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Abstract

Applications such as unbalanced and fully shuffled regression can be approached by optimizing regularized
optimal transport (OT) distances, such as the entropic OT and Sinkhorn distances. A common approach for
this optimization is to use a first-order optimizer, which requires the gradient of the OT distance. For faster
convergence, one might also resort to a second-order optimizer, which additionally requires the Hessian. The
computations of these derivatives are crucial for efficient and accurate optimization. However, they present
significant challenges in terms of memory consumption and numerical instability, especially for large datasets
and small regularization strengths. We circumvent these issues by analytically computing the gradients for OT
distances and the Hessian for the entropic OT distance, which was not previously used due to intricate tensor-
wise calculations and the complex dependency on parameters within the bi-level loss function. Through
analytical derivation and spectral analysis, we identify and resolve the numerical instability caused by the
singularity and ill-posedness of a key linear system. Consequently, we achieve scalable and stable computation
of the Hessian, enabling the implementation of the stochastic gradient descent (SGD)-Newton methods. Tests
on shuffled regression examples demonstrate that the second stage of the SGD-Newton method converges
orders of magnitude faster than the gradient descent-only method while achieving significantly more accurate
parameter estimations.

1 Introduction

Optimal transport (OT) provides a powerful tool for finding a map between source and target distributions,
especially when they are represented by ensemble samples without correspondence. Examples include shuffled
regression [1, 17, 23], unlabeled sensing [12, 33, 34, 37], homomorphic sensing [31, 32], regression with an unknown
permutation [19], or more broadly, as regression without correspondence [3, 17,22,27,36].

The task is to find a parameterized function y “ F px; θq that maps ensemble of sourcesX “ txiu
M
i“1 P RMˆD to

targets Y ˚ “ ty˚
j uNj“1 P RNˆd with probability weights µ and ν. Here, µ “ pµ1, . . . , µM qJ and ν “ pν1, . . . , νN qJ

satisfy µJ1M “
řM

i“1 µi “ 1,νJ1N “
řN

j“1 νj “ 1 and 0 ă µi, νj ă 1. Note that M may not be equal to N , and
the same applies to D and d. The absence of a one-to-one correspondence between the source and target data
samples makes classical supervised regression methods inapplicable.

The OT solution finds an optimal θ by minimizing a loss function Lpθq between the image of the source data
Yθ “ F pX; θq and the target data Y ˚, that is,

min
θ

LpCYθÑY ˚

,µ,νq, (1)

where the cost matrix CYθÑY ˚

ij “ cpyipθq,y˚
j q and c is a function of cost between yi and y˚

j . Throughout this
study, we assume that cpy,y˚q is twice-differentiable, for instance, the squared Euclidean distance cpy,y˚q “

}y ´y˚}22. Several popular OT distances are candidates for the loss function, including the Wasserstein distance,
the entropy-regularized OT (EOT) distance, and the Sinkhorn distance [24]; see Section 2.1 for a brief review.

Each of them leads to a bi-level optimization problem; for example, the EOT distance OTϵpC
YθÑY ˚

,µ,νq leads
to

min
θ

min
ΠPRMˆN

ě0 ,

Π1N“µ,ΠJ1M“ν

M
ÿ

i“1

N
ÿ

j“1

CYθÑY ˚

ij Πij ` ϵKLpΠ,µ b νq.

A crucial component of the optimization process is computing the derivatives of the loss function with respect
to θ, and hence the derivatives of the OT distance with respect to data Yθ. First-order optimization methods
require the gradients of the OT distances. Danskin’s theorem provides analytical gradients for the EOT distance
[5,8,14,15], but it does not apply to the Sinkhorn distance. Hence, the generic implicit differentiation method [20]
has been widely applied to OT distances [6,10,11,35,36]. However, first-order optimization methods often converge
slowly.
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To accelerate the convergence, a common strategy involves using stochastic gradient descent (SGD) initially,
followed by Newton method’s iterations, which necessitates computing the Hessian. Automatic differentiation
and implicit differentiation are the two main methods for computing the Hessian [6, 9, 10]; see Section 3.1 for
a detailed discussion. However, both methods encounter significant challenges, such as memory shortages when
the dataset is large and numerical instability due to singularity or ill-posedness, particularly when the entropy
regularization strength ϵ is small. These issues impede the success of the SGD-Newton strategy.

We solve these issues by introducing analytical gradients for the OT distances and an analytical Hessian for the
EOT. In particular, we achieve scalable and stable computation of the Hessian by using the analytical expression
to locate and resolve the singularity or ill-posedness through spectral analysis. Our Algorithm 1 significantly
outperforms the automatic differentiation and implicit differentiation method in runtime and accuracy by orders
of magnitudes; see Section 5. As a result, we enable the success of the SGD-Newton strategy for accelerating the
bi-level optimization, as we demonstrate on parameter estimation for shuffled regression of mixed Gaussian and
3D Point Clouds Registration of MobilNet10 dataset [18,25]; see Section 6.

The key in our derivation is the linear system for the optimal dual potentials, e.g., (17) or (19), which is
inspired by the implicit differentiation in [6] and the second-order Fréchet derivative of the Sinkhorn divergence
loss under the Wasserstein metric in [28]. Emerging from the implicit differentiation, this linear system facilitates
efficient computation of the gradient of the OT distances as well as the Hessian of the EOT distance. In particular,
when used together with Eq.(18) from the marginal constraints, it bridges implicit differentiation and Danskin’s
theorem in the context of EOT distance.

Furthermore, we provide a comprehensive spectral analysis for the linear system for the dual potentials through
the matrix

HpΠq :“

„

diagpΠ1N q Π
pΠqJ diagpΠJ1M q

ȷ

P RpM`NqˆpM`Nq, (2)

where Π is the coupling matrix. We show that when Π has positive entries, HpΠq has zero as a simple eigenvalue,
and its effective condition number (i.e., the ratio of the largest and smallest positive eigenvalues) has upper and
lower bounds depending on the spectral gap of ΠJΠ. In particular, we construct an example showing that HpΠq

can be severely ill-conditioned with the smallest positive eigenvalue at the order of Ope´ 1
ϵ q when ϵ is small, or

Op 1
N q when N is large. Thus, when solving a linear system with H, proper regularization is crucial.
Our main contributions are threefold.

• Analytical derivatives and spectral analysis. We derive analytical gradients with respect to the data Y for
EOT and Sinkhorn distances and Hessian for the EOT distance in Section 3.2–3.3. The spectral analysis
in Section 4 helps us understand and resolve the numerical instability issue via a proper regularization in
Section 3.4.

• Fast stable computation of Hessian. Our algorithm enables a stable, memory-efficient, and fast computation
of the Hessian, significantly outperforming other state-of-the-art methods in runtime and accuracy by orders
of magnitudes; see Section 5.

• Enabling SGD-Newton for shuffled regression. With the robust computation of the Hessian, we are able to
apply the SGD-Newton method to shuffled regression problems in Section 6, significantly accelerating the
optimization process.

1.1 Outline

This work is organized as follows. Section 2 reviews the various (OT) distances and the Sinkhorn algorithm.
Section 3.2 is devoted to the analytical and numerical computation of the gradients and Hessian, leading to
an algorithm with proper regularization. Then, we analyze the spectrum of the matrix HpΠq in Section 4.
In Section 5, we examine the efficiency and accuracy of Hessian computation using a benchmark example and
compare the results with other approaches. Then we apply the proposed algorithm to applications in Section 6,
including the parameter estimation for shuffled regression of mixed Gaussian and 3D Point Clouds Registration
of MobilNet10 dataset.

2 Optimal Transport Loss and Sinkhorn Algorithm

Ideally, we could find θ˚ by minimizing the optimal transport distance between the parameterized source data
Yθ and the target data Y ˚. We will first review some classical results in computational optimal transport [24]

in this section. In the section, we ignore θ in the notation and C is the abbreviation of CY ÑY ˚

, unless noted
otherwise.
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2.1 Optimal Transport Loss Functions

2.1.1 Wasserstein-2 Metric

One popular choice is to use the Wasserstein-2 metric as the optimal transport loss, equivalently, LpC,µ,νq “

W 2
2 pC,µ,νq. To calculate the Wasserstein-2 metric, one has to solve a constraint optimization problem,

W 2
2 pC,µ,νq :“ min

ΠPRMˆN
ě0 ,

Π1N“µ,ΠJ1M“ν

M
ÿ

i“1

N
ÿ

j“1

CijΠij , Cij “ cpyi,y
˚
j q, (3)

where cpyi,y
˚
j q “ }yi ´y˚

j }22 is the cost of transport, and the coupling matrix Π P r0, 1sMˆN is the transport plan
from the parameterized source data Y to the target data Y ˚. To solve the constraint optimization via linear
programming, the computational complexity is OppN ` MqNM logpN ` Mqq [24], which is very expensive when
N,M are large. To overcome this issue, one often regularizes the objective function. Common regularization
includes the EOT distance, the Sinkhorn distance, which we briefly review below.

