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Abstract

Applications such as unbalanced and fully shuffled regression can be approached by optimizing regularized
optimal transport (OT) distances, such as the entropic OT and Sinkhorn distances. A common approach for
this optimization is to use a first-order optimizer, which requires the gradient of the OT distance. For faster
convergence, one might also resort to a second-order optimizer, which additionally requires the Hessian. The
computations of these derivatives are crucial for efficient and accurate optimization. However, they present
significant challenges in terms of memory consumption and numerical instability, especially for large datasets
and small regularization strengths. We circumvent these issues by analytically computing the gradients for OT
distances and the Hessian for the entropic OT distance, which was not previously used due to intricate tensor-
wise calculations and the complex dependency on parameters within the bi-level loss function. Through
analytical derivation and spectral analysis, we identify and resolve the numerical instability caused by the
singularity and ill-posedness of a key linear system. Consequently, we achieve scalable and stable computation
of the Hessian, enabling the implementation of the stochastic gradient descent (SGD)-Newton methods. Tests
on shuffled regression examples demonstrate that the second stage of the SGD-Newton method converges
orders of magnitude faster than the gradient descent-only method while achieving significantly more accurate
parameter estimations.

1 Introduction

Optimal transport (OT) provides a powerful tool for finding a map between source and target distributions,
especially when they are represented by ensemble samples without correspondence. Examples include shuffled
regression [1,17,23], unlabeled sensing [12, 33,34, 37], homomorphic sensing [31,32], regression with an unknown
permutation [19], or more broadly, as regression without correspondence [3,17,22,27,36].

The task is to find a parameterized function y = F(x;0) that maps ensemble of sources X = {x;}}, € RM*D to
targets Y* = {yj* ;-Vzl € RV*d with probability weights u and v. Here, g = (py,..., puar) " and v = (vy,...,vn) "
satisfy p'1y = Zf\il wi=1,vTly = Z;'V=1 v; =1 and 0 < y;,v; < 1. Note that M may not be equal to N, and
the same applies to D and d. The absence of a one-to-one correspondence between the source and target data
samples makes classical supervised regression methods inapplicable.

The OT solution finds an optimal # by minimizing a loss function £(#) between the image of the source data
Yy = F(X;0) and the target data Y'*, that is,

min £(CY Y pw), (1)

where the cost matrix C?;”HY* = c(yi(0),y}) and c is a function of cost between y; and y¥. Throughout this
study, we assume that c(y,y*) is twice-differentiable, for instance, the squared Euclidean distance c(y,y*) =
|y —y*||3. Several popular OT distances are candidates for the loss function, including the Wasserstein distance,
the entropy-regularized OT (EOT) distance, and the Sinkhorn distance [24]; see Section 2.1 for a brief review.

CY9—>Y*

Each of them leads to a bi-level optimization problem; for example, the EOT distance OT( , i, V) leads

to

M N
. . *
min min E ngfeﬁy IL;; + eKL(II, p ®@ v).
M xN
HeRZy™ ™, i=1j=1

Hin=p,10 1y =v

A crucial component of the optimization process is computing the derivatives of the loss function with respect
to 0, and hence the derivatives of the OT distance with respect to data Yy. First-order optimization methods
require the gradients of the OT distances. Danskin’s theorem provides analytical gradients for the EOT distance
[5,8,14,15], but it does not apply to the Sinkhorn distance. Hence, the generic implicit differentiation method [20]
has been widely applied to OT distances [6,10,11,35,36]. However, first-order optimization methods often converge
slowly.
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To accelerate the convergence, a common strategy involves using stochastic gradient descent (SGD) initially,
followed by Newton method’s iterations, which necessitates computing the Hessian. Automatic differentiation
and implicit differentiation are the two main methods for computing the Hessian [6,9, 10]; see Section 3.1 for
a detailed discussion. However, both methods encounter significant challenges, such as memory shortages when
the dataset is large and numerical instability due to singularity or ill-posedness, particularly when the entropy
regularization strength € is small. These issues impede the success of the SGD-Newton strategy.

We solve these issues by introducing analytical gradients for the OT distances and an analytical Hessian for the
EOT. In particular, we achieve scalable and stable computation of the Hessian by using the analytical expression
to locate and resolve the singularity or ill-posedness through spectral analysis. Our Algorithm 1 significantly
outperforms the automatic differentiation and implicit differentiation method in runtime and accuracy by orders
of magnitudes; see Section 5. As a result, we enable the success of the SGD-Newton strategy for accelerating the
bi-level optimization, as we demonstrate on parameter estimation for shuffled regression of mixed Gaussian and
3D Point Clouds Registration of MobilNet10 dataset [18,25]; see Section 6.

The key in our derivation is the linear system for the optimal dual potentials, e.g., (17) or (19), which is
inspired by the implicit differentiation in [6] and the second-order Fréchet derivative of the Sinkhorn divergence
loss under the Wasserstein metric in [28]. Emerging from the implicit differentiation, this linear system facilitates
efficient computation of the gradient of the OT distances as well as the Hessian of the EOT distance. In particular,
when used together with Eq.(18) from the marginal constraints, it bridges implicit differentiation and Danskin’s
theorem in the context of EOT distance.

Furthermore, we provide a comprehensive spectral analysis for the linear system for the dual potentials through
the matrix ding(IT1x) -

. 1ag N M+N)x(M+N
H(II) := [ (H)T diag(HTlM) ] e R )x( )7 (2)
where II is the coupling matrix. We show that when II has positive entries, H(IT) has zero as a simple eigenvalue,
and its effective condition number (i.e., the ratio of the largest and smallest positive eigenvalues) has upper and
lower bounds depending on the spectral gap of IITII. In particular, we construct an example showing that H (II)
can be severely ill-conditioned with the smallest positive eigenvalue at the order of O(e_%) when € is small, or

1

O(5) when N is large. Thus, when solving a linear system with H, proper regularization is crucial.

Our main contributions are threefold.

o Analytical derivatives and spectral analysis. We derive analytical gradients with respect to the data Y for
EOT and Sinkhorn distances and Hessian for the EOT distance in Section 3.2-3.3. The spectral analysis
in Section 4 helps us understand and resolve the numerical instability issue via a proper regularization in
Section 3.4.

e Fast stable computation of Hessian. Our algorithm enables a stable, memory-efficient, and fast computation
of the Hessian, significantly outperforming other state-of-the-art methods in runtime and accuracy by orders
of magnitudes; see Section 5.

e Enabling SGD-Newton for shuffled regression. With the robust computation of the Hessian, we are able to
apply the SGD-Newton method to shuffled regression problems in Section 6, significantly accelerating the
optimization process.

1.1 Outline

This work is organized as follows. Section 2 reviews the various (OT) distances and the Sinkhorn algorithm.
Section 3.2 is devoted to the analytical and numerical computation of the gradients and Hessian, leading to
an algorithm with proper regularization. Then, we analyze the spectrum of the matrix H(II) in Section 4.
In Section 5, we examine the efficiency and accuracy of Hessian computation using a benchmark example and
compare the results with other approaches. Then we apply the proposed algorithm to applications in Section 6,
including the parameter estimation for shuffled regression of mixed Gaussian and 3D Point Clouds Registration
of MobilNet10 dataset.

2 Optimal Transport Loss and Sinkhorn Algorithm
Ideally, we could find 6* by minimizing the optimal transport distance between the parameterized source data
Yy and the target data Y*. We will first review some classical results in computational optimal transport [24]

in this section. In the section, we ignore 6 in the notation and C' is the abbreviation of CYHY*, unless noted
otherwise.



