Nonparametric learning of interaction kernels in interacting particle systems

Fei Lu

Department of Mathematics, Johns Hopkins University

September, 2022. Third Symposium on Machine Learning and Dynamical Systems
What is the law of interaction?
What is the **law of interaction**?

\[m_i \ddot{x}_i(t) = -\dot{x}_i(t) + \frac{1}{N} \sum_{j=1,j \neq i}^{N} K_\phi(x_i, x_j), \]

\[K_\phi(x, y) = \nabla_x [\Phi(|x - y|)] = \phi(|x - y|) \frac{x - y}{|x - y|}. \]

- Newton’s law of gravity \(\phi(r) = G \frac{m_1 m_2}{r^2} \)
- Lennard-Jones potential: \(\Phi(r) = \frac{c_1}{r^{12}} - \frac{c_2}{r^6} \).
What is the law of interaction?

\[
m_i \ddot{x}_i(t) = -\dot{x}_i(t) + \frac{1}{N} \sum_{j=1, j \neq i}^{N} K_\phi(x_i, x_j),
\]

\[
K_\phi(x, y) = \nabla_x [\Phi(|x - y|)] = \phi(|x - y|) \frac{x - y}{|x - y|}.
\]

- Newton’s law of gravity \(\phi(r) = G \frac{m_1 m_2}{r^2} \)
- Lennard-Jones potential: \(\Phi(r) = \frac{c_1}{r^{12}} - \frac{c_2}{r^6} \).

- flocking birds, bacteria/cells?
- opinion/voter/multi-agent models, ...?

Infer the interaction kernel from data?

Learn interaction kernel $K_\phi(x, y) = \phi(|x - y|) \frac{x-y}{|x-y|}$

$$dX_t^i = \frac{1}{N} \sum_{j=1}^{N} K_\phi(X_t^i, X_t^j) dt + \sqrt{2\nu} dB_t^i \quad \Leftrightarrow \quad R_\phi(X_t) = \dot{X}_t - \sqrt{2\nu} \dot{B}_t$$

Finite N: a

- Data: M trajectories of particles: $\{X_{m}^{(m)}_{t_1:t_L}\}_{m=1}^{M}$
- Statistical learning
- ODE/SDEs: Opinion Dynamics, Lennard-Jones, Prey-Predator; 1st/2nd order
Learn interaction kernel $K_{\phi}(x, y) = \phi(|x - y|) \frac{x - y}{|x - y|}$

$$dX^i_t = \frac{1}{N} \sum_{j=1}^{N} K_{\phi}(X^i_t, X^i_t) dt + \sqrt{2\nu} dB^i_t \iff R_{\phi}(X_t) = \dot{X}_t - \sqrt{2\nu} \dot{B}_t$$

Finite N:

- **Data:** M trajectories of particles: $\{X^{(m)}_{t_1:t_L}\}_{m=1}^{M}$
- Statistical learning
- ODE/SDEs: Opinion Dynamics, Lennard-Jones, Prey-Predator; 1st/2nd order

Large N ($\gg 1$)

- **Data:** concentration density $\{u(x_m, t_l) \approx N^{-1} \sum_i \delta(X^i_{t_l} - x_m)\}_{m,l}$

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)]$$

- Inverse problem for PDE

Learning kernels in operators: $R_\phi : \mathbb{X} \to \mathbb{Y}$

$$dX^i_t = \frac{1}{N} \sum_{j=1}^{N} K_\phi(X^i_t, X^j_t)dt + \sqrt{2\nu} dB^i_t \iff R_\phi(X_t) = \dot{X}_t - \sqrt{2\nu} \dot{B}_t$$

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_\phi * u)] \iff R_\phi[u(\cdot, t)] = f(\cdot, t)$$
Learning kernels in operators: $R_\phi : \mathbb{X} \rightarrow \mathbb{Y}$

$$dX^i_t = \frac{1}{N} \sum_{j=1}^{N} K_\phi(X^i_t, X^j_t)dt + \sqrt{2\nu}dB^i_t \quad \Leftrightarrow \quad R_\phi(X_t) = \dot{X}_t - \sqrt{2\nu}\dot{B}_t$$

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_\phi \ast u)] \quad \Leftrightarrow \quad R_\phi[u(\cdot, t)] = f(\cdot, t)$$

Classical learning
\{(x_i, \phi(x_i) + \epsilon_i)\}

Learning kernel
\{(u_k, R_\phi[u_k] + \eta_k)\}

Operator learning
\{(u_k, R[u_k] + \eta_k)\}

Local dependence
Nonlocal dependence
Values are undetermined from data

Nonparametric learning:
Loss function? Identifiability? Convergence?
Finite many particles

\[R_{\phi}(X_t) = \dot{X}_t - \sqrt{2\nu} \dot{B}_t \] & Data \[\Rightarrow \hat{\phi}_{n,M} = \arg\min_{\psi \in \mathcal{H}_n} \mathcal{E}_M(\psi) \]