2.1.2 Entropy-regularized OT (EOT) Distance

The EOT distance is the Wasserstein-2 loss plus the relative entropy between two measures:

OTϵpC,µ,νq :“ min
ΠPRMˆN

ě0 ,

Π1N“µ,ΠJ1M“ν

M
ÿ

i“1

N
ÿ

j“1

CijΠij ` ϵKLpΠ,µ b νq, (4)

where the relative entropy between the coupling matrix Π and the outer product µ
Â

ν is KLpΠ,µ b νq :“
řM

i“1

řN
j“1 Πij log

Πij

µiνj
. This regularization drastically simplifies the study of the dual problem and further leads

to the Sinkhorn algorithm for its unique numerical solution [24]. As ϵ goes to 0, EOT converges to the Wasserstein-
2 distance at the rate of ϵ [20].

2.1.3 Sinkhorn Distance

Another candidate for the regularized OT loss is called the Sinkhorn distance, ĄOTϵpC,µ,νq,

ĄOTϵpC,µ,νq :“
ÿ

ij

CijΠ
˚
ij , with Π˚ “ argmin

ΠPRMˆN
ě0 ,

Π1N“µ,ΠJ1M“ν

ÿ

ij

CijΠij ` ϵKLpΠ,µ b νq. (5)

Sinkhorn distance eliminates the contribution of the entropy regularization term from OTϵpC,µ,νq to the total
loss L after the transport plan Π˚ has been obtained. It actually gives even better approximation results and con-

verges to the Wasserstein-2 distance exponentially fast. More precisely, we have
ˇ

ˇ

ˇ

ĄOTϵpC,µ,νq ´ W 2
2 pC,µ,νq

ˇ

ˇ

ˇ
ď

c expp´1{ϵq [20].

2.2 Sinkhorn Algorithm

From now on, we firstly choose the EOT cost as the loss function, i.e., LpC,µ,νq “ OTϵpC,µ,νq though we will
discuss the others later. The computation of this quantity, i.e. the constraint optimization (4) is solved by the
well-known Sinkhorn algorithm. For the notation consistency and ease on the readers, we will review necessary
details of this algorithm. One can account for the constraints by introducing two slack variables, known as the
dual potentials, f P RM , g P RN , for each marginal constraint of (4). Because

ř

i

ř

j µiνj “
ř

i µi

ř

j νj “ 1, the
corresponding augmented Lagrangian is

LpC,Π,f , gq “
ÿ

ij

CijΠij ` ϵ
ÿ

ij

Πij

ˆ

log
Πij

µiνj
´ 1

˙

` ϵ ´
ÿ

i

fip
ÿ

j

Πij ´ µiq ´
ÿ

j

gjp
ÿ

i

Πij ´ νjq .
(6)

The first-order optimality condition BLpC,Π,f ,gq

BΠij
“ 0 yields the expression of the optimal coupling Π˚ is

Π˚
ij “ µiνj exp

ˆ

´Cij ` f˚
i ` g˚

j

ϵ

˙

, (7)

3



where f˚
i and g˚

j are the optimal dual potentials. It ensures that the optimal coupling matrix Π˚ is entry-wise
positive. An intuitive scheme is to alternatively rescale rows and columns of the Gibbs kernel to satisfy the
marginal constraint, which is called Sinkhorn algorithm [7, 21, 29, 30]. Numerically, however, this computation
becomes unstable when ϵ is small. The stable Sinkhorn iteration is thus performed in the log-domain [7, 24],

f pl`1q “ ϵ logµ ´ ϵ log
´

K exppgplq{ϵq
¯

, gpl`1q “ ϵ log ν ´ ϵ log
´

KJ exppf pl`1q{ϵq
¯

with the initial vector to be gp0q “ 0N and the Gibbs kernel K “ exp
`

´C
ϵ

˘

. As l goes to `8, both converge to
f˚ and g˚. In practice, the iteration stops when the 1-norm of marginal violation is within the threshold value.

Then we get the EOT distance OTϵpC,µ,νq in terms of the dual problem,

OTϵpC,µ,νq “ LpC,Π˚,f˚, g˚q “
“

µJ νJ
‰

„

f˚

g˚

ȷ

. (8)

Overall the computational complexity of EOT to achieve τ -approximate of the unregularized OT problem is
OpN2 logpNqτ´3q whenM “ N [2,24], which is significant improvement to the linear programming of Wasserstein-
2 metric.

Similarly, ĄOTϵpC,µ,νq gives

ĄOTϵpC,µ,νq “
ÿ

ij

CijΠ
˚
ij “

ÿ

ij

µiνjCije
´Cij`f˚

i
`g˚

j
ϵ . (9)

3 Differentiation of Loss Functions

In this section, we introduce robust computations for the gradients of these regularized OT loss functions and for
the Hessian of the EOT distance. Our computations show that costly backward propagation can be avoided even
for the Hessian.

We recall the problem setup (1) and first study the analytic form of the gradient and hessian of EOT distance
with respect to the parameter θ, which read

BOTϵpCθ,µ,νq

Bθi
“

M
ÿ

k“1

Byk

Bθi

BOTϵpCθ,µ,νq

Byk
, (10)

B2OTϵpCθ,µ,νq

BθiBθj
“

M
ÿ

k“1

M
ÿ

s“1

ˆ

Bys

Bθi

˙

B2OTϵpCθ,µ,νq

BysByk

ˆ

Byk

Bθj

˙J

`

M
ÿ

k“1

B2yk

BθiBθj

BOTϵpCθ,µ,νq

Byk
. (11)

Here Cθ is the abbreviation of CYθÑY ˚

emphasizing the dependence on Yθ. The key step is to find the ex-

plicit expression for the first derivatives with respect to the source data BOTϵpCθ,µ,νq

Byk
P Rd and the second-order

derivatives with respect to source data B
2OTϵpCθ,µ,νq

BysByk
P Rdˆd.

3.1 Previous methods computing first- and second-order derivatives

For the analytical expression of the first-order derivatives of regularized OT distances, there are two main ap-
proaches: the Danskin approach and the implicit differentiation approach. The Danskin approach computes the
gradient of EOT, based on applying the Danskin’s theorem to the dual function [5,8,14,15]. Recall the Lagrangian
LpC,Π,f , gq is a function of C,Π,f and g and OTϵpC,µ,νq “ maxΠ,f ,g LpC,Π,f , gq. The Danskin’s theorem
states that given f˚, g˚,Π˚, the gradient of OTϵpC,µ,νq with respect to yk is

BOTϵpC,µ,νq

Byk
“

ÿ

ij

BCij

Byk

BOTϵpC,µ,νq

BCij
“

ÿ

ij

BCij

Byk

BLpC,Π˚,f˚, g˚q

BCij

“
ÿ

ij

BCij

Byk
Π˚

ij “
ÿ

j

BCkj

Byk
Π˚

kj . (12)

Once Π˚ is obtained from Sinkhorn algorithm, the first-order derivative with respect to the source dataset
Y immediately follows without additional computational cost. The Danskin’s approach naturally extends to
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the de-biased Sinkhorn divergence SϵpCθ,µ,νq, but unfortunately this approach doesn’t work on the Sinkhorn

distances ĄOTϵpCθ,µ,νq because it is not of the form maxΠ,f ,g ϕpC,Π,f , gq. An implicit differentiation approach
is thus introduced in [20]. It implicitly differentiates the associated marginal constraints to derive a large linear
system, which is solved by the conjugate gradient solver in lineax [26]. It applies to different regularized OT
problems [6, 10,11,35,36].

For computing the Hessian of the OT distances, up to our knowledge, there is no direct analytical expression
before the current work. There are two approaches suggested by OTT [9]. The first approach unrolls the Sinkhorn
iterations and use the JAX in-build tools to handle autodiff via backward propagation and computational graph.
The second approach implicitly differentiates the optimal solutions computed by OTT. The implicit differentiation
approach involves differentiating the solution of an ill-conditioned linear system with the custom differentiation
rules [9], hence, regularization techniques, such as preconditioning the marginal constraints [10] and the ridge
regularization, have been introduced to try to resolve this issue. However, as we will demonstrate in Section 5,
both approaches still encounter two major challenges: (i) memory shortages when the dataset is large, and (ii)
numerical instability due to singularity and the ill-posed nature of the linear system, particularly when ϵ is small.

The key in our derivation is the linear system for the optimal dual potentials, e.g., (17) or (19), emerged
from the application of the implicit differentiation. It facilitates efficient computation of the gradient of the
Sinkhorn distance as well as the Hessian of the EOT distance. Additionally, together with (18), it bridges
implicit differentiation and Danskin’s theorem in the context of the EOT distance.

