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Q: What is the law of interaction between particles/agents?

Popkin. Nature(2016)
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Voter model (wiki)
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Q: What is the law of interaction between partlcles/ﬁgents?
mxi(t) = —vx(t +— Z K(xi, ),
/ 1,j#i
@ Newton’s law of gravitation:

mym:
K(x,y) = G—5=

@ Molecular fluid: K(x,y) = Vx[®(|x — y|)]

Lennard-Jones potential: ®(r) = 5% — %.

r=Ix=yl

@ flocking birds/school of fish

K(x,y) = o(Ix =y ((x, ¥))

Popkin. Nature(2016)

@ opinion/voter models, bacteria models ...2

4(1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vic-
Voter model (W|k|) sek+Zafeiris: Collective motion. 2012. (3) Mostch+Tadmor: Heterophilious Dy-
namics Enhances Consensus. 2014 ...



An inference problem:

Infer the rule of interaction in the system

N
. ) 1 ,
mii(t) = _VXi(t)+Nj—1Zj¢i K(xi—x), i=1,---,N,x(t)eR?

from observations of trajectories.

@ Xx; is the position of the i-th particle/agent
e Data: many independent trajectories {x/(t) : t € 7'}1-"i1
@ Goal: infer ¢ in K(x) = =V&(|x|) = —o(|x]|)x

m = 0 = a first order system



N
t) = 1N D el — X515 — %) = [ (x(t))];

J=1

Least squares regression: with #, = span{e;}]_;,

én = argmin Ey(o) : Z %™ — f,(x™)|?

$EHR

@ How to choose the hypothesis space H,?
@ Inverse problem well-posed/ identifiability ?

@ Consistency and rate of “convergence”?



@ Learning via nonparametric regression:

» A regression measure and function space
» Identifiability: a coercivity condition
» Consistency and rate of convergence

© Numerical examples
» A general algorithm

» Lennard-Jones model
» Opinion dynamics and multiple-agent systems
© Open problems



Learning via nonparametric regression

The dynamical system:
N

. 1
Xi(t) = > X = X515 — %) = [ (x ()]
J= A
Admissible set ( ~ globally Lipschitz):

Krs:={p€ W">: supp ¢ € [0,R], s[lg)r;” (N + €' (n)] < S}
re|o,

Data: M-trajectories {x™(t):tc T}M_,
@ x™(0) "% g € P(RIN)
@ 7 =[0,T]or{t, -t} with x(£;)
Goal: nonparametric inference’ of ¢

1(1) Bongini, Fornasier, Hansen, Maggioni: Inferring Interaction Rules for mean field equations, M3AS, 2017.
(2) Binev, Cohen, Dahmen, Devore and Temlyakov: Universal Algorithms for learning theory, JMLR 2005.
(3) Cucker, Smale: On the mathematical foundation of learning. Bulletin of AMS, 2001.



. 1 K -
= inEm(¢) = - £, (X7(1)) — X"(1)|)?
PmH argmin m(9) =g D If(X7(1)) (&)l

I,m=1

@ Eu(o) is quadratic in ¢, and Ey(d) > Em(dirue) =0

@ The minimizer exists for any H = H, = span{¢1,...,¢n}
Agenda em(-) 2% e()
@ a function space with metric l l

dlist(, drge); .

M=og 3
@ Learnability: o Goo.t

. . ?dist(H,pirue)—0
» Convergence of estimators? \ l (H, bre)

» Convergence rate? Otrue
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Review of classical nonparametric regression:
Estimate ¢(z) = E[Y|Z = z] : RP — R from data {z;, y;}¥_,.
@ {z,y;} are iid samples;

@ b= arfg min Eu(f) == XM |y — f(2)]2
EHn

@ Optimal rate: if dist(Hn, pye) < N5 and n, = (M/log M)z
[on. — @lliz(py) S M 250

Underfitting Balanced Overfitting
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Review of classical nonparametric regression:
Estimate ¢(z) = E[Y|Z = 2] : RP — R from data {z;, y;}M_,.
@ {z,y;} are iid samples;

° bni= argmin &y (1) i~ SNy — f(z)2
EHn
@ Optimal rate: if dist(H,, dwue) < N~ and n, = (M/log M)=+ |

