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Which norm ∥x∥∗ to use in ∥Ax − b∥2 + λ∥x∥2
∗

when solving ill-posed inverse problems ?

(A) ∥x∥ (B) ∥ϕ∥L2 for ϕ(s) =
∑

i

xiei(s)

(C) Total variation (D) RKHS
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Learning kernels in operators

Learn the kernel ϕ: Rϕ[u] + ϵ = f

from data:
D = {(uk , fk )}N

k=1, (uk , fk ) ∈ X× Y

Operator Rϕ[u](x) =
∫
ϕ(|x − y |)g[u](x , y)dy

provided some boundary conditions on � ⌦ for u(x, t) and
initial conditions at t = 0 for u and �u/�t are satisfied.
Here, LHF is the HF operator, which can either be a differ-
ential or integral operator, and f represents a forcing term.

We assume that solutions to this HF problem may be ap-
proximated by solutions to a nonlocal problem of the form

� 2u

�t 2
(x, t) � LK [u](x, t) = f(x, t), (2)

for (x, t) 2 ⌦ ⇥ [0, T ], augmented with nonlocal boundary
conditions on ⌦� (a layer of thickness � that surrounds the
domain) and the same initial conditions on the variable u
and its derivative as in (1). The forcing f may coincide with
the forcing term in (1) or it could be an appropriate repre-
sentation of the same.

We seek LK as a nonlocal operator of the form

LK [u](x, t) =

Z

⌦

K(|x � y|) (u(y, t) � u(x, t)) dy, (3)

where K is a radial, sign-changing, kernel function, com-
pactly supported on the ball of radius � centered at x, i.e.,
B�(x) and ⌦ = ⌦ [ ⌦� .

The algorithm
To learn the kernel K, we assume that we are given N pairs
of forcing terms and corresponding solutions to (1), nor-
malized with respect to the L2 norm of each solution over
⌦⇥ [0, Ttr]. These are denoted by

Dtr = {(uk(x, t), fk(x, t))}N
k=1 , (4)

for x 2 ⌦ and t 2 (0, Ttr]. Similarly to (You et al. 2020),
we represent K as a linear combination of Bernstein basis
polynomials:

K

✓ |y|
−

◆
=

MX

m=0

Cm

�d+2
Bm,M

✓����
y

�

����
◆

, (5)

where the Bernstein basis functions are defined as

Bm,M (x) =

✓
M
m

◆
xm(1 � x)M�m for 0  x  1

and where Cm 2 R. Note that, by construction, this kernel
guarantees that (2) is well-posed (Du, Tao, and Tian 2018).

We machine-learn the nonlocal model by finding optimal
parameters {Cm} such that solutions ûk to (2), for f = fk

and the kernel function K associated to {Cm}, are as close
as possible to the training variable uk.

In this work we numerically approximate ûk by ūk using
a central-differencing scheme in time with time step dt, i.e.

ūn+1
k (xi) = 2ūn

k (xi) � ūn�1
k (xi)

+ dt2 (LK,h[ūn
k ](xi) + fk(xi, t

n)) ,
(6)

where ūn+1
k (xi) represents the k-th approximate solution at

time step tn+1 and at discretization point xi, and LK,h is an
approximation of LK by Riemann sum with uniform grid
spacing h. The optimal parameters are obtained by solving

Figure 1: One-dimensional bar with ordered microstructure
of period 2L. Material 1 and 2 have the same density and
Young modulus E1 and E2. The horizon � , the wave length
� , and the discretization size, h, are reported for comparison.

the following optimization problem.

min
Cm

Ttr

dt3 N

NX

k=1

Ttr/dtX

n=1

��ūn+1
k � uk(tn+1)

��2

`2
+ R({Cm}),

(7)
s.t. ūk satisfies (6) and (8)

K satisfies physics-based constraints. (9)

Here, the � 2 norm is taken over the space-discretization
points xi, R(·) is a regularization term on the coefficients
that improves the conditioning of the optimization problem,
and (9) depends on the physics of the problem (as an exam-
ple, it may correspond to enforcing that the surrogate model
reproduces exactly a certain class of solutions).

Dispersion in heterogeneous materials
We apply the learning algorithm described above to the
propagation of waves in a one-dimensional heterogeneous
bar, like the one reported in Figure 1, with an ordered mi-
crostructure, i.e. two materials with the same length alter-
nate periodically. Our goal is to learn a nonlocal model able
to reproduce wave propagation on distances that are much
larger than the size of the microstructure without resolving
the microscales. The high-fidelity model we rely on is the
classical wave equation; the corresponding high-fidelity data
used for training and validation are obtained with the solver
described below.