2.1 Optimal Transport Loss Functions
2.1.1 Wasserstein-2 Metric

One popular choice is to use the Wasserstein-2 metric as the optimal transport loss, equivalently, £(C, u,v) =
W3(C, u,v). To calculate the Wasserstein-2 metric, one has to solve a constraint optimization problem,

M N
W3(C,p,v) = Heg}\i}i]\, 1)1 Cyly, Cy = c(yi,y)), (3)
>0 0 g=1j=1

Mly=p,I0" 1y =v

where ¢(y;, y;“) = |y; — y; |3 is the cost of transport, and the coupling matriz 11 € [0, 1]™*¥ is the transport plan

from the parameterized source data Y to the target data Y*. To solve the constraint optimization via linear
programming, the computational complexity is O((N + M)NM log(N + M)) [24], which is very expensive when
N, M are large. To overcome this issue, one often regularizes the objective function. Common regularization
includes the EOT distance, the Sinkhorn distance, which we briefly review below.

2.1.2 Entropy-regularized OT (EOT) Distance

The EOT distance is the Wasserstein-2 loss plus the relative entropy between two measures:

M N
OT.(C,p,v) := mhllriN Z Z Ci;1L; + eKL(IL p @ v), (4)
MeRzy ™ i=1j=1

Miy=p,00 1y =v

where the relative entropy between the coupling matrix II and the outer product p Qv is KL(II, p Q v) :=

M N
Dim1 21 iz log
to the Sinkhorn algorithm for its unique numerical solution [24]. As € goes to 0, EOT converges to the Wasserstein-

2 distance at the rate of e [20].
2.1.3 Sinkhorn Distance

/F_”' -. This regularization drastically simplifies the study of the dual problem and further leads
iVj

v

Another candidate for the regularized OT loss is called the Sinkhorn distance, 6\TE C,p,v),

6\’fE(C, Bv) = Z Cin;"j, with II* = arg min Z Ci;IL; + eKL(II, p @ v). (5)
ij HeRZy™, )
Hly=p,I1 1y =v
Sinkhorn distance eliminates the contribution of the entropy regularization term from OT.(C, u,v) to the total
loss L after the transport plan IT* has been obtained. It actually gives even better approximation results and con-

verges to the Wasserstein-2 distance exponentially fast. More precisely, we have ‘6\’f‘6(0, w,v) — W3(C,m,v)| <
cexp(—1/e) [20].
2.2 Sinkhorn Algorithm

From now on, we firstly choose the EOT cost as the loss function, i.e., L(C, u,v) = OT(C, u,v) though we will
discuss the others later. The computation of this quantity, i.e. the constraint optimization (4) is solved by the
well-known Sinkhorn algorithm. For the notation consistency and ease on the readers, we will review necessary
details of this algorithm. One can account for the constraints by introducing two slack variables, known as the
dual potentials, f € RM, g e RV, for each marginal constraint of (4). Because Y, 2 vy = 2 i 25 v =1, the
corresponding augmented Lagrangian is

HiVj

+efoi(ZHij — i) *Z%(ZH@‘ — V)

J

I,
L(CTL f,g) = > CijTlij + e > Tl <1og = 1)

The first-order optimality condition M(%H]fg)

= 0 yields the expression of the optimal coupling II* is

—Cij + f} +9;<>
- )
€

Hfj = [;Vj exp <



where f* and g;?‘ are the optimal dual potentials. It ensures that the optimal coupling matrix IT* is entry-wise
positive. An intuitive scheme is to alternatively rescale rows and columns of the Gibbs kernel to satisfy the
marginal constraint, which is called Sinkhorn algorithm [7,21,29,30]. Numerically, however, this computation
becomes unstable when e is small. The stable Sinkhorn iteration is thus performed in the log-domain [7,24],

FUD = clog p — elog (Kexp( l)/e)) g = elogr — elog (KT exp(f(”'l)/e))

with the initial vector to be g(®) = On and the Gibbs kernel K = exp (77) As [ goes to 400, both converge to
f* and g*. In practice, the iteration stops when the 1-norm of marginal violation is within the threshold value.
Then we get the EOT distance OT,(C, u,v) in terms of the dual problem,

k
OL(Con) = L@ g = [T o7 ][ 1] ©
Overall the computational complexity of EOT to achieve T-approximate of the unregularized OT problem is
O(N?log(N)7r=3) when M = N [2,24], which is significant improvement to the linear programming of Wasserstein-
2 metric. .
Similarly, OT(C, p, V) gives

*CijJrfi*er;k

O C un, vV Z Cin;kj = Z uiujCije € . (9)
ij

3 Differentiation of Loss Functions

In this section, we introduce robust computations for the gradients of these regularized OT loss functions and for
the Hessian of the EOT distance. Our computations show that costly backward propagation can be avoided even
for the Hessian.

We recall the problem setup (1) and first study the analytic form of the gradient and hessian of EOT distance
with respect to the parameter 6, which read

00T (Cy, p,v) f dyy 00T (Cy, p1,v)

(10)
801 he1 692 Gyk
P*OT(Co,pv) _ f % <6y> P20T(Cy, 1, v) <8yk)T
6626@ bl s—1 69l (’)ys('}yk (99j
M
a2yk aOTe(C%IJHV)
. 11
* E 20,00, oyn ()

Here Cy is the abbreviation of cYo—Y* emphasizing the dependence on Yy. The key step is to find the ex-

J0T. (CG 7["'7”) e R(i

plicit expression for the first derivatives with respect to the source data and the second-order

9°0T.(Co,p,v) c Rdxd

derivatives with respect to source data T
YsO0Yk

3.1 Previous methods computing first- and second-order derivatives

For the analytical expression of the first-order derivatives of regularized OT distances, there are two main ap-
proaches: the Danskin approach and the implicit differentiation approach. The Danskin approach computes the
gradient of EOT, based on applying the Danskin’s theorem to the dual function [5,8,14,15]. Recall the Lagrangian
L(C,11, f,g) is a function of C,II, f and g and OT(C, u,v) = maxm, ¢ g L(C,II, f,g). The Danskin’s theorem
states that given f* g* IT* the gradient of OT(C, u,v) with respect to yy is

00T, (C, p, v Z oC;; aOT c w,v Z 0C;; OL(C,TI*, £*,g*)

O0Yk O0Yk oYr, 0C;;
2 ackj
1., 12
Z 5’% Z oy N (12)

Once IT* is obtained from Sinkhorn algorithm, the first-order derivative with respect to the source dataset
Y immediately follows without additional computational cost. The Danskin’s approach naturally extends to



the de-biased Sinkhorn divergence S¢(Cy, u, V), but unfortunately this approach doesn’t work on the Sinkhorn
distances 6\T‘€(CQ7 W, v) because it is not of the form maxy 4 ¢(C, I, f, g). An implicit differentiation approach
is thus introduced in [20]. It implicitly differentiates the associated marginal constraints to derive a large linear
system, which is solved by the conjugate gradient solver in lineaz [26]. It applies to different regularized OT
problems [6,10,11, 35, 36].

For computing the Hessian of the OT distances, up to our knowledge, there is no direct analytical expression
before the current work. There are two approaches suggested by OTT [9]. The first approach unrolls the Sinkhorn
iterations and use the JAX in-build tools to handle autodiff via backward propagation and computational graph.
The second approach implicitly differentiates the optimal solutions computed by OTT. The implicit differentiation
approach involves differentiating the solution of an ill-conditioned linear system with the custom differentiation
rules [9], hence, regularization techniques, such as preconditioning the marginal constraints [10] and the ridge
regularization, have been introduced to try to resolve this issue. However, as we will demonstrate in Section 5,
both approaches still encounter two major challenges: (i) memory shortages when the dataset is large, and (ii)
numerical instability due to singularity and the ill-posed nature of the linear system, particularly when ¢ is small.