3.2 Analytical computation of the gradients

We first review the implicit differentiation approach to the gradient of the EOT distance OTϵpC,µ,νq with respect
to source data Y and re-derive the result of Danskin’s approach in (12) through the key observation. We further

provide a novel numerical method to efficiently compute the derivative of Sinkhorn distance ĄOTϵpC,µ,νq.

Gradient of OTϵpC,µ,νq. We first consider the gradient of the EOT distance with respect to the source data
yk

BOTϵpC,µ,νq

Byk
“

M
ÿ

i“1

µi
Bf˚

i

Byk
`

N
ÿ

j“1

νj
Bg˚

j

Byk
“

“

µJ νJ
‰

«

Bf˚

Byk

Bg˚

Byk

ff

, (13a)

where Bf˚

Byk
“

´

Bf˚
1

Byk
, . . . ,

Bf˚
M

Byk

¯J

P RMˆd, and similarly Bg˚

Byk
P RNˆd. To simplify the notation, we denote

´

df˚

dY

¯

iks
“

Bf˚
i

Bpykqs
and

´

dg˚

dY

¯

jks
“

Bg˚
j

Bpykqs
, so df˚

dY P RMˆMˆd and dg˚

dY P RNˆMˆd.

We write the gradient in the vector form

dOTϵpC,µ,νq

dY
“ µJ df˚

dY
` νJ dg˚

dY
“

“

µJ νJ
‰

«

df˚

dY
dg˚

dY

ff

P RMˆd. (13b)

Theorem 1. The derivative of EOT distance in (8) with respect to source data yk, as in (13a), is given by

BOTϵpC,µ,νq

Byk
“

N
ÿ

j“1

BCkj

Byk
Π˚

kj , k “ 1, . . . ,M. (14)

In vector form, the derivative of OTϵpC, µ, νq with respect to whole source data Y is

dOTϵpC,µ,νq

dY
“ B ¨ 1N , (15)

where B P RMˆdˆN is a tensor with entries Bksj “
BCkj

Bpykqs
Π˚

kj, and B ¨ 1N P RMˆd is the dot product which is the

summation of the third index such that the k-th column is pB ¨ 1N qk “
ř

j
BCkj

Byk
Π˚

kj for 1 ď k ď M .

Proof. The main task is to find Bf˚

Byk
and Bg˚

Byk
in (13a) using (7) and the marginal probability conditions. The

partial derivative of entries of optimal coupling matrix Π˚ with respect to yk is

BΠ˚
ij

Byk
“

Π˚
ij

ϵ

ˆ

´
BCij

Byk
`

Bf˚
i

Byk
`

Bg˚
j

Byk

˙

“
Π˚

ij

ϵ

ˆ

´
BCkj

Byk
δik `

Bf˚
i

Byk
`

Bg˚
j

Byk

˙

, (16)
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where δik is a Kronecker delta function. We observe that with the marginal probability conditions
řN

j“1 Π
˚
ij “ µi

and
řM

i“1 Π
˚
ij “ νj , and by taking the partial derivative B

Byk
on both sides of these marginal constraints, we can

get

0 “

N
ÿ

j“1

BΠ˚
ij

Byk
“

µi

ϵ

Bf˚
i

Byk
´

1

ϵ

«

N
ÿ

j“1

ˆ

BCkj

Byk
δik ´

Bg˚
j

Byk

˙

Π˚
ij

ff

,

0 “

M
ÿ

i“1

BΠ˚
ij

Byk
“

νj
ϵ

Bg˚
j

Byk
´

1

ϵ

«

M
ÿ

i“1

ˆ

BCkj

Byk
δik ´

Bf˚
i

Byk

˙

Π˚
ij

ff

.

Hence we have

µi
Bf˚

i

Byk
`

N
ÿ

j“1

Bg˚
j

Byk
Π˚

ij “

N
ÿ

j“1

BCkj

Byk
Π˚

ijδik P Rd, @1 ď i ď M,

M
ÿ

i“1

Bf˚
i

Byk
Π˚

ij ` νj
Bg˚

j

Byk
“

BCkj

Byk
Π˚

kj P Rd, @1 ď j ď N.

With HpΠq defined in (2), the above linear system can be written in matrix form,

„

diagpµq Π˚

pΠ˚qJ diagpνq

ȷ

looooooooooooomooooooooooooon

“HpΠ˚q

«

Bf˚

Byk

Bg˚

Byk

ff

“

„

ekpBk1N qJ

BJ
k

ȷ

, (17)

where ek is the k-th standard column basis of RM and the matrix Bk P RdˆN is pBkqsj “
BCkj

Bpykqs
Π˚

kj . Instead of

solving the above linear system to evaluate (13a), we observe from the marginal constraints that

“

1
M 1J

M
1
N 1J

N

‰

HpΠ˚q “

ˆ

1

M
`

1

N

˙

“

µJ νJ
‰

. (18)

Then, multiplying both sides of (17) by
“

1
M 1J

M
1
N 1J

N

‰

, we obtain

“

1
M 1J

M
1
N 1J

N

‰

HpΠ˚q

«

df˚

dyk

dg˚

dyk

ff «

df˚

dY
dg˚

dY

ff

“
“

1
M 1J

M
1
N 1J

N

‰

„

ekpBk1N qJ

BJ
k

ȷ

.

Hence, the derivative of OTϵpC,µ,νq with respect to source data yk is

dOTϵpC,µ,νq

dyk
“

“

µJ νJ
‰

«

df˚

dyk

dg˚

dyk

ff

“
1

1
M ` 1

N

“

1
M 1J

M
1
N 1J

N

‰

„

ekpBk1N qJ

BJ
k

ȷ

Bk1N “

N
ÿ

j“1

BCkj

Byk
Π˚

kj .

If we define the third-order tensor B by stacking the matrices tBkuMk“1, that is the k-th component Bk¨¨ “ Bk,
then the linear system (17) can be further vectorized as

HpΠ˚q

«

df˚

dY
dg˚

dY

ff

“ R, with R :“

„

diagpB ¨ 1N q

BJ

ȷ

P RpM`NqˆMˆd (19)

where diagpB ¨1N q is a third-order tensor, with diagpB ¨1N qkks “ pB ¨1N qks and zeros for the other entries, and BJ

is the transpose of permutation of indices defined by
`

BJ
˘

ijk
“ Bkij . Hence, by plugging (19) back to (13b), the

derivative of OTϵpC,µ,νq with respect to the source data Y in the tensor form is equal to dOTϵpC,µ,νq

dY “ B¨1N .

This theorem not only implies that automatic differentiation is unnecessary for computing the gradient of EOT

distance but also that solving the large linear system (19) for df˚

dyk
and dg˚

dyk
is not needed. The analytical expression
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of the gradient follows directly from the cost matrix Cθ and optimal coupling matrix Π˚ from the Sinkhorn
algorithm, which can significantly speed up the computation. This theorem provides a different approach to
derive the same analytical result other than the Danskin’s theorem. We emphasize that the gradient formula (15)
is generic and applies to any choice of cost matrix C without requiring µ and ν to be uniform. In particular, if the

Sinkhorn iteration stops early and the coupling matrix pΠ is suboptimal, the formula is still exact for dOTϵpC,µ̃,ν̃q

dY

given suboptimal coupling matrix pΠ and associated marginals µ̃ and ν̃, where
ř

j
pΠij “ rµi and

ř

i
pΠij “ rνj .

Gradient of ĄOTϵpC,µ,νq. The above techniques also applies for computing the gradient of the Sinkhorn

distance ĄOTϵpC,µ,νq. Although it does not yield an analytical expression, it helps significantly reduce the
computational cost by avoiding directly solving the linear system (19), which is costly since the right-hand-side
is a large third-order tensor R. Specifically, we have the following novel result.

Proposition 2. The gradient of Sinkhorn distance in (9) with respect to the source data Y is

dĄOTϵpC,µ,νq

dY
“

ˆ

B ´
A
ϵ

˙

¨ 1N `
1

ϵ
rJR, (20)

where B and R are defined in (19), the third-order tensor A is Aksj “
BCkj

Bpykqs
CkjΠ

˚
kj. The vector r is the solution of

the linear system, HpΠ˚qr “

„

a
b

ȷ

, where vectors a and b have entries ai “
řM

j“1 CijΠ
˚
ij and bj “

řN
i“1 CijΠ

˚
ij.