High-fidelity data
For both training and validation purposes we generate data
using high-fidelity simulations for the propagation of stress
waves within the microstructure of the heterogeneous, linear
elastic bar. This method, which will be referred to as Direct
Numerical Solution (DNS), constructs an arbitrarily com-
plex wave diagram (also called an x-t diagram), that treats
the mutual interaction and superposition of many wavefronts
moving in either direction. The bar is discretized into nodes
such that it takes a constant amount of time �t for a wave to
travel between nodes � and � + 1, regardless of the elastic
wave speed in the material between these two nodes. There-
fore, in a heterogeneous medium, the spacing between nodes
is not constant. Each node � , at each time step n, has veloc-
ity vn

� (note that, in this case, the subscript refers to position,
as opposed to the previous section where it corresponds to a

Interacting particles/agents Kϕ(x) = ϕ(|x |) x
|x| ∈ Rd

Rϕ[X t ] =
[
−1

n

n∑

j=1

Kϕ(X i
t −X j

t )
]

i = Ẋ t+
√

2νẆt , Rnd

Rϕ[u] = ∇ · [u(Kϕ ∗ u)] = ∂tu − ν∆u,

Nonlocal PDEs:

Rϕ[u](x) =
∫

Ω

ϕ(|x − y |)[u(y)− u(x)]dy = ∂ttu
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and the kernel function K associated to {Cm}, are as close
as possible to the training variable uk.

In this work we numerically approximate ûk by ūk using
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k (xi)

+ dt2 (LK,h[ūn
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Learning kernels in operators

Learn the kernel ϕ: Rϕ[u] + ϵ = f

from data:
D = {(uk , fk )}N

k=1, (uk , fk ) ∈ X× Y

Operator Rϕ[u](x) =
∫
ϕ(|x − y |)g[u](x , y)dy :

linear or nonlinear in u, but linear in ϕ

Statistical learning
⋂

inverse problem
▶ random {(uk , fk )}: statistical learning
▶ deterministic (e.g., N small): inverse problem
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Learning kernels in operators

ϕ(x)

x

ϕ(x)

Classical learning Learning kernel

Values are
undetermined 

from data

Local dependence

{(xi, ϕ(xi) + ϵi)} {(uk, Rϕ[uk] + ηk)}
Nonlocal dependence

u

R[u]

Operator learning

Local dependence

{(uk, R[uk] + ηk)}

x̂ϕ = I−1ϕD ̂R = I−1RD̂ϕ = L−1
G ϕDInversion

̂ϕ = (I + λQ)−1ϕD ̂ϕ = (LG + λL−1
G )−1ϕD ̂R = (I + λQ)−1RDRegularization

ϕ(x)

x

ϕ(x)

Classical learning Learning kernels

Values are
undetermined 

from data

Local dependence

{(xi, ϕ(xi) + ϵi)} {(uk, Rϕ[uk] + ηk)}
Nonlocal dependence

u

R[u]

Operator learning

Local dependence

{(uk, R[uk] + ηk)}

x

Inverse problem: well-posed ill-posed well-posed

This talk: ⇒ introduce a data-adaptive RKHS regularization
Convergent estimator as mesh refines

D = {(uk (xj), fk (xj))}N
k=1, ∆x = |xj+1 − xj | → 0
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Part 2: Regression and regularization

Learn the kernel ϕ: Rϕ[u] + ϵ = f

from data:
D = {(uk (xj), fk (xj))}N

k=1, (uk , fk ) ∈ X× Y

Operator Rϕ[u](x) =
∫
ϕ(|x − y |)g[u](x , y)dy
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Nonparametric regression

Loss functional: E(ϕ) = 1
N
∑N

i=1 ∥Rϕ[ui ]− fi∥2
Y

▶ Crucial!
▶ Derivative-free Monte Carlo suitable [Lang+Lu22SISC]

Hypothesis space Hn = span{ϕi}n
i=1: ϕ =

∑n
i=1 ciϕi ,

E(ϕ) = c⊤Anc−2c⊤bn+Cf
N ,⇒ ϕ̂Hn =

∑

i

ĉiϕi , where ĉ = A
−1
n bn

Goal: ϕ̂Hn converges as data mesh ∆x refines

Challenges
Choice of Hn: {ϕi}n

i=1 and n = n(∆x)

A
−1
n : ill-conditioned/singular
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Regularization

Regularization is necessary:

An ill-conditioned

bn: noise or numerical error

Tikhonov/ridge Regularization:

Eλ(ϕ) = E(ϕ) + λ∥ϕ∥2
∗ ⇒ c⊤Anc − 2b

⊤
n c + λc⊤B∗c

ϕ̂λHn
=

∑

i

ĉλ,iϕi , where ĉλ = (An + λB∗)
−1bn,

λ: L-curve[Hansen00], GCV[Golub+Heath+Wahba79]