Ién. — Dllizgy) < M~ 25D

Our learning of kernel ¢ : R, — R from data {x"(¢)}

N
: 1
xi(t) = 2 ollx = x1)0x — x)
=1
o {rif = |x"(t) — x"(1)[} not iid
@ The values of ¢(rji") unknown
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Regression measure

Distribution of pairwise-distances p : R; — R

] LN
pr(r) = ML Z Ey1007, (1) (1)
(2) Liyi'=1,i<i’

@ unknown, estimated by empirical distribution p¥ 2= 57 (LLN)
@ intrinsic to the dynamics

Regression function space L?(pr)

@ the admissible set C L2(p7)
@ H = piecewise polynomials C L?(p71)

@ singular kernels C L3(p7)
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— - - Em() M2 Enc()
Identifiability: a coercivity condition l l

M—co 7

(gM,H =argmin Ey(¢) I =5 oo,

bEH \ l
) 1 ; ) ¢true
Exo(®) — Exc(@) = W/o By 15—, (X(1))]20t > cl|(6 — )(-) - HfZ(pT)

Coercivity condition. There exists c¢r > 0 s.t. for all ¢(-)- € L?(p7)

o [ Bt IR = (2.9 = 0rl ) g

@ coercivity: bilinear functional (e, 1)) := 7 fo o (o o) (X(1)) ot

@ controls condition number of regression matrix
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Consistency of estimator

Theorem (L. Maggioni, Tang, Zhong)

Assume the coercivity condition. Let {H,} be a sequence of compact
convex subsets of L>([0, R]) such that inf,c, [|[¢ — dtuelloc — 0 @s
n— oo. Then

n—oo

lim lim_ om,34, () - —Surue(-) - lliz(pr) = O, @lmost surely.

@ For each n, compactness of {(EM,M} and coercivity implies that
M3, = Poom, IN L2

@ Increasing #H, and coercivity implies consistency.

@ In general, truncation to make H,, compact
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Optimal rate of convergence

Theorem (L. Maggioni, Tang, Zhong)

Let {H,} be a seq. of compact convex subspaces of L=[0, R] s.t.
dim(H,) < con, and inf || — drruelloo < C1N~5.
pEHn
Assume the coercivity condition. Choose n,. = (M/log M)ﬁ: then

o log M\ =7
Epallr ., () ~0rel)- o] < © (2570)

@ The 2nd condition is about regularity: ¢ € CS

@ Choose H, according to s and M
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Prediction of future evolution

Theorem (L. Maggioni, Tang, Zhong)

Denote by X(t) and X(t) the solutions of the systems with kernels ¢
and ¢ respectively, starting from the same initial conditions that are
drawn i.i.d from py. Then we have

E”‘)[res[gpn 1X(t) = X(DIP] S VNIS() - =() - Iy

@ Follows from Grownwall’s inequality
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@ Learning via nonparametric regression:

» A regression measure and function space
» Learnability: a coercivity condition
» Consistency and rate of convergence

© Numerical examples
» A general algorithm

» Lennard-Jones model
» Opinion dynamics and multiple-agent systems
© Open problems
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Numerical examples

The regression algorithm

L,M,N N
ORI FROED SR CHDAD
I,m,i=1 ir—1
Hn={p= Zapwp (a1,...,an) € R"},
M
Emle) = ELm(a Z [d™ — wal P .
m:

<

— Z b, rewrite as Aya = by

m=1 m=1

(1=
S
3

@ can be computed parallelly
@ Caution: choice of {1} affects condi(Ay)

17/34



Assume coercivity condition: {(¢, ) > crlle(-) - Hi?(m)'

Proposition (Lower bound on smallest singular value of Ay)
Let {41, -+ ,vn} be a basis of H, s.t.
(Up(-) e () ) 2oty = Gp,prs 1Whplloo < So-

Let A = («qpp,wp,)))p’p, € R™". Then omin(Ax) > CL -
Moreover, A, is the a.s. limit of Ay. Therefore, for large M, the
smallest singular value of Ay satisfies with a high probability that

Umin(AM) > (1 — G)C/_

@ Choose {¢p(-)-} linearly independent in L2(p7)
@ Piecewise polynomials: on a partition of support(pr)

@ Finite difference =~ derivatives = an O(At) error to estimator
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Implementation
@ Approximate regression measure

» Estimate the pr with large datasets
» Partition on support(p7)

