Nonparametric inference of interaction laws in particle/agent systems

Fei Lu

Department of Mathematics, Johns Hopkins University
Joint with:
Mauro Maggioni, Sui Tang and Ming Zhong

February 13, 2019 CSCAMM Seminar, UMD

Motivation

Q: What is the law of interaction between particles/agents?

Popkin. Nature(2016)

Motivation

Q: What is the law of interaction between particles/agents?

Voter model (wiki)

$$m\ddot{x}_i(t) = -\nu \dot{x}_i(t) + \frac{1}{N} \sum_{i=1}^{N} \frac{K(x_i, x_j)}{i},$$

Newton's law of gravitation:

$$K(x,y) = G\frac{m_1 m_2}{r^2}, r = |x - y|$$

- Molecular fluid: $K(x,y) = \nabla_x [\Phi(|x-y|)]$ Lennard-Jones potential: $\Phi(r) = \frac{c_1}{r^{12}} - \frac{c_2}{r^6}$.
- flocking birds/school of fish

$$K(x,y) = \phi(|x-y|)\psi(\langle x,y\rangle)$$

opinion/voter models, bacteria models ...^a

a(1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vic-sek+Zafeiris: Collective motion. 2012. (3) Mostch+Tadmor: Heterophilious Dynamics Enhances Consensus. 2014 ...

An inference problem:

Infer the rule of interaction in the system

$$m\ddot{x}_i(t) = -\nu \dot{x}_i(t) + \frac{1}{N} \sum_{j=1, j \neq i}^{N} K(x_i - x_j), \quad i = 1, \dots, N, x_i(t) \in \mathbb{R}^d$$

from observations of trajectories.

- x_i is the position of the i-th particle/agent
- Data: many independent trajectories $\{x^j(t): t \in \mathcal{T}\}_{j=1}^M$
- Goal: infer ϕ in $K(x) = -\nabla \Phi(|x|) = -\phi(|x|)x$

 $m = 0 \Rightarrow$ a first order system

$$\dot{x}_i(t) = \frac{1}{N} \sum_{i=1}^N \phi_{true}(|x_i - x_j|)(x_j - x_i) := [\mathbf{f}_{\phi}(\mathbf{x}(t))]_i$$

Least squares regression: with $\mathcal{H}_n = \operatorname{span}\{e_i\}_{i=1}^n$,

$$\hat{\phi}_n = \operatorname*{arg\,min}_{\phi \in \mathcal{H}_n} \mathcal{E}_M(\phi) := \sum_{m=1}^M \|\dot{\boldsymbol{x}}^m - \boldsymbol{f}_\phi(\boldsymbol{x}^m)\|^2$$

- How to choose the hypothesis space \mathcal{H}_n ?
- Inverse problem well-posed/ identifiability?
- Consistency and rate of "convergence"?

Outline

- Learning via nonparametric regression:
 - A regression measure and function space
 - Identifiability: a coercivity condition
 - Consistency and rate of convergence
- 2 Numerical examples
 - A general algorithm
 - Lennard-Jones model
 - Opinion dynamics and multiple-agent systems
- Open problems

Learning via nonparametric regression

The dynamical system:

$$\dot{x}_i(t) = \frac{1}{N} \sum_{j=1, j \neq i}^{N} \phi(|x_i - x_j|)(x_j - x_i) := [\mathbf{f}_{\phi}(\mathbf{x}(t))]_i$$

Admissible set (\approx globally Lipschitz):

$$\mathcal{K}_{\textit{R},\textit{S}} := \{\varphi \in \textit{W}^{1,\infty}: \text{ supp } \varphi \in [0,\textit{R}], \sup_{r \in [0,\textit{R}]} [|\varphi(r)| + |\varphi'(r)|] \leq \textit{S}\}$$

Data: *M*-trajectories $\{\boldsymbol{x}^m(t): t \in \mathcal{T}\}_{m=1}^M$

- ullet $m{x}^m(0) \stackrel{\textit{i.i.d}}{\sim} \mu_0 \in \mathcal{P}(\mathbb{R}^{dN})$
- $\mathcal{T} = [0, T]$ or $\{t_1, \dots, t_L\}$ with $\dot{\mathbf{x}}(t_i)$

Goal: nonparametric inference¹ of ϕ

¹(1) Bongini, Fornasier, Hansen, Maggioni: Inferring Interaction Rules for mean field equations, M3AS, 2017.
(2) Biney, Cohen, Dahmen, Devore and Temlyakov: Universal Algorithms for learning theory, JMLR 2005.