- Loss function (log-likelihood, or mse for ODE)
- Regression: with \[\psi = \sum_i c_i \phi_i \in \mathcal{H}_n = \text{span}\{\phi_i\}_{i=1}^n \]:
 \[\mathcal{E}(\psi) = c^T A c - 2b^T c \Rightarrow \hat{\phi}_{n,M} = \sum_{i=1}^n \hat{c}_i \phi_i, \quad \hat{c} = A^{-1} b \]
\[R_\psi(X_t) = \dot{X}_t - \sqrt{2\nu}B_t \quad \text{& Data} \Rightarrow \hat{\phi}_{n,M} = \arg\min_{\psi \in \mathcal{H}_n} \mathcal{E}_M(\psi) \]

- Loss function (log-likelihood, or mse for ODE)
- Regression: with \(\psi = \sum_i c_i \phi_i \in \mathcal{H}_n = \text{span}\{\phi_i\}_{i=1}^n \):
 \[\mathcal{E}(\psi) = c^TAc - 2b^Tc \Rightarrow \hat{\phi}_{n,M} = \sum_{i=1}^n \hat{c}_i \phi_i, \quad \hat{c} = A^{-1}b \]

- Choice of \(\mathcal{H}_n \) & function space of learning?
- Well-posed/identifiability?
- Convergence and rate?
Classical learning theory

Given: Data \(\{(x_m, y_m)\}_{m=1}^M \sim (X, Y) \)

Goal: find \(f \) s.t. \(Y = f(X) \)

\[
E(f) = \mathbb{E}|Y - f(X)|^2 = \|f - f_{true}\|_{L^2(\rho_X)}^2
\]

Minimization: \(f = \sum_{i=1}^n c_i \phi_i \in \mathcal{H}_n, \nabla E_M = 0 \Rightarrow \hat{f}_{n,M} = \sum_i \hat{c}_i \phi_i. \)

Learning kernel

Given: Data \(\{X^{(m)}_{[0,T]}\}_{m=1}^M \)

Goal: find \(\phi \) s.t. \(\dot{X}_t = R\phi(X_t) \)

\[
E(\phi) = \mathbb{E} |\dot{X} - R\phi(X)|^2 \neq \|\phi - \phi_{true}\|_{L^2(\rho)}^2
\]

Minimization: \(\phi = \sum_{i=1}^n \phi_i \in \mathcal{H}_n, \nabla E_M = 0 \Rightarrow \hat{f}_{n,M} = \sum_i \hat{c}_i \phi_i. \)
Learning/inverse problems

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Classical learning theory

Given: Data \(\{(x_m, y_m)\}_{m=1}^M \sim (X, Y) \)
Goal: find \(f \) s.t. \(Y = f(X) \)

\[\mathcal{E}(f) = \mathbb{E}|Y - f(X)|^2 = \|f - f_{true}\|^2_{L^2(\rho_X)} \]

Minimization: \(f = \sum_{i=1}^n c_i \phi_i \in \mathcal{H}_n, \nabla \mathcal{E}_M = 0 \Rightarrow \hat{f}_{n,M} = \sum_i \hat{c}_i \phi_i. \)

- Function space: \(L^2(\rho_X) \).
- Identifiability: \(\mathbb{E}[Y|X = x] = \arg \min_{f \in L^2(\rho_X)} \mathcal{E}(f) \).
- \(A \approx \mathbb{E}[\phi_i(X)\phi_j(X)] = I_n \) by setting \(\{\phi_i\} \) ONB in \(L^2(\rho_X) \).
- Error bounds for \(\hat{f}_{n,M} \).

Learning kernel

Given: Data \(\{X^{(m)}_{[0, T]}\}_{m=1}^M \)
Goal: find \(\phi \) s.t. \(\dot{X}_t = R\phi(X_t) \)

\[\mathcal{E}(\phi) = \mathbb{E}|\dot{X} - R\phi(X)|^2 \neq \|\phi - \phi_{true}\|^2_{L^2(\rho)} \]

- Function space: \(L^2(\rho) \).
- Identifiability: \(\arg \min_{\phi \in L^2(\rho)} \mathcal{E}(\phi) \).
- \(A \approx \mathbb{E}[R\phi_i(X)R\phi_j(X)] \approx I_n \) A Coercivity condition
- Error bounds for \(\hat{\phi}_{n,M} \)
Assume a coercivity condition on \mathcal{H}

$$\langle \phi, \phi \rangle = \mathbb{E} [R_\phi(X) R_\phi(X)] \geq c_\mathcal{H} \| \phi \|_{L^2(\rho)}^2, \quad \forall \phi \in \mathcal{H}$$