Proof. From (9) and (16), the derivative of Sinkhorn distance with respect to the data yk is

dĄOTϵpC,µ,νq

dyk
“

N
ÿ

j“1

ˆ

1 ´
Ckj

ϵ

˙

Π˚
kj

BCkj

Byk
`

1

ϵ

˜

M
ÿ

i“1

ai
Bf˚

i

Byk
`

N
ÿ

j“1

bj
Bg˚

j

Byk

¸

,

where ai “
řN

j“1 CijΠ
˚
ij , and bj “

řM
i“1 CijΠ

˚
ij . The main computation burden is the second term. To compute

ˆ

ř

i ai
Bf˚

i

Byk
`

ř

j bj
Bg˚

j

Byk

˙

, a common practice is to solve the linear system (19) to get all Bf˚

Byk
and Bg˚

Byk
, which is

computationally expensive because the right-hand-side of (19) is a third-order tensor R.
Although we do not have (18) as a and b are no longer the marginal constraints of Π˚, we can yet apply the same
technique to reduce the computation costs by solving the following matrix-vector form of linear system only once

HpΠ˚qr “

„

a
b

ȷ

P RpM`Nq.

That is, we only need to solve for one time the matrix-vector form of the linear system, for the column vector
r. This can be efficiently solved by conjugate gradient method with early stopping.

Notice that
“

aJ bJ
‰

„

1M

´1N

ȷ

“ 0M`N , and

„

1M

´1N

ȷ

is in the kernel space of HpΠ˚q as proved in Lemma 6,

so

„

a
b

ȷ

is in the span of HpΠ˚q, therefore the linear system above always has a solution.

Notice that

ÿ

i

ai
Bf˚

i

BY
`

ÿ

j

bj
Bg˚

j

BY
“

“

aJ bJ
‰

«

df˚

dY
dg˚

dY

ff

“ rJHpΠ˚q

«

df˚

dY
dg˚

dY

ff

“ rJR.

Hence, we prove (20).

3.3 Computation of the Hessian

In this subsection, we analytically compute the Hessian of the loss function with respect to the source data Y.
We mainly focus on the EOT distance.

Theorem 3. The second-order derivative of EOT distance OTϵpC,µ,νq with respect to the source data Y is
given by the fourth order tensor T P RMˆdˆMˆd

Tktsl “
1

ϵ

M`N
ÿ

i,j“1

RiktH
:

ijRjsl ` Ektsl, for k, s “ 1, . . . ,M and t, l “ 1, . . . , d, (21)
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where H: is the Moore–Penrose inverse of matrix HpΠ˚q P RpM`NqˆpM`Nq defined in (2), and R “

„

diagpB ¨ 1N q

BJ

ȷ

P

RpM`NqˆMˆd is the right-hand-side third-order tensor defined in (19). The fourth-order tensor E P RMˆdˆMˆd

is defined as

Ektsl “

#

řN
j“1 Π

˚
kj

´´

B
2Ckj

By2
k

¯

tl
´ 1

ϵ
BCkj

Bpykqt
¨

BCkj

Bpykql

¯

, if k “ s

0, Otherwise
(22)

for k, s “ 1, . . . ,M and t, l “ 1, . . . , d.

Proof. With the help of the gradient given by (14), we know

d2OTϵpC, µ, νq

dysdyk
“

$

’

&

’

%

řN
j“1

´

BCkj

Byk

¯J BΠ˚
kj

Bys
, if k ‰ s,

řN
j“1

B
2Ckj

By2
k
Π˚

kj `
řN

j“1

´

BCkj

Byk

¯J BΠ˚
kj

Byk
, if k “ s.

(23)

For k ‰ s, we have δks “ 0, so the term is expanded as

N
ÿ

j“1

ˆ

BCkj

Byk

˙J BΠ˚
kj

Bys
“

N
ÿ

j“1

Π˚
kj

ϵ

ˆ

BCkj

Byk

˙J ˆ

Bf˚
k

Bys
`

Bg˚
j

Bys

˙

“

„

ekpBk1N qJ

BJ
k

ȷJ
H:

ϵ

„

espBs1N qJ

BJ
s

ȷ

,

where we use the fact that

«

Bf˚

Bys

Bg˚

Bys

ff

is the solution of the linear system (17), so it can be expressed as

«

Bf˚

Bys

Bg˚

Bys

ff

“

H:

„

espBs1N qJ

BJ
s

ȷ

. For k “ s, the term is expanded as follows

N
ÿ

j“1

B2Ckj

By2
k

Π˚
kj `

N
ÿ

j“1

ˆ

BCkj

Byk

˙J BΠ˚
kj

Byk

“

N
ÿ

j“1

Π˚
kj

ϵ

ˆ

BCkj

Byk

˙J ˆ

Bf˚
k

Byk
`

Bg˚
j

Byk

˙

`

N
ÿ

j“1

Π˚
kj

˜

B2Ckj

By2
k

´
1

ϵ

ˆ

BCkj

Byk

˙J ˆ

BCkj

Byk

˙

¸

“

„

ekpBk1N qJ

BJ
k

ȷJ
H:

ϵ

„

ekpBk1N qJ

BJ
k

ȷ

`

N
ÿ

j“1

Π˚
kj

˜

B2Ckj

By2
k

´
p

BCkj

Byk
qJp

BCkj

Byk
q

ϵ

¸

.

In vector form, we obtain the Hessian in (21).

Given the cost matrix C and the optimal coupling matrix Π˚ from Sinkhorn algorithm, the Hession tensor is
analytically calculated once the large linear system (19) is numerically solved. Unlike the previous approaches, the
solution of the linear system is no longer needed to be differentiated in order to obtain the second-order derivatives,
so our direct analytical Hessian expression could significantly speed up the computation with less memory burden.
Similar to the case of the first-order derivative, the analytical expression for the Hessian is generic and applicable
to any choice of cost function. It does not require µ and ν to be uniform either. If the Sinkhorn iterations stops

early with pΠ being suboptimal, then the Hessian expression (21) is still exact for d2OTϵpC,µ̃,ν̃q

dY 2 with suboptimal

coupling matrix pΠ and associated marginals µ̃ and ν̃, where
ř

j
pΠij “ rµi and

ř

i
pΠij “ rνj .

With the analytical expression of Hessian, the following result show that the sum of the first index of the
Hessian tensor is only dependent on the marginal probability vector µ. Later, it will be used as a marginal error
to verify the accuracy of Hessian in the numerical implementation.

Proposition 4. If Ckj “ }yk ´ y˚
j }22 for each k, j, then

řM
k“1 Tk¨s¨ “ 2µsId.

Proof. Since the cost is square distance Ckj “ }yk ´ y˚
j }22, then

BCkj

Byk
“ 2pyk ´ y˚

j q and
B
2Ckj

By2
k

“ 2Id. The first

term in the second-order derivative (23) expands as

M
ÿ

k“1

N
ÿ

j“1

ˆ

BCkj

Byk

˙J BΠ˚
kj

Bys
“ 2

M
ÿ

k“1

yJ
k

N
ÿ

j“1

BΠ˚
kj

Bys
´ 2

N
ÿ

j“1

py˚
j qJ

M
ÿ

k“1

BΠ˚
kj

Bys
“ 0dˆd.
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The last equal sign is because that
ř

j Π
˚
kj “ µk and

ř

k Π
˚
kj “ νj , as well as

ř

j

ˆ

BΠ˚
kj

Bys

˙

“
B

ř

j Π˚
kj

Bys
and

ř

k

ˆ

BΠ˚
kj

Bys

˙

“
B

ř

k Π˚
kj

Bys
.

The remaining term is
řN

j“1
B
2Csj

By2
s
Π˚

sj “ 2Id
řN

j“1 Π
˚
sj “ 2µsId. Thus we proved the statement.

3.4 Solve the linear systems with truncated SVD

A major challenge in computing the gradient of Sinkhorn distance in (20) and the Hessians of Entroy-regularized
distance in (21) is that pseudo-inverse HpΠ˚q: can severely amplify the rounding errors or early stopping errors
when the matrix HpΠ˚q is ill-conditioned. The pseudo-inverse comes from the solutions to the linear systems
(17) and (19) for computation of first- and second- order derivatives. Thus, instead of directly using HpΠ˚q:,
it is important to study the spectrum of the matrix HpΠ˚q and regularize properly when the linear systems are
ill-posed.

Analytical and empirical results in the next section show that the H-matrix is often ill-conditioned when the
Sinkhorn regularization parameter ϵ is small or when the optimal coupling matrix Π˚ is close to a permutation.
Such ill-conditioned H-matrices result in numerically unstable solutions when Π˚ is slightly perturbed to pΠ due to
the early stopping of the Sinkhorn iterations. This is also the exact reason that the previous implicit differentiation
approach fails due to numerically instability.