(x , y) := (log(E(ĉλ)), log(ĉ⊤
λ B∗ĉλ)),

λ∗ = maximal curvature

Which norm ∥ · ∥∗ to use? ∥c∥, ∥ϕ∥?
-3 -2 -1 0

log
10

(c'Ac - 2b'c)
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2

3

4

lo
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l2: ∥c∥ L2: ∥ϕ∥L2

Convergence of Estimators, nsr = 0.1 & 1  Convergence Rates

MF Operator

Typical estimators,   Δx = 0.05
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Risk of blowing up in the small noise limit [Chada-Wang-Lang-Lu22]
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Principle: [Stuart2010]

Avoid discretization until the last possible moment
↓

Avoid basis selection until the last possible moment

Hypothesis space: ϕ =
∑n

i=1 ciϕi ∈ Hn = span{ϕi}n
i=1:

Rϕ[u](x) =
∫

Ω
ϕ(|x − y |)g[u](x , y)dy = f

Function space of ϕ? Identifiability?
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Part 3: Identifiability & regularization

DARTR: Data adpative RKHS Tikhonov regularization

15 / 36



Learning kernels Regression and regularization Identifiability and DARTR Iterative method

Identifiability

An exploration measure: ρ(dr) ⇒ ϕ ∈ L2
ρ

Rϕ[u](x) =
∫
Ω ϕ(|x − y |)g[u](x , y)dy , ρ(dr) ∝

∫ ∫
δ|x−y|(dr)

∣∣g[u](x , y)∣∣dxdy

An integral operator ⇐ the Fréchet derivative of loss functional

E(ϕ) = 1
N

N∑

i=1

∥Rϕ[ui ]− fi∥2
L2 = ⟨LGϕ, ϕ⟩L2

ρ
− 2⟨ϕD, ϕ⟩L2

ρ
+ C

∇E(ϕ) = 2LGϕ− 2ϕD = 0 ⇒ ϕ̂ = LG
−1ϕD

▶ LG: nonnegative compact, {(λi , ψi)}, λi ↓ 0
▶ ϕD = LGϕtrue + ϕerror

Function space of identifiability (FSOI):
ϕ̂ = LG

−1(LGϕtrue+ϕ
error) ⇒ H = Null(LG)

⊥ = span{ψi}i:λi>0

▶ ill-defined beyond H; ill-posed in H
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DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization:
ensure that the learning takes place in the FSOI

data-dependent H = span{ψi}i:λi>0

⊇ HG
L2
ρ

G ⇒RKHS: HG = LG
1/2(L2

ρ)

∥ϕ∥2
HG

= ⟨LG
−1ϕ, ϕ⟩L2

ρ

⇒ Regularization norm: ∥ϕ∥2
HG

[Lu+Lang+An22MSML]

Eλ(ϕ) = E(ϕ) + λ∥ϕ∥2
HG

= ⟨(LG + λLG
−1)ϕ, ϕ⟩L2

ρ
− 2⟨ϕD, ϕ⟩L2

ρ

ϕ̂λ = (LG + λLG
−1)−1ϕD = (LG

2 + λI)−1LGϕ
D
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What DARTR has done:
remove error outside FSOI + regularize in FSOI

No regularization:

ϕ̂ = LG
−1ϕD = LG

−1(LGϕtrue + ϕerror
H + ϕerror

H⊥ )

DARTR: LGϕ
error
H⊥ = 0 or ∥ϕerror

H⊥ ∥2
HG

= ∞

(LG + λLG
−1)−1ϕD = (LG + λLG

−1)−1(LGϕtrue + ϕerror
H )

l2 or L2 regularizer: with C =
∑
ϕi ⊗ ϕj or C = I

(LG + λC)−1ϕD = (LG + λC)−1(LGϕtrue + ϕerror
H + ϕerror

H⊥ )
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DARTR: computation

Eλ(ϕ) = E(ϕ) + λ∥ϕ∥2
HG

⇒ c⊤Anc − 2b⊤
n c + λ∥c∥2

Brkhs

Input: An,bn and Bn = (⟨ϕi , ϕj⟩L2
ρ
)i,j .

Output: reguarized estimator

ĉλ = (An + λ∗Brkhs)
−1bn

Generalized eigenvalue problem (An,Bn) ↔ LG
AnV = BnVΛ and V⊤BnV = In
Brkhs = (VΛV⊤)†; (Brkhs = A†

n if Bn = In)

L-curve to select λ∗
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Interaction kernel in a nonlinear operator

Rϕ[u] = ∇ · [u(Kϕ ∗ u)] = f , Kϕ = ϕ(|x |) x
|x |

Recover kernel from discrete noisy data
Robust in accuracy, consistent rates as mesh refines

Convergence of Estimators, nsr = 0.1 & 1  Convergence Rates

MF Operator

Typical estimators,   Δx = 0.05
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More robust L-curve
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Homogenization of wave propagation in meta-material

heterogeneous bar with microstructure + DNS ⇒ Data
Homogenization: [Lu+An+Yu23]

Rϕ[u] =
∫
Ω ϕ(|y |)[u(x + y)− u(x)]dy = ∂ttu − v .