- $c_\mathcal{H} = \frac{1}{N-2}$ for $\mathcal{H} = L^2(\rho)$ for some (LLMTZ21); open

Theorem (LZTM19,LMT22)

Let $\{\mathcal{H}_n\}$ compact convex in L^∞ with $\text{dist}(\phi_{\text{true}}, \mathcal{H}_n) \sim n^{-s}$. Assume the coercivity condition $\cup_n \mathcal{H}_n$. Choose $n_* = (M/\log M)^{\frac{1}{2s+1}}$. Then

$$\mathbb{E}_{\mu_0} [\| \hat{\phi}_{M, \mathcal{H}_n^*} - \phi_{\text{true}} \|_{L^2(\rho)}] \leq C \left(\frac{\log M}{M} \right)^{\frac{s}{2s+1}}.$$

- Concentration for r.v. or martingale
- $\dim(\mathcal{H}_n)$ adaptive to s ($\phi \in C^s$) and M:
 - Underfitting
 - Balanced
 - Overfitting
Lennard-Jones kernel estimators:

Opinion dynamics kernel estimators:
Inverse problem for Mean-field PDE

Goal: Identify ϕ from discrete data $\{u(x_m, t_l)\}_{m, l=1}^{M,L}$ of

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_\phi * u)], \quad x \in \mathbb{R}^d, t > 0,$$

where $K_\phi(x) = \nabla(\Phi(|x|)) = \phi(|x|) \frac{x}{|x|}$.
Loss functional

\[\partial_t u = \nu \Delta u + \nabla \cdot [u(K_\phi \ast u)] \]

Candidates:

- **Discrepancy:** \(\mathcal{E}(\psi) = \| \partial_t u - \nu \Delta u - \nabla \cdot (u(K_\psi \ast u)) \|^2 \)

- **Free energy:** \(\mathcal{E}(\psi) = C + \left| \int_{\mathbb{R}^d} u[(\psi - \Phi) \ast u] \, dx \right|^2 \)

- **Wasserstein-2:** \(\mathcal{E}(\psi) = W_2(u^\psi, u) \)
 costly: requires many PDE simulations in optimization

- **A probabilistic loss functional**
A probabilistic loss functional

\[\mathcal{E}(\psi) := \frac{1}{T} \int_0^T \int_{\mathbb{R}^d} \left[|K_\psi * u|^2 u - 2\nu u(\nabla \cdot K_\psi * u) + 2\partial_t u(\psi * u) \right] \, dx \, dt \]

\[= -\mathbb{E}[\text{log-likelihood}] \text{ of the process} \]

\[\begin{cases}
 d\bar{X}_t = -K_{\phi_{\text{true}}} * u(\bar{X}_t, t) \, dt + \sqrt{2\nu} \, dB_t, \\
 \mathcal{L}(\bar{X}_t) = u(\cdot, t),
\end{cases} \]

- Derivative free
- Suitable for high dimension

\[K_\psi * u(\bar{X}_t) = \mathbb{E}[K_\psi(\bar{X}_t - \bar{X}'_t)|\bar{X}_t] \]
Nonparametric regression

\[\mathcal{E}(\psi) = \langle \psi, \psi \rangle - 2 \langle \psi, \phi \rangle, \]

LS-regression \(\psi = \sum_{i=1}^{n} c_i \phi_i \in \mathcal{H}_n: \)

\[\mathcal{E}(\psi) = c^\top A c - 2 b^\top c \quad \Rightarrow \quad \hat{\phi}_{n,M} = \sum_{i=1}^{n} \hat{c}_i \phi_i, \quad \hat{c} = A^{-1} b \]

- Choice of \(\mathcal{H}_n \) & function space of learning?
- Inverse problem well-posed/identifiability?
- Convergence and rate? \(\Delta x = M^{-1/d} \rightarrow 0 \)
Identifiability

\[A_{ij} = \langle \phi_i, \phi_j \rangle = \int_{\mathbb{R}^+} \int_{\mathbb{R}^+} \phi_i(r) \psi_j(s) \overline{G_T}(r, s) \rho_T(dr) \rho_T(ds) \]

\[= \langle L_{G_T} \phi_i, \phi_j \rangle_{L^2(\rho_T)} \]

- Exploration measure \(\rho_T \leftarrow |\overline{X}_t - \overline{X}'_t| \)
- Positive compact operator \(L_{G_T} \)
 - normal matrix \(A \sim L_{G_T} |\mathcal{H}| \) in \(L^2(\rho_T) \)

\[c_{\mathcal{H}, T} = \inf_{\psi \in \mathcal{H}, \|\psi\|_{L^2(\rho_T)} = 1} \langle \psi, \psi \rangle > 0 \] (Coercivity condition)