⁽³⁾ Cucker. Smale: On the mathematical foundation of learning. Bulletin of AMS. 2001.

$$\hat{\phi}_{M,\mathcal{H}} = \underset{\phi \in \mathcal{H}}{\text{arg min}} \; \mathcal{E}_{M}(\phi) := \frac{1}{ML} \sum_{l,m=1}^{L,M} \|\mathbf{f}_{\phi}(\mathbf{X}^{m}(t_{l})) - \dot{\mathbf{X}^{m}}(t_{l})\|^{2}$$

- $\mathcal{E}_M(\phi)$ is quadratic in ϕ , and $\mathcal{E}_M(\phi) \geq \mathcal{E}_M(\phi_{true}) = 0$
- The minimizer exists for any $\mathcal{H} = \mathcal{H}_n = span\{\phi_1, \dots, \phi_n\}$

Agenda

- a function space with metric $dist(\hat{\phi}, \phi_{true})$;
- Learnability:
 - Convergence of estimators?
 - Convergence rate?

Review of classical nonparametric regression:

Estimate $\phi(z) = \mathbb{E}[Y|Z=z] : \mathbb{R}^D \to \mathbb{R}$ from data $\{z_i, y_i\}_{m=1}^M$.

- $\{z_i, y_j\}$ are iid samples;
- $\hat{\phi}_n := \underset{f \in \mathcal{H}_n}{\text{arg min }} \mathcal{E}_M(f) := \sum_{m=1}^M \|y_i f(z_i)\|^2$
- Optimal rate: if $\operatorname{dist}(\mathcal{H}_n, \phi_{true}) \lesssim n^{-s}$ and $n_* = (M/\log M)^{\frac{1}{2s+1}}$, $\|\hat{\phi}_{n_*} \phi\|_{L^2(\rho_Z)} \lesssim M^{-\frac{s}{2s+D}}$

Review of classical nonparametric regression:

Estimate $\phi(z) = \mathbb{E}[Y|Z=z] : \mathbb{R}^D \to \mathbb{R}$ from data $\{z_i, y_i\}_{m=1}^M$.

- $\{z_i, y_j\}$ are iid samples;
- $\hat{\phi}_n := \underset{f \in \mathcal{H}_n}{\text{arg min }} \mathcal{E}_M(f) := \sum_{m=1}^M \|y_i f(z_i)\|^2$
- Optimal rate: if $\operatorname{dist}(\mathcal{H}_n,\phi_{true})\lesssim n^{-s}$ and $n_*=(M/\log M)^{\frac{1}{2s+1}}$, $\|\hat{\phi}_{n_*}-\phi\|_{L^2(\rho_Z)}\lesssim M^{-\frac{s}{2s+D}}$

Our learning of kernel $\phi : \mathbb{R}_+ \to \mathbb{R}$ from data $\{ \boldsymbol{x}^m(t) \}$

$$\dot{x}_i(t) = \frac{1}{N} \sum_{j=1, j \neq i}^{N} \phi(|x_i - x_j|)(x_j - x_i)$$

- $\{r_{iit}^m := |x_i^m(t) x_i^m(t)|\}$ not iid
- The values of $\phi(r_{ijt}^m)$ unknown

Regression measure

Distribution of pairwise-distances $\rho: \mathbb{R}_+ \to \mathbb{R}$

$$\rho_{T}(r) = \frac{1}{\binom{N}{2}L} \sum_{l,i,i'=1,i< i'}^{L,N} \mathbb{E}_{\mu_{0}} \delta_{r_{ii'}(t_{l})}(r)$$

- unknown, estimated by empirical distribution $\rho_T^M \xrightarrow{M \to \infty} \rho_T$ (LLN)
- intrinsic to the dynamics

Regression function space $L^2(\rho_T)$

- the admissible set $\subset L^2(\rho_T)$
- $\mathcal{H} = \text{piecewise polynomials} \subset L^2(\rho_T)$
- singular kernels $\subset L^2(\rho_T)$

Identifiability: a coercivity condition

$$\hat{\phi}_{M,\mathcal{H}} = \operatorname*{arg\,min}_{\phi \in \mathcal{H}} \mathcal{E}_{M}(\phi)$$

$$\begin{array}{ccc} \mathcal{E}_{M}(\cdot) & \stackrel{M \to \infty}{\longrightarrow} & \mathcal{E}_{\infty}(\cdot) \\ \downarrow & & \downarrow \\ \widehat{\phi}_{M,\mathcal{H}} & \stackrel{?M \to \infty}{\longrightarrow} & \widehat{\phi}_{\infty,\mathcal{H}} \\ & & & \uparrow \\ & & & \downarrow ? \\ & & & \phi_{true} \end{array}$$

$$\mathcal{E}_{\infty}(\hat{\phi}) - \mathcal{E}_{\infty}(\phi) = rac{1}{NT} \int_0^T \mathbb{E}_{\mu_0} \|\mathbf{f}_{\hat{\phi} - \phi}(m{X}(t))\|^2 dt \geq c \|(\hat{\phi} - \phi)(\cdot) \cdot \|_{L^2(
ho_T)}^2$$