The key in our derivation is the linear system for the optimal dual potentials, e.g., (17) or (19), emerged
from the application of the implicit differentiation. It facilitates efficient computation of the gradient of the
Sinkhorn distance as well as the Hessian of the EOT distance. Additionally, together with (18), it bridges
implicit differentiation and Danskin’s theorem in the context of the EOT distance.

3.2 Analytical computation of the gradients

We first review the implicit differentiation approach to the gradient of the EOT distance OT(C, u, v) with respect
to source data Y and re-derive the result of Danskin’s approach in (12) through the key observation. We further

provide a novel numerical method to efficiently compute the derivative of Sinkhorn distance OT (C, p,v).

Gradient of OT.(C, u,v). We first consider the gradient of the EOT distance with respect to the source data
Yk

o ek
00T (C,p,v) L af* of
OGS S | . (132)
Yk i=1 Jj=1 Yk oYk
* T
where i’zf;: = (?;2,,?;&) e RMxd and similarly 3 @ e RV*4 To simplify the notation, we denote
df* _ _ofF _ o9 df* _ BMxMsxd d NxMxd
(W)iks = . An nd (dY>jks = (')(y;)s’ S0 Ly e RMxMxd 414 g e RIVXMx

We write the gradient in the vector form

dOT.(C, p,v df* dg* af*
% H’T e +u TdY _ [ HT vl ] & e RMxd (13b)
Y

Theorem 1. The derivative of EOT distance in (8) with respect to source data yi, as in (13a), is given by

00T (C, p,v Z 5Ckg

M., k=1,...,M. 14
ayk kj» ’ ’ ( )

In vector form, the derivative of OT(C, p,v) with respect to whole source data Y is

dOT.(C, p,v)
Z =-B.1 1
where B € RM*AXN s o tensor with entries Brsj = j(gkj H;’;J, and B - 1y € RM*4 s the dot product which is the

summation of the third index such that the k-th column is (B-1n)k = 3, Oai’;” I, for 1<k <M.

Proof. The main task is to find (;zf: and (;ZT i
partial derivative of entries of optimal coupling matrix IT* with respect to yy is

oy _ I (_acz‘j Lo agﬁ*) _ I ( 0Chi s 4 7 59?) (16)

oy € oyr  OYyr Ouyx € OYx 5yk OYx

(13a) using (7) and the marginal probability conditions. The




where §;; is a Kronecker delta function. We observe that with the marginal probability conditions Zjvzl H;"j = L

and Y™, IT¥; = v;, and by taking the partial derivative
get

0
O0Yk

N

; ank
ol v; 09 1
; Jj _ 73 J_Gl

€ Yy

81_[* _ M off 1 [
€

*

Hence we have

off N 99 e ackj y .
“iiJFEaiyk 2 0. € RY, V1 <i< M,

ofF ogF  0Ch; ,
2 ZH* Jaylzay;nzjeRd, V1<j<N.

With H(II) defined in (2), the above linear system can be written in matrix form,

di * - T
R dii(v)“ i ]_[ekwg;‘}m | o
= H(IT%)

where ey, is the k-th standard column basis of RM and the matrix By, € RN ig (Bi)sj = (Es:j H* Instead of

solving the above linear system to evaluate (13a), we observe from the marginal constraints that

[ A% 1) = (G ) et w7 8)

Then, multiplying both sides of (17) by [ 471}, 1L ], we obtain

11T 11T * Lflﬂ ar ] 11T 11T ek(BklN)T
[ arly w1y JH@D | 9% do =[ 1y ~1x ][ BT ]
dyx

Hence, the derivative of OT(C, p,v) with respect to source data yy, is

dOT(C, p, v) [ V7] %j ]

dg*

dyy B
1 1 e (BklN)T 6Ck
= 117 L1l k Byly = ‘11
ﬁ_’_%[MM NN][ B/I k+N = Z@yk

If we define the third-order tensor B by stacking the matrices {Bj}+L,, that is the k-th component By.. = By,
then the linear system (17) can be further vectorized as

ag* o
H(H*) l 5];; ] =R, with R .= [ dlag(lf_r 1N) ] c R(M+N)><M><d (19)
ra

where diag(B-1y) is a third-order tensor, with diag(B-1x)kks = (B-1n)ks and zeros for the other entries, and BT
is the transpose of permutation of indices defined by (BT)ijk = Byi;. Hence, by plugging (19) back to (13b), the

derivative of OT(C, u, v) with respect to the source data Y in the tensor form is equal to % =B1ly. O

This theorem not only implies that automatic differentiation is unnecessary for computing the gradient of EOT
distance but also that solving the large linear system (19) for & dy and is not needed. The analytical expression



of the gradient follows directly from the cost matrix Cy and optimal coupling matrix I1* from the Sinkhorn
algorithm, which can significantly speed up the computation. This theorem provides a different approach to
derive the same analytical result other than the Danskin’s theorem. We emphasize that the gradient formula (15)
is generic and applies to any choice of cost matrix C' Wlthout requiring g and v to be uniform. In particular, if the
Sinkhorn iteration stops early and the coupling matrix i is suboptimal, the formula is still exact for %

given suboptimal coupling matrix fI and associated marginals i and o, where > j ﬁij = Ji; and )}, Hij = U;.

Gradient of 6\’41‘6 (C,p,v). The above techniques also applies for computing the gradient of the Sinkhorn
distance G\TE(C,[,L,V). Although it does not yield an analytical expression, it helps significantly reduce the
computational cost by avoiding directly solving the linear system (19), which is costly since the right-hand-side
is a large third-order tensor R. Specifically, we have the following novel result.

Proposition 2. The gradient of Sinkhorn distance in (9) with respect to the source data'Y is

dOT(C, p,v) _ A 1
Cnn) (s A) 1y hm o

where B and R are defined in (19), the third-order tensor A is Ays; = Ci;11 ,”;J The vector r is the solution of

('!Ik)
the linear system, H(II*)r = [ g ], where vectors a and b have entries a; = ijl CyjIL%; and b; = Zi:l CijIL3,

Proof. From (9) and (16), the derivative of Sinkhorn distance with respect to the data yy, is

dOT.(C, e L 0Ck 1 (X a N ogE
12204 Z k:j k kj 4+ = f + 2 ] g] ’
dyk — J 6yk € izl

where a; = Z;v 1 C’in;"j, and b; = Zf\il C;;IL5;. The main computation burden is the second term. To compute

(Z a;3 o —l— Z i ), a common practice is to solve the linear system (19) to get all (;J;; and %, which is

computatlonally expensive because the right-hand-side of (19) is a third-order tensor R.
Although we do not have (18) as a and b are no longer the marginal constraints of II*, we can yet apply the same
technique to reduce the computation costs by solving the following matrix-vector form of linear system only once

H(IT*)r = [ Z ] e RIM+N),
That is, we only need to solve for one time the matrix-vector form of the linear system, for the column vector

7. This can be efficiently solved by conjugate gradient method with early stopping.

Notice that [ @™ b" | [ 11” ] = O0p4n, and [ 15‘_4 ] is in the kernel space of H(IT*) as proved in Lemma 6,
—1y —1n

SO Z is in the span of H(IT*), therefore the linear system above always has a solution.
Notice that
df* df*
JaY =[a” b ]l x5 ] —'rTH(H*)[ &% ] =r'R.
dY dy
Hence, we prove (20). O

3.3 Computation of the Hessian
In this subsection, we analytically compute the Hessian of the loss function with respect to the source data Y.
We mainly focus on the EOT distance.