We tackle the potential ill-posedness by truncated Singular value decomposition (TSVD). We truncate the

H-matrix’s spectrum up to the K-th largest eigenvalue, with K “ maxtj :
λj

λ1
ą αu, where tλju

M`N
j“1 are the

eigenvalues of HpΠ˚q in descending order. In practice, we use the LAPACK’s DGELSD algorithm building in the
least-square solver [4] and set α “ 10´10. The algorithm for gradient and Hessian computation is summarized in
Algorithm 1.

Input: Optimized Π˚, cost matrix C, entropic regularization strength ϵ, source data Y and singular value
threshold α.
Output: Gradient with respect to Y : dOTϵpC,µ,νq

dY P RMˆd, Hessian with respect to Y : T P RMˆdˆMˆd

1: Compute the marginal probability vector µ P RM and ν P RN : µ Ð Π˚1N and ν Ð pΠ˚qJ1M .

2: Compute matrix H P RpM`NqˆpM`Nq: H Ð

„

diagpµq Π˚

pΠ˚qJ diagpνq

ȷ

.

3: Compute third-order tensor B P RMˆdˆN : Bksj Ð
BCkj

Bpykqs
Π˚

kj , compute third order tensor R P RpM`NqˆMˆd:

R Ð

„

diagpB ¨ 1N q

BJ

ȷ

and compute the fourth-order tensor E in (22).

4: Compute the gradient: dOTϵpC,µ,νq

dY “ B ¨ 1N .
5: Compute the truncated singular value decomposition of H-matrix up to the K-th largest eigenvalue: H «

UKΛKUJ
K with K “ maxtj : λ1

λj
ą αu.

6: Approximate

«

df˚

dY
dg˚

dY

ff

:

«

df˚

dY
dg˚

dY

ff

Ð UKΛ´1
K UJ

KR.

7: Compute the Hessian T : Tktsl Ð 1
ϵ

řM`N
i“1 Rikt

«

df˚

dY
dg˚

dY

ff

isl

` Ektsl.

Algorithm 1: Computation of gradient and Hessian of EOT distance OTϵpC,µ,νq with respect to the source data
Y .

4 Spectral analysis of the H-matrix

This section analyzes the spectrum of the matrice HpΠq in (2), which plays a crucial role in the computation of
the derivative and the Hessian. Recall that Π P RMˆN is a coupling matrix if its entries are nonnegative and
µ “ Π1N and ν “ ΠJ1M are marginal probability vectors. We say that it is a positive coupling matrix if its
entries are all positive.

We consider two common types of coupling matrices Π: (i) positive coupling matrices, since the coupling matrix
Π˚ obtained from the Sinkhorn algorithm in practice is always positive due to the entropy regularization, [13,24];
and (ii) coupling matrix with uniform marginal distributions, i.e., µ “ 1M{M and ν “ 1N{N , since they arise in
most applications with randomly sampled data.
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We show first thatHpΠq is singular with a simple zero eigenvalue for any positive coupling matrix. For coupling
matrices with uniform marginal distributions (including permutation matrices), we analytically calculate the
eigenvalues of HpΠq in Section 4.2. In particular, we establish lower and upper bounds for the condition number
of H-matrix in terms of the spectral gap of Π in Theorem 9. Section 4.3 extends the bounds for the condition
number to the H-matrix computed by the Sinkhorn algorithm of EOT distance with early-stopping.

4.1 General positive coupling matrices

We show first that the H-matrix HpΠq is singular with a simple zero eigenvalue for any positive coupling matrix

Π. As a result, we call κpHq “
λ1pHq

λN`M´1pHq
, the condition number of the matrix H “ HpΠq.

Theorem 5 (Simple zero eigenvalue for the H-matrix). For any positive coupling matrix Π P RMˆN
ą0 , the

smallest eigenvalue of HpΠq is zero and it is simple, with eigenvector q0 “

„

1M

´1N

ȷ

.

Its proof relies on the next Perron-Frobenius type lemma, which shows that the largest eigenvalue of the
matrix diagpνq´1ΠJ diagpµq´1Π is 1 and is simple.

Lemma 6. For any coupling matrix with strictly positive entries Π P RMˆN
ą0 , the largest eigenvalue of matrix

diagpνq´1ΠJ diagpµq´1Π is λ “ 1 and has multiplicity one, with eigenvector 1N . Similarly, the largest eigenvalue
of the matrix diagpµq´1Π diagpνq´1ΠJ is λ “ 1 and has multiplicity one, with eigenvector 1M .

Proof of Theorem 5. It is clear that 0 is an eigenvalue with eigenvector q0. We show next that any other

eigenvector of 0 must be q0 up to a scalar factor. Note that the vector

„

w
v

ȷ

is the eigenvector of 0 if and only

if
„

diagpµq Π
ΠJ diagpνq

ȷ „

w
v

ȷ

“ 0M`N ô

„

diagpµqw ` Πv “ 0
diagpνqv ` ΠJw “ 0

ȷ

, (24)

which is equivalent to
v “ ´diagpνq´1ΠJw “ diagpνq´1ΠJdiagpµq´1Πv,

w “ ´diagpµq´1Πv “ diagpµq´1Πdiagpνq´1ΠJw.

By Lemma 6, v “ a1N and w “ b1M for some nonzero constant a, b for each equation to hold. Plugging back to

(24), we have a “ ´b, and

„

w
v

ȷ

“ aq0. Thus, the zero eigenvalue of H is simple.

A quick corollary of the above lemma is that the smallest eigenvalue of I ´ diagpνq´1ΠJdiagpµq´1Π is zero
and is simple. As a result, we obtain an invertible matrix after dropping one of the rows.

Corollary 7. For any coupling matrix Π, the matrix diagpνq ´ Π
J
diagpµq´1Π is invertible, where ν and Π are

the arrays after dropping the last rows.

The invertibility of the above matrix has been used in [6,11,20,36] to remove the zero eigenvalues of HpΠ˚q in
the computation of the gradient of Sinkhorn distance (5). However, the ill-posedness in solving the linear systems
is not addressed as the other eigenvalues are still close to 0. Next, we analyze the spectrum of the H-matrix,
which guides the treatment of the ill-posedness.

4.2 Coupling matrices with uniform marginal distributions

Coupling matrices with uniform marginal distributions are of particular interest as they arise in many applications
where the data are randomly sampled. They lead to H-matrices of the form

HpΠq :“

„

diagp 1
M 1M q Π

pΠqJ diagp 1
N 1N q

ȷ

P RpM`NqˆpM`Nq. (25)

In this section, we compute the eigenvalues of the H-matrices for coupling matrices with uniform marginal
distributions (including the permutation matrices) in Proposition 8. These eigenvalues shed light on the root
of the ill-conditionedness of the H-matrices. In particular, if the coupling matrix is entrywise positive, we provide
upper and lower bounds for the condition number of the H-matrix in terms of the spectral gap of ΠJΠ in Theorem
9.
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Proposition 8 (Eigenvalues of HpΠq and singular values of Π). Let Π P r0, 1sMˆN be a (not necessarily
positive) coupling matrix with uniform marginal distributions. Let M ď N and assume Π has rank M . Then, the
eigenvalues (in descending order) and eigenvectors of H defined in (25) are, for j “ 1, . . . ,M ,

λjpHq “

`

M`N
MN

˘

`

b

`

M´N
MN

˘2
` 4σjpΠq2

2
, qj “

»

–

κj?
1`κ2

j

uj

1?
1`κ2

j

vj

fi

fl ,

λM`1pHq “ ¨ ¨ ¨ “ λN “
1

N
, qi “

„

0
vi

ȷ

, M ă i ď N,

λN`M`1´jpHq “

`

M`N
MN

˘

´

b

`

M´N
MN

˘2
` 4σ2

j pΠq

2
, qN`M`1´j “

»

–

´1?
1`κ2

j

uj

κj?
1`κ2

j

vj

fi

fl ,

(26)

where σjpΠq is the j-th singular value of Π (in descending order) with uj and vj being the right and left singular

vectors, tviu
N
i“M`1 are the N ´ M orthogonal vectors in the kernel of Π, and these scalars κj “

´

1
M ´ 1

N

2σjpΠq

¯

`
c

´

1
M ´ 1

N

2σjpΠq

¯2

` 1.

In particular, when M “ N and Π is a permutation coupling matrix, i.e., its rows are a permutation of the
rows of 1

N IN . Then, the eigenvalues of HpΠq are λ1pHq “ ¨ ¨ ¨ “ λN pHq “ 2
N and λN`1pHq “ ¨ ¨ ¨ “ λ2N pHq “ 0.

Proof of Proposition 8. Denote an eigen-pair H by

ˆ

λ,

„

u
v

ȷ˙

, where u P RM and v P RN ; that is,
„

1
M IM Π
pΠqJ 1

N IN

ȷ „

u
v

ȷ

“ λ

„

u
v

ȷ

.