Coercivity condition. There exists $c_T > 0$ s.t. for all $\varphi(\cdot) \in L^2(\rho_T)$

$$\frac{1}{NT} \int_0^T \mathbb{E}_{\mu_0} \|\mathbf{f}_{\varphi}(\mathbf{x}(t))\|^2 dt = \langle\!\langle \varphi, \varphi \rangle\!\rangle \geq c_T \|\varphi(\cdot) \cdot \|_{L^2(\rho_T)}^2$$

- coercivity: bilinear functional $\langle\!\langle \varphi, \psi \rangle\!\rangle := \frac{1}{NT} \int_0^T \mathbb{E}_{\mu_0} \langle \mathbf{f}_{\varphi}, \mathbf{f}_{\psi} \rangle (\mathbf{x}(t)) dt$
- controls condition number of regression matrix

Consistency of estimator

Theorem (L. Maggioni, Tang, Zhong)

Assume the coercivity condition. Let $\{\mathcal{H}_n\}$ be a sequence of compact convex subsets of $L^\infty([0,R])$ such that $\inf_{\varphi\in\mathcal{H}_n}\|\varphi-\phi_{true}\|_\infty\to 0$ as $n\to\infty$. Then

$$\lim_{n\to\infty}\lim_{M\to\infty}\|\widehat{\phi}_{M,\mathcal{H}_n}(\cdot)\cdot-\phi_{\textit{true}}(\cdot)\cdot\|_{L^2(\rho_T)}=0, \ \textit{almost surely}.$$

- For each n, compactness of $\{\widehat{\phi}_{M,\mathcal{H}_n}\}$ and coercivity implies that $\widehat{\phi}_{M,\mathcal{H}_n} \to \widehat{\phi}_{\infty,\mathcal{H}_n}$ in L^2
- Increasing \mathcal{H}_n and coercivity implies consistency.
- In general, truncation to make \mathcal{H}_n compact

Optimal rate of convergence

Theorem (L. Maggioni, Tang, Zhong)

Let $\{\mathcal{H}_n\}$ be a seq. of compact convex subspaces of $L^{\infty}[0,R]$ s.t.

$$\dim(\mathcal{H}_n) \leq c_0 n$$
, and $\inf_{\varphi \in \mathcal{H}_n} \|\varphi - \phi_{true}\|_{\infty} \leq c_1 n^{-s}$.

Assume the coercivity condition. Choose $n_* = (M/\log M)^{\frac{1}{2s+1}}$: then

$$\mathbb{E}_{\mu_0}[\|\widehat{\phi}_{\mathcal{T},\mathsf{M},\mathcal{H}_{n_*}}(\cdot)\cdot -\phi_{\mathit{true}}(\cdot)\cdot\|_{L^2(\rho_{\mathcal{T}})}] \leq C\left(\frac{\log M}{M}\right)^{\frac{3}{2S+1}}.$$

- The 2nd condition is about regularity: $\phi \in C^s$
- Choose \mathcal{H}_n according to s and M

Prediction of future evolution

Theorem (L. Maggioni, Tang, Zhong)

Denote by $\widehat{\mathbf{X}}(t)$ and $\mathbf{X}(t)$ the solutions of the systems with kernels $\widehat{\phi}$ and ϕ respectively, starting from the same initial conditions that are drawn i.i.d from μ_0 . Then we have

$$\mathbb{E}_{\mu_0}[\sup_{t \in [0,T]} \|\widehat{\boldsymbol{X}}(t) - \boldsymbol{X}(t)\|^2] \lesssim \sqrt{N} \|\widehat{\phi}(\cdot) \cdot - \phi(\cdot) \cdot \|_{L^2(\rho_T)}^2,$$

Follows from Grownwall's inequality

Outline

- Learning via nonparametric regression:
 - A regression measure and function space
 - ► Learnability: a coercivity condition
 - ► Consistency and rate of convergence
- Numerical examples
 - A general algorithm
 - Lennard-Jones model
 - Opinion dynamics and multiple-agent systems
- Open problems