(c) Regularizer l2 Regularizer L2 Regularizer RKHS

DNS             coarse dataset 1             coarse dataset 2             fine dataset

(a) Wave propagation in 
a heterogeneous bar

L (e)

(c): resolution-invariant
(e): l2 and L2 leading to non-physical kernel
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Part 4: Iterative method

Large scale Ax = b, A ∈ Rm×n ill-conditioned , n >> 1
b: noisy
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Direct method: DARTR for Ax = b

An = A⊤A,bn = A⊤b: ⇒ Anx = bn

x̂λ = (An + λ∗Brkhs)
−1bn

ρ ∝ ∑
j |Aij |: measure of A exploring x

Bn = diag(ρ): pre-conditioning
Generalized eigenvalue problem (An,Bn)
AnV = BnVΛ and V⊤BnV = In ⇒ Brkhs = (VΛV⊤)†

Brkhs = A†
n when Bn = In

L-curve to select λ∗

—————-
Direct method: based on costly matrix decomposition, O(n3).

Iterative method: without computing Brkhs?
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Iterative Data Adaptive RKHS regularization

Solve: xk = argmin
x∈Xk

∥x∥Brkhs , Xk = {x : minx∈Sk ∥Ax − b∥}

Sk = span{(B†
rkhsA⊤A)iB†

rkhsA⊤b}k
i=0

Use B†
rkhs, not Brkhs: B†

rkhs = B−1A⊤AB−1

generalized Golub-Kahan bidiagonalization (gGKB)
⇒ construct Sk only using matrix-vector product
Sk = RKHS-restricted Krylov subspace
Early stopping: select k

[Li+Feng+Lu, arXiv2401: Scalable iterative data-adaptive RKHS regularization ]
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Computational complexity

Direct method: DARTR, O(n3)
Iterative method: iDARR, O(3mnk)
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Fredholm integral equation: 1st kind

Iterative method ≈ direct method
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Figure 3: Results in the case of polynomial decaying spectrum. Top-row: typical estimators of IR-l2,
IR-L2, and iDARR when nsr “ 0.0625 and their denoising of the output signal. The 2nd-top row: the
residual }Axk ´ b}2 as iteration number k increases in one realization when nsr “ 0.0625, as well as the
box plots of the stopping iteration numbers the 100 simulations. The lower two rows: box plots of the
estimators’ L2

⇢ errors and loss function values in the 100 simulations.
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Image deblurring

0 20 40 60 80 100 120 140 160 180 200

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8
iDARR

LSQR

hybrid-l2

0 20 40 60 80 100 120 140 160 180 200

Iteration

10-1

100

iDARR

LSQR

hybrid-l2

0

50

100

150

200

250

0

50

100

150

200

0

50

100

150

200

250

0

50

100

150

200

-100

0

100

200

300

400

-200

-100

0

100

200

300

400

50

100

150

200

0

50

100

150

200

0

50

100

150

200

250

0

50

100

150

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Image  
deblurring

256x256; 320x320

Gazzola+Hansen+Nagy2019

33 / 36



Learning kernels Regression and regularization Identifiability and DARTR Iterative method

Which norm ∥x∥∗ to use in ∥Ax − b∥2 + λ∥x∥2
∗

when solving ill-posed inverse problems ?

(A) ∥x∥ (B) ∥ϕ∥L2 for ϕ(s) =
∑

i

xiei(s)

(C) Total variation (D) RKHS DA-RKHS

Is DA-RKHS better than other norms?

Small noise analysis
[Chada+Lang+Lu+Wang22,Lu+Ou23,LangLu23]
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Summary

Learning kernels in operators:

Rϕ[u] = f ⇐ D = {(uk , fk )}N
k=1

Nonlocal dependence
Identifiability

DARTR: data adaptive RKHR Tikhonov-Reg

▶ Synthetic data: convergent, robust to noise
▶ Homogenization: resolution-invariant

Iterative method: iDARR
Regularization: Anxn = bn ⇒ “xλ,n = (An + λA−1

n )bn ”
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Future directions

Learning with nonlocal dependence

Convergence: ∆x ,N

Automatic kernel for GPR

Regularization for ML:
∥ϕθ∥2

rkhs, not ∥θ∥

Thank you for your attention!
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