lambda$ and $V^{\top} B_n V = I_n \Rightarrow B_{rkhs} = (V \Lambda V^{\top})^{\dagger}$ $B_{rkhs} = A_n^{\dagger}$ when $B_n = I_n$
- L-curve to select λ_{*}

Direct method: DARTR for Ax = b

$$A_n = A^{\top}A, b_n = A^{\top}b$$
: $\Rightarrow A_nx = b_n$ $\widehat{x}_{\lambda} = (A_n + \lambda_*B_{rkhs})^{-1}b_n$

- $\rho \propto \sum_{i} |A_{ij}|$: measure of A exploring x
- $B_n = \operatorname{diag}(\rho)$: pre-conditioning
- Generalized eigenvalue problem (A_n, B_n) $A_n V = B_n V \Lambda$ and $V^{\top} B_n V = I_n \Rightarrow B_{rkhs} = (V \Lambda V^{\top})^{\dagger}$ $B_{rkhs} = A_n^{\dagger}$ when $B_n = I_n$
- L-curve to select λ_*

Direct method: based on **costly** matrix decomposition, $O(n^3)$.

Iterative method: without computing B_{rkhs} ?

Iterative Data Adaptive RKHS regularization

Identifiability and DARTR

Solve:
$$x_k = \underset{x \in \mathcal{X}_k}{\operatorname{arg \, min}} \|x\|_{B_{rkhs}}, \, \mathcal{X}_k = \{x : \underset{x \in \mathcal{S}_k}{\operatorname{min}}_{x \in \mathcal{S}_k} \|Ax - b\|\}$$

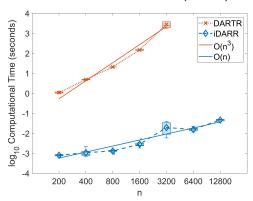
$$\mathcal{S}_k = \operatorname{span}\{(B_{rkhs}^{\dagger}A^{\top}A)^i B_{rkhs}^{\dagger}A^{\top}b\}_{i=0}^k$$

- Use B_{rkhs}^{\dagger} , not B_{rkhs} : $B_{rkhs}^{\dagger} = B^{-1}A^{\top}AB^{-1}$
- generalized Golub-Kahan bidiagonalization (gGKB) \Rightarrow construct S_k only using matrix-vector product
- $S_k = RKHS$ -restricted Krylov subspace
- Early stopping: select k

[Li+Feng+Lu, arXiv2401: Scalable iterative data-adaptive RKHS regularization]

Computational complexity

Direct method: DARTR, $O(n^3)$ Iterative method: iDARR, O(3mnk)



Fredholm integral equation: 1st kind

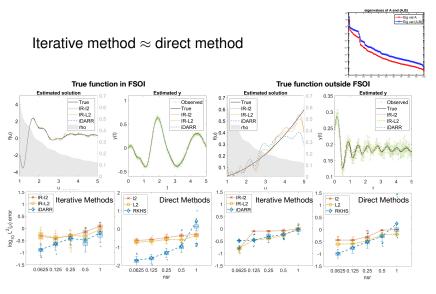
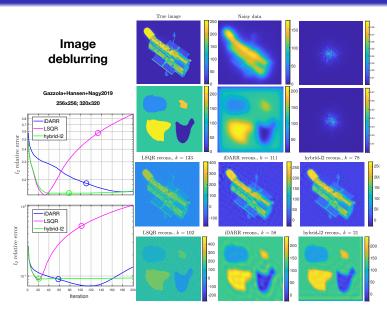


Image deblurring



Which norm $||x||_*$ to use in $||Ax - b||^2 + \lambda ||x||_*^2$ when solving ill-posed inverse problems?

$$(A) \|x\|$$

(B)
$$\|\phi\|_{L^2}$$
 for $\phi(r) = \sum_i x_i e_i(r)$

Identifiability and DARTR

(C) Total variation

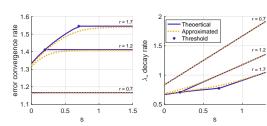
(D) RKHS DA-RKHS

Is DA-RKHS better than other norms?

Small noise analysis

[Chada+Lang+Lu+Wang22,Lu+Ou23,LangLu23]

- fractional $H_G^s = L_G^{s/2} L_a^2$: $H_G^0 = L_o^2$, $H_G^1 = H_G$
- Rate and λ_* depend on s, r



Summary

Learning kernels in operators:

$$R_{\phi}[u] = f \quad \Leftarrow \quad \mathcal{D} = \{(u_k, f_k)\}_{k=1}^N$$

Identifiability and DARTR

Nonlocal dependence

- Identifiability
- DARTR: data adaptive RKHR Tikhonov-Reg
 - Synthetic data: convergent, robust to noise
 - Homogenization: resolution-invariant
- Iterative method: iDARR

Regularization: $A_n x_n = b_n \Rightarrow "x_{\lambda,n} = (A_n + \lambda A_n^{-1})b_n"$

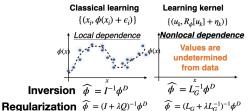
"What doesn't kill you makes you stronger."

Future directions

Learning with nonlocal dependence

- Minimax rate: Δx, N
- Automatic kernel regression
- Regularization for ML:

 $\|\phi_{\theta}\|_{rkhc}^2$, not $\|\theta\|$



Identifiability and DARTR

Thank you for your attention!