Numerical examples

The regression algorithm

$$\mathcal{E}_{M}(\varphi) = \frac{1}{LMN} \sum_{l,m,i=1}^{L,M,N} \left\| \dot{\boldsymbol{x}}_{i}^{(m)}(t_{l}) - \sum_{i'=1}^{N} \frac{1}{N} \varphi(r_{i,i'}^{m}(t_{l})) \boldsymbol{r}_{i,i'}^{m}(t_{l}) \right\|^{2},$$

$$\mathcal{H}_{n} := \left\{ \varphi = \sum_{p=1}^{n} a_{p} \psi_{p}(r) : \boldsymbol{a} = (a_{1}, \dots, a_{n}) \in \mathbb{R}^{n} \right\},$$

$$\mathcal{E}_{L,M}(\varphi) = \mathcal{E}_{L,M}(\boldsymbol{a}) = \frac{1}{M} \sum_{m=1}^{M} \left\| \boldsymbol{d}^{m} - \boldsymbol{\Psi}_{L}^{m} \boldsymbol{a} \right\|_{\mathbb{R}^{LNd}}^{2}.$$

$$\frac{1}{M} \sum_{m=1}^{M} A_{L}^{m} \boldsymbol{a} = \frac{1}{M} \sum_{m=1}^{M} b_{L}^{m}, \text{ rewrite as } A_{M} \boldsymbol{a} = b_{M}$$

- can be computed parallelly
- Caution: choice of $\{\psi_p\}$ affects condi (A_M)

Assume coercivity condition: $\langle\langle \varphi, \varphi \rangle\rangle \geq c_T \|\varphi(\cdot) \cdot \|_{L^2(\rho_T)}^2$.

Proposition (Lower bound on smallest singular value of A_M)

Let $\{\psi_1, \dots, \psi_n\}$ be a basis of \mathcal{H}_n s.t.

$$\langle \psi_{\boldsymbol{p}}(\cdot)\cdot,\psi_{\boldsymbol{p}'}(\cdot)\cdot\rangle_{L^2(\rho_T^L)}=\delta_{\boldsymbol{p},\boldsymbol{p}'},\|\psi_{\boldsymbol{p}}\|_\infty\leq \boldsymbol{\mathcal{S}}_0.$$

Let $A_{\infty} = \left(\langle \langle \psi_p, \psi_{p'} \rangle \rangle \right)_{p,p'} \in \mathbb{R}^{n \times n}$. Then $\sigma_{\min}(A_{\infty}) \geq c_L$. Moreover, A_{∞} is the a.s. limit of A_M . Therefore, for large M, the smallest singular value of A_M satisfies with a high probability that

$$\sigma_{\min}(A_M) \geq (1 - \epsilon)c_L$$

- Choose $\{\psi_p(\cdot)\cdot\}$ linearly independent in $L^2(\rho_T)$
- Piecewise polynomials: on a partition of support(ρ_T)
- Finite difference \approx derivatives \Rightarrow an $O(\Delta t)$ error to estimator

Implementation

- Approximate regression measure
 - **E**stimate the ρ_T with large datasets
 - Partition on support(ρ_T)
- 2 Construct hypothesis space \mathcal{H} :
 - degree of piecewise polynomials
 - set dimension of H according to sample size
- Regression:
 - Assemble the arrays (in parallel)
 - Solve the normal equation

$$V_{LJ}(r) = 4\epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right) \Rightarrow \phi(r)r = V_{LJ'}(r)$$

$$\dot{x}_{i}(t) = \frac{1}{N} \sum_{j=1, j \neq i}^{N} \phi(|x_{i} - x_{j}|)(x_{j} - x_{i})$$

$$V_{LJ}(r) = 4\epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right) \Rightarrow \phi(r)r = V_{LJ'}(r)$$

$$\dot{x}_{i}(t) = \frac{1}{N} \sum_{j=1, j \neq i}^{N} \phi(|x_{i} - x_{j}|)(x_{j} - x_{i})$$

$$V_{LJ}(r) = 4\epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right) \Rightarrow \phi(r)r = V_{LJ'}(r)$$

$$\dot{x}_{i}(t) = \frac{1}{N} \sum_{j=1, j \neq i}^{N} \phi(|x_{i} - x_{j}|)(x_{j} - x_{i})$$

$$V_{LJ}(r) = 4\epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right) \Rightarrow \phi(r)r = V_{LJ'}(r)$$

$$\dot{x}_{i}(t) = \frac{1}{N} \sum_{j=1, j \neq i}^{N} \phi(|x_{i} - x_{j}|)(x_{j} - x_{i})$$

$$V_{LJ}(r) = 4\epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right) \Rightarrow \phi(r)r = V_{LJ'}(r)$$

$$\dot{x}_{i}(t) = \frac{1}{N} \sum_{j=1, j \neq i}^{N} \phi(|x_{i} - x_{j}|)(x_{j} - x_{i})$$

The Lennard-Jones potential

$$V_{LJ}(r) = 4\epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right) \Rightarrow \phi(r)r = V_{LJ'}(r)$$

• piecewise linear estimator; Gaussian initial conditions.