Theorem 3. The second-order derivative of EOT distance OT (C, w,v) with respect to the source data Y is
given by the fourth order tensor T e RMxdxMxd

M+N
Thtsl = — 2 Rict H Rjst + Extst, fork,s=1,... M and t,1 =1,....d, (21)

3,5=1



diag(B - 1)
BT
RMAN)XMxd s the right-hand-side third-order tensor defined in (19). The fourth-order tensor £ € RM>*dxMxd

is defined as

where H' is the Moore—Penrose inverse of matriz H(IT*) € RIM+NIX(M+N) defined in (2), and R =

N % %Cl; 1 0Ck;  0Ckj p

Ektst = Zj:l e (( oY )tl € oyk): a(y’“)l) k= 3. (22)
0, Otherwise

fork,s=1,....M and t,l=1,...,d.

Proof. With the help of the gradient given by (14), we know

T *
N [oC;\ | omE '
EOT(Copr) _ | (F2) T ith £, »
dy.d - N 02C.., N oo \T ook
YsAdY ijl T,;:JH:J' + Zj=1 (oayij) ay]:’ if k= s.

For k # s, we have 05 = 0, so the term is expanded as

i <3ij>T oMy _ i I (aCkJ)T (af: + (}g;)
=\ oy ) Oys € \ Yk ys  0ys

i=1

| ex(Brln)" TE es(Bsdn)"

o R A e B
*

of*
where we use the fact that fys is the solution of the linear system (17), so it can be expressed as [ gy;i; 1 =

0Ys
-
HY [ es(Bs1n) ] For k = s, the term is expanded as follows

BT

]ZV) 0%Cy; .+ ]Zv: <aCkJ>T oMLy

ooy M Z\ o) w
N T N T

:Znii Cw\ (ofE , 995 3y, 520§j_1 0Ci;\ [ 0Ck;
= € \ Oy Yk OYk ~ W\ dyp e\ dyk Yk
Jj=1 Jj=1

dCi;i\T [ 8Cl;
_ | ex(Biln)T " HY [ en(Bily)T n - . ?*Cy (G ) (T
Bl ¢ Bl PN € '
In vector form, we obtain the Hessian in (21). O

Given the cost matrix C' and the optimal coupling matrix IT* from Sinkhorn algorithm, the Hession tensor is
analytically calculated once the large linear system (19) is numerically solved. Unlike the previous approaches, the
solution of the linear system is no longer needed to be differentiated in order to obtain the second-order derivatives,
so our direct analytical Hessian expression could significantly speed up the computation with less memory burden.
Similar to the case of the first-order derivative, the analytical expression for the Hessian is generic and applicable
to any choice of cost function. It does not require g and v to be uniform either. If the Sinkhorn iterations stops

~ 2 o
early with II being suboptimal, then the Hessian expression (21) is still exact for % with suboptimal

coupling matrix IT and associated marginals i and , where Y j ﬁij = [1; and ), ﬁij = Uj.

With the analytical expression of Hessian, the following result show that the sum of the first index of the
Hessian tensor is only dependent on the marginal probability vector p. Later, it will be used as a marginal error
to verify the accuracy of Hessian in the numerical implementation.

Proposition 4. If Cy; = |y, — ¥y} |3 for each k,j, then Z]kw:l Te-s. = 2usly.

Proof. Since the cost is square distance Cy; = |yx — y¥[3, then aac’“ Cki — 21, The first

62
=
oYy

t = 2(yr — y;) and

k

term in the second-order derivative (23) expands as

M N T M N
23 (%) FE-eu 3G
= Yk 0Ys = 2 s

=1

Al M oTy,

722(y;)T§1T% = Oaxa-

Jj=1
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OIT¥. oy Ik
The last equal sign is because that > I}, = py and >, I}, = v, as well as }; ( H’”) = 2l g

0Ys 0Ys
. N *
Z oI\ 0%, I
k\ dys | — Oy

The remaining term is Z; 1 895“’ I3 =2y Z;.VZI IT¥; = 24,14 Thus we proved the statement. O

3.4 Solve the linear systems with truncated SVD

A major challenge in computing the gradient of Sinkhorn distance in (20) and the Hessians of Entroy-regularized
distance in (21) is that pseudo-inverse H(IT*)" can severely amplify the rounding errors or early stopping errors
when the matrix H(IT*) is ill-conditioned. The pseudo-inverse comes from the solutions to the linear systems
(17) and (19) for computation of first- and second- order derivatives. Thus, instead of directly using H (IT*)T,
it is important to study the spectrum of the matrix H(IT*) and regularize properly when the linear systems are
ill-posed.

Analytical and empirical results in the next section show that the H-matrix is often ill-conditioned when the
Sinkhorn regularization parameter € is small or when the optimal coupling matrix IT* is close to a permutation.
Such ill-conditioned H-matrices result in numerically unstable solutions when IT* is slightly perturbed to IT due to
the early stopping of the Sinkhorn iterations. This is also the exact reason that the previous implicit differentiation
approach fails due to numerically instability.

We tackle the potential ill-posedness by truncated Singular value decomposition (TSVD). We truncate the
H-matrix’s spectrum up to the K-th largest eigenvalue, with K = max{j : % > «}, where {}; }M+N are the
eigenvalues of H (IT*) in descending order. In practice, we use the LAPACK’s DGELSD algorithm bulldlng in the
least-square solver [4] and set o = 10710, The algorithm for gradient and Hessian computation is summarized in
Algorithm 1.

Input: Optimized I1*, cost matrix C, entropic regularization strength e, source data Y and singular value
threshold a.
Output: Gradient with respect to Y: % e RMxd Hessian with respect to Y: T e RMxdxMxd

1: Compute the marginal probability vector u € RM and v e RV: p « IT*1y and v « (IT*)T1,,.

. diag(p) IT*
. (M+N)x(M+N). gl
2: Compute matrix H € R : H «— [ ()T diag(v)

3: Compute third-order tensor B € RM*dxN. Brsj < (;zgkj sz compute third order tensor R € R(M+N)xMxd,
. 1
R [ dlag(gT N)
4: Compute the gradient:

5. Compute the truncated singular value decomposition of H-matrix up to the K-th largest eigenvalue: H ~
UKAKUK with K = max{j : > a}.

af* df*
6: Approximate | 4% |: (‘ii;fk

and compute the fourth-order tensor £ in (22).

dOT(Cip,v) _ 3.
T - B 1N.

— U A ULR.

dg™ dg™
dy Yy
M + N df*
7: Compute the Hessian T Trst < 22,07 Rike él;; + Ektsi-
Yy isl

Algorithm 1: Computation of gradient and Hessian of EOT distance OT.(C, u, v) with respect to the source data
Y.

4 Spectral analysis of the H-matrix

This section analyzes the spectrum of the matrice H(II) in (2), which plays a crucial role in the computation of
the derivative and the Hessian. Recall that II € RM*N is a coupling matriz if its entries are nonnegative and

=M1y and v = IIT1,,; are marginal probability vectors. We say that it is a positive coupling matriz if its
entries are all positive.

We consider two common types of coupling matrices I: (i) positive coupling matrices, since the coupling matrix
IT* obtained from the Sinkhorn algorithm in practice is always positive due to the entropy regularization, [13,24];
and (ii) coupling matrix with uniform marginal distributions, i.e., p = 1p;/M and v = 15 /N, since they arise in
most applications with randomly sampled data.