Then, Πv “ pλ ´ 1
M qu and ΠJu “ pλ ´ 1

N qv. This implies that

`

ΠpΠqJ
˘

u “

ˆ

λ ´
1

M

˙ ˆ

λ ´
1

N

˙

u,
`

pΠqJΠ
˘

v “

ˆ

λ ´
1

M

˙ ˆ

λ ´
1

N

˙

v. (27)

That is, u and v are the right and left singular vectors of Π, corresponding to a singular value of Π sat-
isfying σ2

j “
`

λ ´ 1
M

˘ `

λ ´ 1
N

˘

, for some 1 ď j ď M . Solving this equation, we obtain two eigenvalues

λ˘ “
p 1

M ` 1
N q˘

b

p 1
M ´ 1

N q
2

`4σ2
j

2 .
To compute the eigenvector of λ`, let v “ vj . Then Πv “ σjuj “ pλ` ´ 1

M qu. So u “
σj

pλ`´ 1
M q

uj (recall that

σj ‰ 0 by rankpΠq “ m). Note that
pλ`´ 1

N q

σj
“

p 1
M ´ 1

N q`

b

p 1
M ´ 1

N q
2

`4σ2
j

2σj
; hence, we have

σj

pλ` ´ 1
M q

“
pλ` ´ 1

N q

σj
“

1
M ´ 1

N

2σj
`

d

ˆ 1
M ´ 1

N

2σj

˙2

` 1 “ κj

So an eigenvector for λ` is

»

–

κj?
1`κ2

j

uj

1?
1`κ2

j

vj

fi

fl. Similarly, λ´ has

»

–

´1?
1`κ2

j

uj

κj?
1`κ2

j

vj

fi

fl.

The above λ˘ account for 2M eigenvalues. The other N ´M eigenvalues correspond to σipΠq “ 0, which has
singular vectors vi, for i “ M ` 1, . . . , N . Thus, setting u “ 0 and v “ vi, we have ΠJu “ 0 “ pλ ´ 1

N qvi. So

λ “ 1
N . This eigenvalue has multiplicity of N ´ M , with eigenvectors

„

0
vi

ȷ

for i “ M ` 1, . . . , N .

At last, when M “ N and Π is a permutation matrix, note that ΠJΠ “ 1
N2 IN . Thus, the singular values of

Π are σj “ 1
N with multiplicity N . Applying (26), we obtain that the eigenvalues of H are 0 and 2

N , each with
multiplicity N .

Theorem 9 (Condition number of HpΠq). Let Π be a positive coupling matrix with uniform marginal distri-
butions and singular values tσku in descending order. Then the condition number κpHq of H in (25) is bounded
by

pM ` Nq2

2M2N2pσ2
1 ´ σ2

2q
ď κpHq ď

pM ` Nq2

M2N2pσ2
1 ´ σ2

2q
. (28)
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Proof of Theorem 9. The largest singular value of Π is σ1 “ 1?
NM

and it is simple. Hence, by Prop.8, the

largest and smallest eigenvalues of HpΠq are λ1pHq “ 1
M ` 1

N , λM`N pHq “ 0, and both are simple.
The second smallest eigenvalue of H, denoted by λM`N´1pHq, can be obtained from

`

λ ´ 1
M

˘ `

λ ´ 1
N

˘

“ σ2
2 , i.e.,

λ2 ´ λ1λ ` σ2
1 ´ σ2

2 “ 0. With ∆ :“
pσ2

1´σ2
2q

λ2
1

, this gives

λM`N´1pHq “
1

2
λ1

”

1 ´
?
1 ´ 4∆

ı

“
1

2
λ1

4∆

1 `
?
1 ´ 4∆

. (29)

Hence, using the fact that 1 ď 1 `
?
1 ´ 4∆ ď 2 we obtain

pσ2
1´σ2

2q

λ1
ď λM`N´1pHq ď

2pσ2
1´σ2

2q

λ1
. To obtain the

bounds for the condition numbers, by (29), we have

pM ` Nq2

2M2N2pσ2
1 ´ σ2

2q
“

λ2
1

2pσ2
1 ´ σ2

2q
ď κpHq ď

λ2
1

pσ2
1 ´ σ2

2q
“

pM ` Nq2

M2N2pσ2
1 ´ σ2

2q
.

This gives the bounds in (28).

The case M “ N is of particular interest, and we list the results as a corollary, which follows directly from
Theorem 9.

Corollary 10. Let M “ N and Π be a positive coupling matrix with uniform marginals. The eigenvalues of
HpΠq are

λjpHq “
1

N
` σj , λ2N`1´jpHq “

1

N
´ σj , 1 ď j ď N, (30)

where tσju are the singular values of Π in descending order. In particular, σ1 “ 1
N , λ1pHq “ 2

N and λ2N “ 0.
The condition number of HpΠq is bounded by

2

N2pσ2
1 ´ σ2

2q
ď κpHq ď

4

N2pσ2
1 ´ σ2

2q
. (31)

4.3 Condition number of H-matrices in entropy-regularized OT

We establish in this section lower and upper bounds for the condition number of the H-matrix when Π˚ is
approximated by the Sinkhorn algorithm for uniform marginal distributions.

The Sinkhorn algorithm alternatively re-scales the rows and columns of the coupling matrix to achieve the
marginal constraints. They produce a sequence of coupling matrices tΠplqu that converges to Π˚ entry-wisely, i.e.,

limlÑ`8 Π
plq
ij “ Π˚

ij [21, 29, 30]. In practice, the Sinkhorn iteration stops when a criterion is met. One stopping

criterion is that the marginal distributions of Πplq are entry-wise δ away from the given µ and ν. Thus, an
important question is whether the condition number of HpΠplqq is controlled.

The next proposition shows that if δ “ }Π ´ Π˚}F is small with } ¨ }F denotes the Frobenius norm, the
condition number of the H-matrix of Πplq is almost as large as the condition number of HpΠ˚q. The proof is
based on Weyl’s inequality, and we postpone it to Appendix A.

Proposition 11 (Condition number of H-matrix in Sinkhorn). Let Π˚, with uniform marginal distri-

butions, be the optimal coupling matrix minimizing the EOT distance. Assume that the coupling matrix pΠ is
computed by an early-stopped Sinkhorn algorithm that satisfies

max
1ďiďM

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

j“1

pΠij ´
1

M

ˇ

ˇ

ˇ

ˇ

ˇ

ď δ, max
1ďjďN

ˇ

ˇ

ˇ

ˇ

ˇ

M
ÿ

i“1

pΠij ´
1

N

ˇ

ˇ

ˇ

ˇ

ˇ

ď δ,
ÿ

i,j

|pΠij ´ Π˚
ij |2 ď δ22 . (32)

Then, the eigenvalues of HppΠq satisfies

|λkpHppΠqq ´ λkpHpΠ˚qq| ď δ ` δ2, 1 ď k ď N ` M. (33)

In particular, if δ ` δ2 “ t MN
M`N pσ2

1 ´ σ2
2q with t P r0, 1q, where σ1, σ2 denoting the largest two singular values of

Π˚, the condition number of HppΠq is bounded by

1 ´ t∆

p2 ` tq∆
ď κpHppΠqq ď

1 ` t∆

p1 ´ tq∆
,

where ∆ “ p MN
M`N q2pσ2

1 ´ σ2
2q, while 1

2∆ ď κpHpΠ˚qq ď 1
∆ .

12



The above bounds apply to general H-matrices in entropy-regularized Sinkhorn algorithms. However, these
bounds do not show explicit dependence on ϵ, the strength of regularization. In the next section shows, we study
the dependence of the condition number on ϵ and N for point-clouds datasets.

4.4 Ill-conditioned H-matrices from data clouds

We investigate in this section the condition number of the H-matrix for a specific example of EOT that matches
data clouds with N points. In this simple setting, M “ N and both marginals are uniform, so the condition
number of the H-matrix is κ “ 2

Nλ2N´1
by By Corollary 10. Therefore, it suffices to investigate the dependence

of smallest positive eigenvalue, λ2N´1, on N and ϵ.
We show that the smallest positive eigenvalue of the H-matrix can decay at rate Ope´ 1

ϵ q for a fixed N and at
Op1{Nq for a fixed ϵ. These asymptotic results are proved for equally-spaced points on the unit circle in Example
12, and are numerically demonstrated for random data clouds sampled from a uniform distribution.