Optimal rate

$$V_{LJ}(r) = 4\epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right) \Rightarrow \phi(r)r = V_{LJ'}(r)$$

• V_{LJ} is highly singular, yet we get close to optimal rate (-0.4).

Example: Opinion Dynamics

$$\phi(r) = \begin{cases} 1, & 0 \le r < \frac{1}{\sqrt{2}}, \\ 0.1, & \frac{1}{\sqrt{2}} \le r < 1, \\ 0, & 1 \le r. \end{cases}$$

$$N=10, d=1.$$
 $M=250, \mu_0=Unif[0,10]^{10}$
 $\mathcal{T}=[0,10], 200$ discrete instances $\mathcal{H}=$ piecewise constant functions

Summary and open problems

Learning theory

- extended the classical regression theory
- a coercivity condition for identifiability

Theory guided regression algorithms

- Selection of \mathcal{H} (basis functions & dimension)
- Measurement of error of estimators
- Optimal learning rate
- Model selection

Open directions

- 1st- and 2nd-order heterogeneous agent dynamics
 - Multiple type of agents (leader-follower, predator-prey)
 - Angle and/or alignment based interactions
- Stochastic systems, mean field equations
- Partial and noisy observations
- The coercivity condition

The coercivity condition

$$\dot{x}_i(t) = \frac{1}{N} \sum_{j=1}^N \phi(|x_i - x_j|)(x_j(t) - x_i(t)), \quad x_i \in \mathbb{R}^d$$

- Exchangeability: particles indistinguishable.
- $U = x_1(t) x_2(t)$, $V = x_1(t) x_3(t)$ correlated.

The coercivity condition is equivalent to

$$c_t := \inf_{g \in \mathcal{H}, \|g\|_2 = 1} \mathbb{E}_{
ho_t} \left[g(|U|)g(|V|) rac{\langle U, V
angle}{|U||V|}
ight] \geq C > 0$$

where $g(r) = \phi(r)r$, and p_t is the joint distribution of (U, V).

Conjecture

The coercivity condition holds for compact \mathcal{H} if $c_0 > 0$.

Current status:

- Proved $c_0 > 0$ if initial distributions with iid particles, or Gaussian with $cov(U) cov(U, V) = \lambda I_d$.
- Basic idea: positive definite kernel

$$\mathbb{E}\left[g(|U|)g(|V|)\frac{\langle U,V\rangle}{|U||V|}\right] = \int g(r)g(s)\mathcal{K}(r,s)drds$$

► The kernel K is a positive definite kernel:

$$\mathcal{K}(r,s) = \sum_{i} \lambda_{i} e_{i}(r) e_{i}(s).$$

When t > 0: no proof yet, verified by numerical tests

A route in plan:

$$dX(t) = -\nabla J(X(t))dt + \sqrt{2/\beta}dW(t), \quad X(t) \in \mathbb{R}^{dN}$$

$$J(X) = \frac{1}{2N} \sum_{i,j} \Phi(|X_i - X_j|)$$

- Ergodic with invariant meas.: $p_{\infty}(x) = Z^{-1}e^{-\beta J(x)}$
- Need: positive definite kernel for all t

$$p_t(u,v) := \int p_t(x_1,x_1-u,x_1-v,x_{4:N})dx_1dx_{4:N}.$$

• Uniform in $t \in [0, \infty]$ for lower bound of the spectrum on \mathcal{H}

Thanks to my collaborators

Sui Tang

Ming Zhong

Helpful discussions with

Yaozhong Hu

Cheng Zhang

Yulong Lu

References

- F. Lu, M. Maggioni, and S. Tang. Learning interaction rules in deterministic interacting particle systems: a Monte Carlo Approach. Preprint.
- F. Lu, M. Maggioni, S. Tang and M. Zhong. Discovering governing laws of interaction in heterogeneous agents dynamics from observations. arXiv
- M. Bongini, M. Fornasier, M. Maggioni and M. Hansen. Inferring Interaction Rules From Observations of Evolutive Systems I: The Variational Approach, Mathematical Models and Methods in Applied Sciences, 27(05), 909-951, 2017

Thank you!