We show first that H (II) is singular with a simple zero eigenvalue for any positive coupling matrix. For coupling
matrices with uniform marginal distributions (including permutation matrices), we analytically calculate the
eigenvalues of H (II) in Section 4.2. In particular, we establish lower and upper bounds for the condition number
of H-matrix in terms of the spectral gap of II in Theorem 9. Section 4.3 extends the bounds for the condition
number to the H-matrix computed by the Sinkhorn algorithm of EOT distance with early-stopping.

4.1 General positive coupling matrices

We show first that the H-matrix H (II) is singular with a simple zero eigenvalue for any positive coupling matrix

I As a result, we call K(H) = — ) __ the condition number of the matrix H = H(II).
AN+m—1(H)
Theorem 5 (Simple zero eigenvalue for the H-matrix). For any positive coupling matriz IT € R%XN, the
smallest eigenvalue of H(II) is zero and it is simple, with eigenvector qo = j\_/[ ]
—1N

Its proof relies on the next Perron-Frobenius type lemma, which shows that the largest eigenvalue of the
matrix diag(v)'IIT diag(p) I is 1 and is simple.
Lemma 6. For any coupling matrix with strictly positive entries 11 € R%XN, the largest eigenvalue of matrix
diag(v) 1T diag(p) = 11 is A = 1 and has multiplicity one, with eigenvector 1. Similarly, the largest eigenvalue
of the matriz diag(p) ' diag(v) 1T is A = 1 and has multiplicity one, with eigenvector 1.

Proof of Theorem 5. It is clear that 0 is an eigenvalue with eigenvector qg. We show next that any other
eigenvector of 0 must be qg up to a scalar factor. Note that the vector [ :l; ] is the eigenvector of 0 if and only
if

[ diahggu) diag(y) ] [ ':J’ ] = Opan = [ d‘};a;gé(ypszjw;rnlgz =: 00 ]7 (24)

which is equivalent to
v = —diag(v) HITw = diag(v) 1" diag(p) v,
w = —diag(p) v = diag(p) Tdiag(v) T w.
By Lemma 6, v = aly and w = bl), for some nonzero constant a, b for each equation to hold. Plugging back to

(24), we have a = —b, and [ 7;: ] = aqg. Thus, the zero eigenvalue of H is simple. O

A quick corollary of the above lemma is that the smallest eigenvalue of I — diag(v) ' diag(p) 11 is zero
and is simple. As a result, we obtain an invertible matrix after dropping one of the rows.

Corollary 7. For any coupling matriz I1, the matriz diag(v) — ﬁT diag(p)~ I is invertible, where U and 11 are
the arrays after dropping the last rows.

The invertibility of the above matrix has been used in [6,11,20,36] to remove the zero eigenvalues of H (IT*) in
the computation of the gradient of Sinkhorn distance (5). However, the ill-posedness in solving the linear systems
is not addressed as the other eigenvalues are still close to 0. Next, we analyze the spectrum of the H-matrix,
which guides the treatment of the ill-posedness.

4.2 Coupling matrices with uniform marginal distributions

Coupling matrices with uniform marginal distributions are of particular interest as they arise in many applications
where the data are randomly sampled. They lead to H-matrices of the form

| diag(371m) II (M+N)x(M+N)
10 = [ P gl | <7 ' =

In this section, we compute the eigenvalues of the H-matrices for coupling matrices with uniform marginal
distributions (including the permutation matrices) in Proposition 8. These eigenvalues shed light on the root
of the ill-conditionedness of the H-matrices. In particular, if the coupling matrix is entrywise positive, we provide
upper and lower bounds for the condition number of the H-matrix in terms of the spectral gap of II"IT in Theorem
9.

10



Proposition 8 (Eigenvalues of H(II) and singular values of II). Let IT € [0, 1]M*N be a (not necessarily
positive) coupling matriz with uniform marginal distributions. Let M < N and assume I1 has rank M. Then, the

eigenvalues (in descending order) and eigenvectors of H defined in (25) are, for j =1,..., M,
M+N M—N)\2 2 kg .
+ + 4o, (II = Uj
NG SRRVIC o L R el |
2 1/1+/€? Vi
A H =A\y = ! _| 0 M<i<N 26
JWJrl( )7 - N*N? q; = v; 3 <ts ) ( )
(M) - /(M=) 4 4021 L,
MN MN A/ 1+R2
ANsmyi—j(H) = 5 . ANiMi1j = T
1/1+n§ J
where o;(II) is the j-th singular value of II (in descending order) with u; and v; being the right and left singular
vectors, {vi}I¥ ;.1 are the N — M orthogonal vectors in the kernel of I, and these scalars r; = (%) +

i)
(%(H)) 41
In particular, when M = N and I is a permutation coupling matriz, i.e., its rows are a permutation of the

rows of x-In. Then, the eigenvalues of H(II) are \y(H) = -+ = AN(H) = % and Ay41(H) = --- = Xon(H) = 0.

Proof of Proposition 8. Denote an eigen-pair H by ()\,[ 3 ]), where u € R™ and v € RY; that is,

I

Then, IIv = (A — &;)u and II"u = (A — & )v. This implies that

(I(I) ") u = ()\ - ;4) ()\ — ;f) u, ((I)')v= ()\ - ;4) </\ - ]lv) v. (27)

That is, u and v are the right and left singular vectors of II, corresponding to a singular value of II sat-

isfying O'j2- = ()\ — ﬁ) ()\f %), for some 1 < j < M. Solving this equation, we obtain two eigenvalues
(3 %)y (3 =)+
At = 5 .
To compute the eigenvector of Ay, let v = v;. Then IIv = g;u; = (A4 — %)u Sou = ()\ffji)uj (recall that
M

1 1\2 2
sr— ) +407
(dr—%) 2+ hence, we have

0; # 0 by rank(Il) = m). Note that A3 — (F—%)+

20,
Ay—L) L -1 1 1\?2
9 VTN _M_N M_ N\ -k
iy = =Ky
A+ — 37) oj 20 20,
"y, S
2 2
So an eigenvector for Ay is v 11+ " |- Similarly, A_ has %:;Kj 4
N N
The above Ay account for 2M eigenvalues. The other N — M eigenvalues correspond to o;(II) = 0, which has
singular vectors v;, for i = M +1,..., N. Thus, setting u = 0 and v = v;, we have I[I'u =0 = (\ — %)vZ So

A= % This eigenvalue has multiplicity of N — M, with eigenvectors [ 04 ] fori=M+1,...,N.

Vi

At last, when M = N and II is a permutation matrix, note that IITII = ﬁl ~- Thus, the singular values of
Il are 0; = + with multiplicity N. Applying (26), we obtain that the eigenvalues of H are 0 and 2, each with
multiplicity N. O

Theorem 9 (Condition number of H(II)). Let II be a positive coupling matriz with uniform marginal distri-
butions and singular values {or} in descending order. Then the condition number k(H) of H in (25) is bounded
by
(M + N)? (M + N)?
ana(a2 o7y S ) S oo
2M?2N?2(0% — 03) M?2N2(0% — 03)

(28)

11



Proof of Theorem 9. The largest singular value of Il is o1 = and it is simple. Hence, by Prop.8, the

1
NM
largest and smallest eigenvalues of H(II) are A (H) = 4 + =, Aar4n(H) = 0, and both are simple.
The second smallest eigenvalue of H, denoted by Ay v—1(H), can be obtained from ()\ — ﬁ) ()\ — i) =03, ie.,

(62—02) N
A = XMA+ 07— o3 =0. With A := 22722 this gives
1
4A
" ++/1— 1++/1I—4A

Hence, using the fact that 1 < 1 4+ /1 —4A < 2 we obtain (g‘;‘/\,il%) < Myan_1(H) < %:Ug) To obtain the
bounds for the condition numbers, by (29), we have
M + N)?2 A2 A2 M + N)?2
( +2)2= 212<"€(H)< 212: ( +2)2’
2M2N?(of — 03) 2(0f — 03) (0f —03) M2N?(of — 03)

This gives the bounds in (28). O

Aran_1(H) = %)\1 [ — V- 4A] (29)

The case M = N is of particular interest, and we list the results as a corollary, which follows directly from
Theorem 9.