Example 12 (Equally spaced points on the unit circle). Consider N equally spaced points on the unit circle
tyi “

“

cosxi sinxi

‰

u
N´1
i“0 , where xi “ 2πi

N . Let µ “ 1
N 1N be the uniform distribution, we are interested in

the spectrum of H associate to the symmetric entropic regularized optimal transport loss OTϵpC
Y ÑY ,µ,µq. The

coupling matrix is

Π˚ “ argmin
ΠPRNˆN

ě0 :Π1N“µ,ΠJ1N“µ

N
ÿ

i“1

N
ÿ

j“1

CijΠij ` ϵKLpΠ,µ b µq

with ϵ ą 0, where Cij “ }yi ´ yj}22. Also, let H :“ HpΠ˚q and denote its condition number by κpHq “
λ1pHq

λ2N´1pHq
.

Then, the following statements hold true.

(a) Π˚ “ K
λ1pKqN , where the Gibbs kernel K P RNˆN is a symmetric matrix with entries Kij “ exp

´

´
Cij

ϵ

¯

and λ1pKq is the largest eigenvalue of K.

(b) The first two singular values of Π˚ are σ1pΠ˚q “ 1
N , σ2pΠ˚q “

λ2pKq

λ1pKqN , and the largest and smallest

positive eigenvalues of H are λ1pHq “ 2
N , and λ2N´1pHq “ 1

N ´ σ2pΠ˚q, where λ2pKq is the second largest
eigenvalue of K.

(c) The smallest positive eigenvalue of H and the condition number of H satisfies

lim
ϵÑ0`

lim
NÑ`8

N ¨ λ2N´1pHq

ϵ
“

1

4
, lim

ϵÑ0`
lim

NÑ`8
ϵ ¨ κpHq “ 8, (34)

lim
NÑ`8

lim
ϵÑ0`

Nλ2N´1pHq

rN,ϵ
“ 4π2, lim

NÑ`8
lim
ϵÑ0`

rN,ϵκpHq “
1

2π2
, (35)

where rN,ϵ “ N´2 exp
´

´
4 sin2

pπ{Nq

ϵ

¯

.

We postpone the proof to Appendix A.

For a fixed ϵ, when N is large enough, the smallest positive eigenvalue λ2N´1 scales as
ϵ

4N , which is numerically
illustrated in Figure 1(a). Then the condition number scales as 8

ϵ . Meanwhile for fixed N , when ϵ is small enough

(e.g., when ϵ ă 4π2

N2 ), the smallest positive eigenvalue scales as
4π2rN,ϵ

N , which is numerically illustrated in Figure

1(b). Then the condition number scales as 1
2π2rN,ϵ

, which grows exponentially at rate Ope´ 1
ϵ q. For example, for

N “ 50 and ϵ “ 0.0001, the condition number of H is larger than 1070; in this case, a truncated SVD for H
is crucial in calculating the Hessian of EOT and the gradient of Sinkhorn distance. On the other hand, when
N “ 1500 and ϵ “ 0.0001, the condition number of H is only about 8 ˆ 104. In addition, this scale phenomenon
is also observed for some random datasets as well.

Next, we further numerically investigate the case of point-clouds datasets that are sampled from the uni-
form distribution in the unit square r0, 1s2. Similarly, we are interested in the spectrum of H associated with

OTϵpC
Y ÑY ,µ,µq. In figure 1(d) show that λ2N´1 “ Ope´ 1

ϵ q when ϵ is small enough for each fixed N, and Figure
1(c) show λ2N´1 “ Op 1

N q when N is large for each fixed ϵ. These asymptotic orders are the same as the analytical
results proved in Example 12, but the exact limit depends on the distribution of data points, and it is beyond
the scope of this study.

In summary, the H-matrix can be severely ill-conditioned with the smallest eigenvalue at the order of Ope´ 1
ϵ q

when ϵ is small, or Op 1
N q when N is large. Thus, when solving a linear system with H, it is important to properly

regularize the ill-posed inverse problem.

13



102 103

N
10 16

10 14

10 12

10 10

10 8

10 6

10 4
2N

1
Equally spaced points on the unit circle

=1e-05
/(4N)
=0.0001
/(4N)
=0.001
/(4N)
=0.01
/(4N)

(a)

10 6 10 5 10 4 10 3 10 2 10 110 17

10 15

10 13

10 11

10 9

10 7

10 5

10 3

2N
1

Equally spaced points on the unit circle

N=50
4 2rN, /N
N=150
4 2rN, /N
N=500
4 2rN, /N
N=1500
4 2rN, /N

(b)

102 103

N

10 6

10 5

10 4

10 3

2N
1

Uniformly distributed point cloud in unit square
=0.005
=0.01

=0.02
=0.04

N 1

(c)

0 1000 2000 3000 4000 5000 6000
1/

10 17

10 15

10 13

10 11

10 9

10 7

10 5

2N
1

Uniformly distributed point cloud in unit square

N=50
N=150
N=500
N=1500

(d)

Figure 1: Decay of the smallest positive eigenvalue λ2N´1 in N and ϵ. Equally spaced points on the unique circle:

(a) λ2N´1 « ϵ
4N when N ą 2π?

ϵ
; (b) λ2N´1 « 4π2rN,ϵ when ϵ ă 4π2

N2 . Uniformly distributed point cloud in unit

square: (c) λ2N´1 “ Op 1
N q when N is large; (d) λ2N´1 “ Ope´ 1

ϵ q when ϵ is small.

5 Hessian computation: runtime, accuracy, and success rate

Our analytical approach enables efficient and accurate computation of the Hessian matrix. Here we compare
it with the current two state-of-the-art approaches suggested by OTT : unroll and implicit differentiation. The
details on these approaches are discussed in Section 3.1.

We use the point-cloud datasets sampled from the uniform distribution in unit square again. The task is
to calculate the Hessian tensor T of OTϵpC

Y ÑY ,µ,µq respect to the source data Y , where µ “ 1
N 1N . By

proposition 4, the Hessian satisfies the marginal identity, i.e.,
řM

k“1 Tk¨s¨ “ 2µsId. We evaluate the accuracy of
the computed Hessian by the marginal error:

error “
ÿ

t‰l

p
ÿ

k

Tktslq2 `
ÿ

t

p
ÿ

k

Tktst ´ 2µsq2. (36)

All simulations are performed on a single Nvidia A100 GPU using double-precision. The threshold α in truncated
SVD is set to α “ 10´10.
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Figure 2: Comparison of runtime (in seconds) and marginal error for Hessian computing d2OTϵpCY ÑY ,µ,µq

dY 2 among
three approaches: unroll, implicit differentiation and analytic expression with regularization (ours).

Runtime. Figure 2(a) shows the average execution time in 10 independent tests for the three approaches
with N P r10, 6400s and ϵ P t0.005, 0.05u, corresponding to low and median regularization regimes. The unrolling
and implicit differentiation approaches fail in all 10 tests due to insufficient memory when N ą 180 and N ą 400,
respectively. However, our analytical approach remains effective for all N , even beyond N “ 5000. Additionally,
when all three approaches work, our analytical approach is faster by at least one order of magnitude.

Accuracy. Figure 2(b) shows the average marginal error of the Hessian computed by the three approaches
in 100 independent tests. Here we consider ϵ P t0.005, 0.05u and N P r10, 180s where all three approaches work.
Both implicit differentiation and unrolling approaches perform poorly across all parameter settings. In contrast,
our analytical approach is significantly more accurate by 3-8 orders of magnitude.

Success rate. Table 1 further highlights the reliability of our analytical approach and the importance of
regularization by reporting the success rate in 100 independent tests. A test is considered successful if the
marginal error of the Hessian (36) is less than 0.1. In the most singular parameter setting, N “ 10 and ϵ “ 0.005
(as discussed in section 4.4), the implicit differentiation approach fails 97% of the tests due to numerical instability.
Importantly, if we do not regularize the problem using truncated SVD and instead apply the least square solver
directly to solve the linear system, the analytical approach results in large errors ranging from 10´7 to 102 in
15% of the tests. Therefore, proper regularization is crucial when the problem is ill-posed.

To conclude, our analytical approach with regularization enables efficient and accurate computation of the
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Method Unroll Implicit Analytical(no reg) Analytical(with reg)

N “ 10 0.78 0.03 0.85 1.00
N “ 20 0.68 0.18 0.99 1.00
N “ 120 0.00 1.00 1.00 1.00
N “ 1600 0.00 0.00 1.00 1.00

Table 1: Success rates of the three approaches for N P t10, 20, 120, 1600u and ϵ “ 0.005. A test is called successful
if the marginal error of Hessian (36) is less than 0.1.

Hessian of EOT, significantly outperforming other current state-of-the-art approaches by a large margin in terms
of runtime, accuracy and success rate.