- **Identifiability:** \(A^{-1} b \leftrightarrow L_{G_T}^{-1} \phi^D \)
 - RKHS \(H_{\overline{G}} \subset L^2(\rho_T) \) [LangLu21]
 - DARTR: Data Adaptive RKHS Tikhonov Regularization
Convergence rate

\[\mathbb{H} = L^2(\rho_T) \]

Theorem (Numerical error bound [Lang-Lu20])

Let \(\mathcal{H} = \text{span}\{\phi_i\}_{i=1}^n \) s.t. \(\|\hat{\phi}_n - \phi\|_{\mathbb{H}} \lesssim n^{-s} \). Assume the coercivity condition on \(\cup \mathcal{H}_n \). Then, with dimension \(n \approx (\Delta x)^{-\alpha/(s+1)} \), we have:

\[\|\hat{\phi}_{n,M,\infty} - \phi\|_{\mathbb{H}} \lesssim (\Delta x)^{\alpha s/(s+1)} \]

- \(\Delta x^\alpha \) comes from numerical integrator (e.g., Riemann sum)
- Trade-off: numerical error v.s. approximation error
Example 1: granular media $\phi(r) = 3r^2$

Data $u(x, t)$ Estimator Wasserstein-2 Rate

• near optimal rate ($\phi \in W^{1,\infty}$)
Example 2: Opinion dynamics $\phi(r)$ piecewise linear

- sub-optimal rate ($\phi \notin W^{1,\infty}$)
Example 3: repulsion-attraction $\phi(r) = r - r^{-1.5}$ (singular)

- low rate: theory does not apply
Learning kernels in operators: regularization

Learn the kernel \(\phi \):
\[R_\phi[u] = f \]

from data:
\[\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y} \]

- \(R_\phi \) linear in \(\phi \), but linear/nonlinear in \(u \):
 \[R_\phi[u] = \nabla \cdot [u(K_\phi \ast u)] = \partial_t u - \nu \Delta u \]
- integral/nonlocal operators, ... linear inverse problems
Regularization

\[E(\psi) = \| R_\psi[u] - f \|_Y^2 = \langle L_G \psi, \psi \rangle_{L^2(\rho)} - 2 \langle \phi^f, \psi \rangle_{L^2(\rho)} \]

\[\nabla E(\psi) = L_G \psi - \phi^f = 0 \quad \rightarrow \hat{\phi} = L_G^{-1} \phi^f \]

Regularization norm \(\| \cdot \|_* \)?

\[E_\lambda(\psi) = E(\psi) + \lambda \| \psi \|_*^2 \]
Regularization

\[E(\psi) = \| R_\psi [u] - f \|_Y^2 = \langle L_G \psi, \psi \rangle_{L^2(\rho)} - 2 \langle \phi^f, \psi \rangle_{L^2(\rho)} \]

\[\nabla E(\psi) = L_G \psi - \phi^f = 0 \quad \rightarrow \hat{\phi} = L_G^{-1} \phi^f \]

Regularization norm \(\| \cdot \|_* \)?

\[E_\lambda(\psi) = E(\psi) + \lambda \| \psi \|_*^2 \]

ANSWER: norm of the RKHS \(H_G = L_G^{1/2} L^2(\rho) \) [Lu+Lang+An22]:

- search in the correct fun.space
- Data Adaptive RKHS Tikhonov Regularization
DARTR: Data Adaptive RKHS Tikhonov Regularization

\[R_\phi[u] = \nabla \cdot [u(K_\phi * u)] = f \]

- Recover kernel from discrete noisy data
- Consistent convergence as mesh refines

Typical estimators, \(\Delta x = 0.05 \)

Convergence of Estimators, \(\text{nsr} = 0.1 \& 1 \)

Convergence Rates
Summary and future directions

Nonparametric learning of interaction kernels
 - Finite N: ode/sde
 - Mean-field equation

Learning kernel in operators via regression:
 - probabilistic loss functionals
 - Identifiability
 - Convergence

DARTR: regularization for ill-posed linear inverse problems
Future directions/open questions

- Coercivity condition

- General IPS settings:
 - Aggression equations (inviscid MFE)
 - High-D, non-radial kernels (Monte Carlo)
 - Learning from stationary distributions
 - Multiple MFE solutions
 - Systems on graph

- Kernels in operator
 - Convergence and Minimax rate?
 - DARTR in Bayesian inverse p
 - Applications: deconvolution, homogenization,...
References (@http://www.math.jhu.edu/~feilu)

- Q. Lang and F. Lu. Learning interaction kernels in mean-field equations of 1st-order systems of interacting particles. SISC22
- F. Lu, Q. An and Y. Yu. Nonparametric learning of kernels in nonlocal operators. 2201
- F. Lu, M. Maggioni and S. Tang: Learning interaction kernels in heterogeneous systems of agents from multiple trajectories. JMLR21