Corollary 10. Let M = N and II be a positive coupling matriz with uniform marginals. The eigenvalues of
H(II) are

1 1 .
)\j(H)=N+O'j, )\QN_H_J*(H):N—O']‘, 1<j<N, (30)
where {o;} are the singular values of II in descending order. In particular, o1 = %, M(H) = % and Aoy = 0.
The condition number of H(II) is bounded by
2 4

< k(H) <

N2(0? —03) (31)

N2(of —03)
4.3 Condition number of H-matrices in entropy-regularized OT

We establish in this section lower and upper bounds for the condition number of the H-matrix when IT* is
approximated by the Sinkhorn algorithm for uniform marginal distributions.

The Sinkhorn algorithm alternatively re-scales the rows and columns of the coupling matrix to achieve the
marginal constraints. They produce a sequence of coupling matrices {II} that converges to IT* entry-wisely, i.e.,
limy_, 4o HE? = H;"j [21,29,30]. In practice, the Sinkhorn iteration stops when a criterion is met. One stopping
criterion is that the marginal distributions of II") are entry-wise § away from the given g and v. Thus, an
important question is whether the condition number of H(I1!)) is controlled.

The next proposition shows that if § = ||Il — IT*| is small with || - | denotes the Frobenius norm, the
condition number of the H-matrix of IIY is almost as large as the condition number of H(IT*). The proof is

based on Weyl’s inequality, and we postpone it to Appendix A.

Proposition 11 (Condition number of H-matrix in Sinkhorn). Let IT*, with uniform marginal distri-
butions, be the optimal coupling matrix minimizing the FOT distance. Assume that the coupling matriz 11 is
computed by an early-stopped Sinkhorn algorithm that satisfies

N
P 1 )
g Mo~ g7 <0 ma - < © Ll - g < 05 2
Then, the eigenvalues of H(ﬁ) satisfies
Ne(H (D) = \e(H(IT*))| < 6+ 62, 1<k <N+ M. (33)
In particular, if § + 65 = t]\%_]\jv (crf —02) with t € [0,1), where 01,02 denoting the largest two singular values of
IT*, the condition number of H(II) is bounded by

1—tA ~ 1+tA
m SK(H(H)) < m,

where A = ({5 )2 (03 — 03), while 55 < k(HII*)) < x.
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The above bounds apply to general H-matrices in entropy-regularized Sinkhorn algorithms. However, these
bounds do not show explicit dependence on ¢, the strength of regularization. In the next section shows, we study
the dependence of the condition number on € and N for point-clouds datasets.

4.4 Ill-conditioned H-matrices from data clouds

We investigate in this section the condition number of the H-matrix for a specific example of EOT that matches
data clouds with IV points. In this simple setting, M = N and both marginals are uniform, so the condition
number of the H-matrix is k = ﬁ by By Corollary 10. Therefore, it suffices to investigate the dependence
of smallest positive eigenvalue, Aay_1, on N and e.

We show that the smallest positive eigenvalue of the H-matrix can decay at rate O(e’%) for a fixed N and at
O(1/N) for a fixed e. These asymptotic results are proved for equally-spaced points on the unit circle in Example
12, and are numerically demonstrated for random data clouds sampled from a uniform distribution.

Example 12 (Equally spaced points on the unit circle). Consider N equally spaced points on the unit circle

{y; = [ cosx; sinx; ]}lN:Bl, where x; = % Let p = %1]\; be the uniform distribution, we are interested in
the spectrum of H associate to the symmetric entropic reqularized optimal transport loss OT.(CY¥ =Y u, ). The
coupling matrix is
N N
I* = arg min Z Z Ci1L;; + eKL(IL, p ® )
NeRY XN Mn=p,0Tly=p =1 =1
with € > 0, where C;; = |y; — y;|3. Also, let H :== H(II*) and denote its condition number by k(H) = %
Then, the following statements hold true.
(a) TI* = /\I(II(()N, where the Gibbs kernel K € RN*N is a symmetric matriz with entries K;; = exp (—%)
and M\ (K) is the largest eigenvalue of K.
(b) The first two singular values of II* are o1(II*) = %, oo(II*) = %, and the largest and smallest

positive eigenvalues of H are A\i(H) = 2, and Aon—1(H) = % — 02(I1*), where Ao(K) is the second largest
etgenvalue of K.

(¢) The smallest positive eigenvalue of H and the condition number of H satisfies

N -don_1(H) 1

lim lim ———————~ = — lim lim e-k(H) =38, (34)
e—>0t N—>+0o0 € 4 e—0+t N—>+4w©
NXon-1(H 1
lim lim Nzy-1(H) = 47 lim lim ryc(H) = —, (35)
N—>+0 e—0+ TN,e N—+00 e—0+ ’ 27T2

where ry .. = N~ ?exp (—w).

We postpone the proof to Appendiz A.

For a fixed €, when N is large enough, the smallest positive eigenvalue Aoy 1 scales as 45, which is numerically

illustrated in Figure 1(a). Then the condition number scales as %. Meanwhile for fixed N, when € is small enough

2
(e.g., when € < %VL;), the smallest positive eigenvalue scales as %, which is numerically illustrated in Figure

1(b). Then the condition number scales as ﬁ, which grows exponentially at rate O(e~¢). For example, for
N = 50 and € = 0.0001, the condition number of H is larger than 107°; in this case, a truncated SVD for H
is crucial in calculating the Hessian of EOT and the gradient of Sinkhorn distance. On the other hand, when
N = 1500 and € = 0.0001, the condition number of H is only about 8 x 10%. In addition, this scale phenomenon
is also observed for some random datasets as well.

Next, we further numerically investigate the case of point-clouds datasets that are sampled from the uni-
form distribution in the unit square [0,1]. Similarly, we are interested in the spectrum of H associated with
OT (CY=Y | u, ). In figure 1(d) show that Ayy_1 = O(e~ %) when € is small enough for each fixed N, and Figure
1(c) show Aon—1 = O(+) when N is large for each fixed e. These asymptotic orders are the same as the analytical
results proved in Example 12, but the exact limit depends on the distribution of data points, and it is beyond
the scope of this study.

In summary, the H-matrix can be severely ill-conditioned with the smallest eigenvalue at the order of O(e*%)
when € is small, or O(%) when N is large. Thus, when solving a linear system with H, it is important to properly
regularize the ill-posed inverse problem.
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Uniformly distributed point cloud in unit square
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Figure 1: Decay of the smallest positive eigenvalue Aoy _1 in N and e. Equally spaced points on the unique circle:
(a) Aanv—1 ~ ;% when N > %; (b) Aay—1 ~ 472ry . when € < %Vij. Uniformly distributed point cloud in unit
square: (c) Aoy_1 = O(%) when N is large; (d) Aany—1 = O(e*%) when e is small.

5 Hessian computation: runtime, accuracy, and success rate

Our analytical approach enables efficient and accurate computation of the Hessian matrix. Here we compare
it with the current two state-of-the-art approaches suggested by OTT: unroll and implicit differentiation. The
details on these approaches are discussed in Section 3.1.