@ Construct hypothesis space H:

» degree of piecewise polynomials
» set dimension of H according to sample size

© Regression:

» Assemble the arrays (in parallel)
» Solve the normal equation
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Examples: Lennard-Jones Dynamics

The Lennard-Jones potential

Viy(r) = 4e ((0>12 - (U)6> = o(r)r= Vi(r)

r r

N
()= D2 ol — x1)0g - %)

=1
time0.010
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Examples: Lennard-Jones Dynamics

The Lennard-Jones potential

Viy(r) = 4e ((0>12 - (U)6> = o(r)r= Vi(r)

r r

N
()= D2 ol — x1)0g - %)

j=1
time0.210
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Examples: Lennard-Jones Dynamics

The Lennard-Jones potential

Viy(r) = 4e ((0>12 - (U)6> = o(r)r= Vi(r)

r r

N
()= D2 ol — x1)0g - %)

j=j#
time0.410
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Examples: Lennard-Jones Dynamics

The Lennard-Jones potential

Viy(r) = 4e ((0>12 - (U)6> = o(r)r= Vi(r)

r r

N
()= D2 ol — x1)0g - %)
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Examples: Lennard-Jones Dynamics

The Lennard-Jones potential

Viy(r) = 4e ((0>12 - (U)6> = o(r)r= Vi(r)

r r

N
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The Lennard-Jones potential

Vis(r) = 4e ((‘7)12 _ (0)6> = G(r)r = Vi(r)

r r

@ piecewise linear estimator; Gaussian initial conditions.

Many short time trajectories learning x10"
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Optimal rate
Vis(r) = 4e ((0)12 _ (U)6> = @(r)r = Vi(r)

r r
@ Vy, is highly singular, yet we get close to optimal rate (-0.4).

Learning rate

-5 :
® errors
L — slope -0.36
- 61 -- optimal decay ||
e
S 7t
N
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o
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log,,(M)
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Example: Opinion Dynamics

1 0<r< L N=10,d = 1.
’ . V2’ M = 250, ;i = Unif[0, 10]'°
o(r)=1< 0.1, —<r<1, B : )
V2 T = [0, 10], 200 discrete instances
0, 1<r. H = piecewise constant functions

—Q
oF
LM
Pr

r (pairwise distance)
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Summary and open problems

Erm(:) — Er.0(")

Learning theory
@ extended the classical l l
regression theory ¢T M M=o ¢T o0,
@ a coercivity condition for %,
d )
identifiability M l Ist(#,4)=0

Theory guided regression algorithms
@ Selection of H (basis functions & dimension)
@ Measurement of error of estimators
@ Optimal learning rate
@ Model selection
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Open directions

@ 1st- and 2nd-order heterogeneous agent dynamics
» Multiple type of agents (leader-follower, predator-prey)

» Angle and/or alignment based interactions

@ Stochastic systems, mean field equations

@ Partial and noisy observations

@ The coercivity condition
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The coercivity condition

N

() = 30 D2 6% — x)0g(0) — x(1). 1 € B

j=1
@ Exchangeability: particles indistinguishable.
@ U=x(t) — x2(t), V = xq(t) — x3(t) correlated.
The coercivity condition is equivalent to

| w, v>}
Ct = inf E U Y4 >C>0
v= B [g(\ VDG =

where g(r) = ¢(r)r, and py is the joint distribution of (U, V).

The coercivity condition holds for compact H if ¢y > 0.
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Current status:

@ Proved ¢y > 0 if initial distributions with iid particles, or
Gaussian with cov(U) — cov(U, V) = Aly.

@ Basic idea: positive definite kernel

‘U” V!} /g(r K (r, s)drds
» The kernel K is a positive definite kernel:
s)=Y_Nei(rei(s)

@ When t > 0: no proof yet, verified by numerical tests

Eg(UDg(
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A route in plan:

dX(t) = —VJ(X(t))dt + \/2/BdW(t), X(t) e RN

JX) = 515 3 (X~ X)
i.j

@ Ergodic with invariant meas.: p.,(x) = Z~'e /()
@ Need: positive definite kernel for all t

p(u,v) = /Pt(X17X1 — U, X1 — V, Xa:N)AX1 X4y

@ Uniformin t € [0, oo] for lower bound of the spectrum on H
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