We use the point-cloud datasets sampled from the uniform distribution in unit square again. The task is
to calculate the Hessian tensor 7 of OT (CY =Y u, ) respect to the source data Y, where pu = %11\[. By

proposition 4, the Hessian satisfies the marginal identity, i.e., 224:1 Tes. = 2uslg. We evaluate the accuracy of
the computed Hessian by the marginal error:

error = Z(E Trts1)? + 2(2 Thtst — 21t5)°. (36)
tAl k t Tk

All simulations are performed on a single Nvidia A100 GPU using double-precision. The threshold « in truncated
SVD is set to a = 10710,

Uniformly distributed point cloud in unit square

Uniformly distributed point cloud in unit square
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Figure 2: Comparison of runtime (in seconds) and marginal error for Hessian computing % among

three approaches; unroll, implicit differentiation and anal%{tic expression with regularization (ours).
Runtime. Figure 2(a) shows the average execution

ime in 10 independent tests for the three approaches
with N € [10,6400] and e € {0.005, 0.05}, corresponding to low and median regularization regimes. The unrolling
and implicit differentiation approaches fail in all 10 tests due to insufficient memory when N > 180 and N > 400,
respectively. However, our analytical approach remains effective for all N, even beyond N = 5000. Additionally,
when all three approaches work, our analytical approach is faster by at least one order of magnitude.

Accuracy. Figure 2(b) shows the average marginal error of the Hessian computed by the three approaches
in 100 independent tests. Here we consider e € {0.005,0.05} and N € [10,180] where all three approaches work.
Both implicit differentiation and unrolling approaches perform poorly across all parameter settings. In contrast,
our analytical approach is significantly more accurate by 3-8 orders of magnitude.

Success rate. Table 1 further highlights the reliability of our analytical approach and the importance of
regularization by reporting the success rate in 100 independent tests. A test is considered successful if the
marginal error of the Hessian (36) is less than 0.1. In the most singular parameter setting, N = 10 and ¢ = 0.005
(as discussed in section 4.4), the implicit differentiation approach fails 97% of the tests due to numerical instability.
Importantly, if we do not regularize the problem using truncated SVD and instead apply the least square solver
directly to solve the linear system, the analytical approach results in large errors ranging from 10~7 to 102 in
15% of the tests. Therefore, proper regularization is crucial when the problem is ill-posed.

To conclude, our analytical approach with regularization enables efficient and accurate computation of the
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Method Unroll TImplicit Analytical(no reg) Analytical(with reg)

N =10 0.78 0.03 0.85 1.00
N =20 0.68 0.18 0.99 1.00
N =120 0.00 1.00 1.00 1.00
N =1600  0.00 0.00 1.00 1.00

Table 1: Success rates of the three approaches for N € {10, 20, 120, 1600} and e = 0.005. A test is called successful
if the marginal error of Hessian (36) is less than 0.1.

Hessian of EOT, significantly outperforming other current state-of-the-art approaches by a large margin in terms
of runtime, accuracy and success rate.

6 Applications to Shuffled Regression

In this section, we apply our proposed algorithms to solve the shuffled regression problem introduced earlier. It
is formulated as the multivariate regression model y* = a6 + £, where € RP,y* € R, 0 € RP*4 and € is the
Gaussian noise independent of 2. The correspondence between (X, Y *) is missing. Our goal is to estimate the
optimal 6* using EOT distance as the loss function in the (1). This approach generalizes to unbalanced datasets
without requiring X and Y* to have the same number of rows. The gradient and the Hessian of the EOT distance
with respect to the parameters 6 are simplified as

dOT (Cy, u,v) +dOT(Cy, p,v)

=X
do dY ’
d>0OT(Cy, p, v g &
(fmgl”) = Z Xsmﬁtlekn (37)
minl  g=1s=1
fort,l =1,...,dand m,n=1,...,D. The EOT distance is generally non-convex with respect to 6, so optimiza-

tion may not converge to the optimal 8*. Our focus is on the convergence speed to a local minimum. First-order
methods may converge to a local minimum but require many iterations due to the complicated landscape of the
loss function. To accelerate optimization, we propose a two-stage approach. First, we use stochastic gradient
descent (SGD) with a random subset of X and the full batch of Y* to quickly approach the local minimum.
Then, we switch to a relaxed Newton’s method, using the updated parameter 6 as the initial condition. The
relaxed-Newton’s method uses step-size v < 1. In practise, we switch from SGD to relaxed-Newton when the

. d?OT (Co,p,v) - .. . . . . . .
computed Hessian ——552== is positive definite. The algorithm is summarized in Algorithm 2.

6.1 Shuffled Regression with Gaussian Mixtures

We first generate N = 500 data points X € R® from a Gaussian mixture distribution with three clusters whose
standard deviation is [0.3,0.05,0.6]. The parameter 0* € R5*2 is generated with components 6%, ~ N(0,1), and
the Gaussian noise € € R? follows & ~ N(0,0.0415). We then compute y¥ = ;0% + &;, randomly and completely
permute the order of ¢, removing X-to-Y* correspondence.

Starting with an random initial condition #(°) from the standard normal distribution, the target data Y* and
the initial data Y (6(®)) are shown in Figure 3(a). We use the two-stage algorithm described in Algorithm 2. In
the first stage, we perform 10 iterations of SGD on 100 random source data points with a learning rate of 0.001.
In the second stage, we use a relaxed Newton’s method with a learning rate of 0.5. We compare this to a gradient
descent (GD) method with a learning rate of 0.001.

Figure 3(b) shows that both methods correctly map the data X to the target data Y*. Figure 3(c-d) shows
that both methods converge to the optimal 6*, but the relaxed Newton’s method is faster and more accurate.
The relaxed Newton’s method converges in 12 iterations with a runtime of 2.35 seconds, while GD takes 2000
iterations and 64.77 seconds, which is 27 times longer. Additionally, the relaxed Newton’s method achieves nearly
one order of magnitude better accuracy in terms of the Lo error || — 8%||.

Further analysis shows that the eigenvalues of Hessian with respect to #* range from 1072 to 102, indicating
that the optimal parameter lies in a long, narrow, flat valley, causing the gradient descent method to converge
slowly.

6.2 3D Point Cloud Registration

In this section, we extend our method to 3D point clouds registration, a critical task in computer vision. The goal
is to find a spatial transformation that aligns two 3D data clouds without knowing the correspondence, known as
simultaneous pose and correspondence registration [18, 25].
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Input: Data X, target data Y*, entropy regularization strength ¢, truncated SVD threshold «; initial guess of
6 SGD learning rate 75, mini batch size ny, maximum epochs T’; Relaxed Newton learning rate r,,.
Output: Estimated optimal 6%, regularized optimal transport loss OT¢(Cpyx, pt, V).
1: Set 1« n%lng: n— ﬁlN and v «— %11\;.
Stage 1 SGD :
2: fort=20,...,7—1 do,
: Randomly sample ns rows of X, denote as X.

4: Compute ¥ « X -6® and cost matrix C’gﬁy* — g — y[3-
5 Q) gty XTAOT(CT T i)
6: if W‘gze(tﬁ-l) is positive definite then
7 stop Stage 1 with the current 6 — g+,
Stage 2 Relaxed Newton’s method :
8: Set 0 « 4.
9: fort=20,...,7T—1do
10: Compute Y « X - 0® and cost matrix Cj; « |y; — y¥3
) g (W)*1 (& 90Tyt
12: if OT.(Cye+1), ,v) doesn’t improve then
13: Quit Stage 2 with 6% «— @(t+1),

Algorithm 2: Two-stage algorithm to estimate optimal 8* of EOT distance (4).

Using the MobilNet10 dataset [25], we create a study room with a chair (500 points), a desk (1500 points),
and a sofa (1500 points), denoted as X. We apply a linear transformation including random rotation and scaling,
and add Gaussian noise: Y* = X0* + £ with & ~ V(0,4 x 107%I3). The rows of Y* are randomly permuted to
remove correspondence.

We use the algorithm from Algorithm 2. The initial parameter 8(°) is a standard Gaussian perturbation of
the optimal parameter 6*. In the first stage, we perform 5 iterations of SGD on 500 random data points with
a learning rate of 0.1. In the second stage, we use a relaxed Newton’s method with a learning rate of 0.5. For
comparison, the GD method uses a learning rate of 0.1.

As shown in Figure 4, both methods converge, but at different speeds. The relaxed Newton’s method converges
in 9 iterations with a runtime of 17.20 seconds, while the GD-only method takes 922 iterations (runtime 314.55
seconds) to reach a comparable loss. Additionally, the relaxed Newton’s method achieves about 0.6 orders of
magnitude improvement in accuracy in terms of Ly error.

7 Conclusion

In this work, we computed first-order and second-order derivatives for the parameterized regularized optimal
transport (OT) distance. Specifically, we derived explicit analytical expressions for the gradient of the Sinkhorn
distance and the Hessian of the entropy-regularized OT (EOT) distance with respect to the source data Y.

To address the numerical instability and high memory consumption typically associated with Hessian com-
putation in large-scale, multi-dimensional problems, we developed a fast, stable, and memory-efficient algorithm
using spectral analysis of the ill-posed linear system. Our algorithm demonstrated significant improvements in
both efficiency and accuracy on various benchmark datasets.

These results highlight the potential of our proposed algorithm to enhance the performance and reliability of
optimization tasks in complex, high-dimensional spaces, particularly in regression without correspondence.

Future work may explore further refinements of our stabilization thresholds by studying the limiting behavior
of condition numbers on other random datasets, as well as the computation of robust second-order differentiation
for more general regularized and constrained optimal transport problems.

Data Availability

The software package implementing the proposed algorithms can be found on:
https://github.com/yexf308/OTT-Hessian.
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Figure 3: Shuffled Regression with Gaussian Mixtures.
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A Proofs for spectral analysis

The proof of Proposition 11 is based on an application of Weyl’s inequality to study the eigenvalues of the
H-matrix under perturbation.

Lemma 13 (Eigenvalues under perturbation). Let II,TI* be two positive coupling matrices with A = II — IT*
satisfying

mzax|;Aij\ <4y, m?x\zi:Am <4y, ;A?j <43, (38)
Then, the eigenvalues of their H-matrices are close:

Ae(H(IT)) — N (H(IT*))| < 61 4+ 82, 1<k< N+ M.
Proof of Lemma 13. Note that we can write the

. N
) — gy — | ey Aig) 4 — E. (39)
AT diag(5;~; Ai;)

By Weyl’s inequality, we have |\, (H*) — A (H)| < ||E|op- Thus, it suffices to estimate | E|,p. Note that first that
using |A; ;| < 1 and (38), we have 3, | 3 A jui* = X, | 2, A jPuf < 3, |25 Aijlui < 0F[ul?, and similarly,
25 1205 Aiui? < 0Fuf?s also, [Av|? = X, 12 AijuiP < X (X547, 25 [0 P] < 03[0, and similarly,
[ ATul? < 3 ul?.
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Using these four bounds, we have | E[[2, = sup,crnt wern a2+ [o)2=1 | E [ ] |?, then | E|2, = 35, | p A juil?+
|Av[[2 4305 [ X Aijus|*+[ AT ul* < 67463 < 61405, Combining with Weyl’s inequality, we conclude the proof. [

Proof of Proposition 11. The bound for the eigenvalues in (33) follows from (32) and Lemma 13. To prove the
bounds for the condition number, recall that in the proof of Theorem 9, we have shown that \; :— M (H(IT%)) =
% + ﬁ and AN+M_1 = >\N+]y[_1(H(H*)) = %)\1 [1 — \/1 —4A| € [)\1A72A1A] with A = )\ (0'1 — O'%) For
0 + 02 = tA1A with t € [0,1), Eq.(33) implies that

(1 — t))\lA < ANimM-_1—0—02 < ANim— 1(H(H)) < ANsm—1+6+62
(2 + t)/\lA

<
<
g/\l( ( ))\)\1+(5+52<)\1(1+tA).

)\1(1 — tA) <A — ((5 + 52)
Consequently, we obtain the bounds by noting that

1+tA< A1 — (0 + 02) < w(H(ID)) < A1+ (0 + 02) <1+tA
(2+t)A = AN+M—1 + (5+(52) = = AN+M—1 — (5+52) = (1—t)A’

—~

O

Proof of Example 12. Part (a): Note that the cost matrix C' is Cy; = [y; — y;]3 = 4sin® (z)j—4/2) and the
Gibbs kernel K;; = exp (—w) is circulant, whose rows and columns sum is Ay (K) = Z;V;Ol exp (—M) .
Then the matrix II* = ﬁ satisfies the uniform marginal constraints on IT*, hence, it is the optimal coupling

matrix due to uniqueness of the solution of the contraint optimization (4).

Part (b) follows directly from Corollary 10.

Part (c), We first compute the largest two eigenvalues of K. Recall that the matrix K is symmetric and
positive-definite, so its singular values are the same as its eigenvalues. Since K is circulant, the first two eigenvalues
of K are (see e.g., [16]), we have

4s1n2(3—) & 4sin”(%7) 24w
Z exp( N >7>\2(K)=JZE) exp( €N> cos (]if)

Meanwhile, combining Part (a) and Part (b), we have Aoy_1(H) = +(1 — ifgg) Thus, to study the limits, we
first study the limit of A\ (K) and Ay(K).
As N — 4+, the Riemann summations in A\; and Ay approaches the integrals

T 22
lim Ll(K) = l‘[ exp (_4sm (x)) dr = exp (—2> Iy (2>
No+wo N T Jo € € €

o N(K) 1 (T 4sin?(x) B 2 2
N1—1>I£»1CX) I —WLexp<— . cos(2x)dx = exp - I )

where I1(z) and I3(z) are the modified Bessel functions of first kind. Then, the limit of the second smallest
eigenvalue of H is

A (K)o LL(2/e)

lim (N-doy_1(H)=1— li - .
N (V- Az -1 (H)) N A (K) To(2/¢)

When € is small, we can expand I (z) and Iy(z) around = = 400,

(/2! 3(e/2)*? + 0(6/2)5/2

- Var 8v/2m € 2
lim (N-Xoy-1(H)) =1—- 55— 7 =—+0(e).
NS +oo (e/2)'72 /2) 4+ (272 /2 + O(e/2)5/2 4
Then, we have lim,_,o+ limy_, 44 M = 1, and lim_,q+ limy_ 1o e>\2N (?L) = 8, which gives (34).

(
To prove (35), note first that when N is fixed and ¢ — 0%, A\;(K) and \2(K) are approximated by the three
largest terms,

4 4 . 2
M(K) = 1+ 2exp(—= sin’ (N)) 0L M(K) =1+ 2exp(—z31n2(%))cos(ﬁﬂ-) + 0.
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€

where O, := O (exp (—M)). Consequently,

+ O,
) + 0

2(1 — cos(%F))
2

4 4w
- —) | Ndan_1(H) =
exp(esm (N)> 2v-1(H) 1+ 2exp (—2 sin®(

Taking the limits with limy_, 1o lim,_, ¢+, we obtain

N—>+00e—-0+

4sin® (/N
lim lim N3exp (Sm(”/)> Non_1(H) = 4.
€
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