6 Applications to Shuffled Regression

In this section, we apply our proposed algorithms to solve the shuffled regression problem introduced earlier. It
is formulated as the multivariate regression model y˚ “ xθ ` ξ, where x P RD,y˚ P Rd, θ P RDˆd and ξ is the
Gaussian noise independent of x. The correspondence between pX,Y ˚q is missing. Our goal is to estimate the
optimal θ˚ using EOT distance as the loss function in the (1). This approach generalizes to unbalanced datasets
without requiring X and Y ˚ to have the same number of rows. The gradient and the Hessian of the EOT distance
with respect to the parameters θ are simplified as

dOTϵpCθ,µ,νq

dθ
“ XJ dOTϵpCθ,µ,νq

dY
,

ˆ

d2OTϵpCθ,µ,νq

dθ2

˙

mtnl

“

M
ÿ

k“1

M
ÿ

s“1

XsmTktslXkn (37)

for t, l “ 1, . . . , d and m,n “ 1, . . . , D. The EOT distance is generally non-convex with respect to θ, so optimiza-
tion may not converge to the optimal θ˚. Our focus is on the convergence speed to a local minimum. First-order
methods may converge to a local minimum but require many iterations due to the complicated landscape of the
loss function. To accelerate optimization, we propose a two-stage approach. First, we use stochastic gradient
descent (SGD) with a random subset of X and the full batch of Y ˚ to quickly approach the local minimum.

Then, we switch to a relaxed Newton’s method, using the updated parameter θ̂ as the initial condition. The
relaxed-Newton’s method uses step-size γ ă 1. In practise, we switch from SGD to relaxed-Newton when the

computed Hessian d2OTϵpCθ,µ,νq

dθ2 is positive definite. The algorithm is summarized in Algorithm 2.

6.1 Shuffled Regression with Gaussian Mixtures

We first generate N “ 500 data points X P R5 from a Gaussian mixture distribution with three clusters whose
standard deviation is r0.3, 0.05, 0.6s. The parameter θ˚ P R5ˆ2 is generated with components θ˚

mt „ N p0, 1q, and
the Gaussian noise ξ P R2 follows ξ „ N p0, 0.04I2q. We then compute y˚

i “ xiθ
˚ ` ξi, randomly and completely

permute the order of y˚
i , removing X-to-Y ˚ correspondence.

Starting with an random initial condition θp0q from the standard normal distribution, the target data Y ˚ and
the initial data Y pθp0qq are shown in Figure 3(a). We use the two-stage algorithm described in Algorithm 2. In
the first stage, we perform 10 iterations of SGD on 100 random source data points with a learning rate of 0.001.
In the second stage, we use a relaxed Newton’s method with a learning rate of 0.5. We compare this to a gradient
descent (GD) method with a learning rate of 0.001.

Figure 3(b) shows that both methods correctly map the data X to the target data Y ˚. Figure 3(c-d) shows
that both methods converge to the optimal θ˚, but the relaxed Newton’s method is faster and more accurate.
The relaxed Newton’s method converges in 12 iterations with a runtime of 2.35 seconds, while GD takes 2000
iterations and 64.77 seconds, which is 27 times longer. Additionally, the relaxed Newton’s method achieves nearly
one order of magnitude better accuracy in terms of the L2 error }θ ´ θ˚}2.

Further analysis shows that the eigenvalues of Hessian with respect to θ˚ range from 10´2 to 102, indicating
that the optimal parameter lies in a long, narrow, flat valley, causing the gradient descent method to converge
slowly.

6.2 3D Point Cloud Registration

In this section, we extend our method to 3D point clouds registration, a critical task in computer vision. The goal
is to find a spatial transformation that aligns two 3D data clouds without knowing the correspondence, known as
simultaneous pose and correspondence registration [18,25].
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Input: Data X, target data Y ˚, entropy regularization strength ϵ, truncated SVD threshold α; initial guess of
θp0q, SGD learning rate rs, mini batch size ns, maximum epochs T ; Relaxed Newton learning rate rn.
Output: Estimated optimal θ˚, regularized optimal transport loss OTϵpCθ˚ ,µ,νq.

1: Set µ̃ Ð 1
ns

1ns
, µ Ð 1

N 1N and ν Ð 1
N 1N .

Stage 1 SGD :
2: for t “ 0, . . . , T ´ 1 do,
3: Randomly sample ns rows of X, denote as X̃.

4: Compute Ỹ Ð X̃ ¨ θptq and cost matrix CỸ ÑY ˚

ij Ð }ỹi ´ y˚
j }22.

5: θpt`1q Ð θptq ´ rsX̃
J dOTϵpCỸ ÑY ˚

,µ̃,νq

dY

6: if d2OTϵpCθ,µ,νq

dθ2 |θ“θpt`1q is positive definite then

7: stop Stage 1 with the current θ̂ Ð θpt`1q.

Stage 2 Relaxed Newton’s method :
8: Set θp0q Ð θ̂.
9: for t “ 0, . . . , T ´ 1 do

10: Compute Y Ð X ¨ θptq and cost matrix Cij Ð }yi ´ y˚
j }22

11: θpt`1q Ð θptq ´ rn

´

d2OTϵpC
θptq ,µ,νq

dθ2

¯´1 ´

X̃J dOTϵpC
θptq ,µ,νq

dY

¯

12: if OTϵpCθpt`1q ,µ,νq doesn’t improve then
13: Quit Stage 2 with θ˚ Ð θpt`1q.

Algorithm 2: Two-stage algorithm to estimate optimal θ˚ of EOT distance (4).

Using the MobilNet10 dataset [25], we create a study room with a chair (500 points), a desk (1500 points),
and a sofa (1500 points), denoted as X. We apply a linear transformation including random rotation and scaling,
and add Gaussian noise: Y ˚ “ Xθ˚ ` ξ with ξ „ N p0, 4 ˆ 10´4I3q. The rows of Y ˚ are randomly permuted to
remove correspondence.

We use the algorithm from Algorithm 2. The initial parameter θp0q is a standard Gaussian perturbation of
the optimal parameter θ˚. In the first stage, we perform 5 iterations of SGD on 500 random data points with
a learning rate of 0.1. In the second stage, we use a relaxed Newton’s method with a learning rate of 0.5. For
comparison, the GD method uses a learning rate of 0.1.

As shown in Figure 4, both methods converge, but at different speeds. The relaxed Newton’s method converges
in 9 iterations with a runtime of 17.20 seconds, while the GD-only method takes 922 iterations (runtime 314.55
seconds) to reach a comparable loss. Additionally, the relaxed Newton’s method achieves about 0.6 orders of
magnitude improvement in accuracy in terms of L2 error.

7 Conclusion

In this work, we computed first-order and second-order derivatives for the parameterized regularized optimal
transport (OT) distance. Specifically, we derived explicit analytical expressions for the gradient of the Sinkhorn
distance and the Hessian of the entropy-regularized OT (EOT) distance with respect to the source data Y .

To address the numerical instability and high memory consumption typically associated with Hessian com-
putation in large-scale, multi-dimensional problems, we developed a fast, stable, and memory-efficient algorithm
using spectral analysis of the ill-posed linear system. Our algorithm demonstrated significant improvements in
both efficiency and accuracy on various benchmark datasets.

These results highlight the potential of our proposed algorithm to enhance the performance and reliability of
optimization tasks in complex, high-dimensional spaces, particularly in regression without correspondence.

Future work may explore further refinements of our stabilization thresholds by studying the limiting behavior
of condition numbers on other random datasets, as well as the computation of robust second-order differentiation
for more general regularized and constrained optimal transport problems.

Data Availability

The software package implementing the proposed algorithms can be found on:
https://github.com/yexf308/OTT-Hessian.
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Figure 3: Shuffled Regression with Gaussian Mixtures.
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A Proofs for spectral analysis

The proof of Proposition 11 is based on an application of Weyl’s inequality to study the eigenvalues of the
H-matrix under perturbation.

Lemma 13 (Eigenvalues under perturbation). Let Π,Π˚ be two positive coupling matrices with A “ Π ´ Π˚

satisfying
max

i
|
ÿ

j

Aij | ď δ1, max
j

|
ÿ

i

Aij | ď δ1,
ÿ

i,j

A2
ij ď δ22 . (38)

Then, the eigenvalues of their H-matrices are close:

|λkpHpΠqq ´ λkpHpΠ˚qq| ď δ1 ` δ2, 1 ď k ď N ` M.

Proof of Lemma 13. Note that we can write the

HpΠq ´ HpΠ˚q “

«

diagp
řN

j“1 Ai,jq A

AJ diagp
řN

i“1 Ai,jq

ff

“: E. (39)

By Weyl’s inequality, we have |λkpH˚q ´λkpHq| ď }E}op. Thus, it suffices to estimate }E}op. Note that first that
using |Ai,j | ď 1 and (38), we have

ř

i |
ř

j Ai,jui|
2 “

ř

i |
ř

j Ai,j |2u2
i ď

ř

i |
ř

j Ai,j |u2
i ď δ21}u}2, and similarly,

ř

j |
ř

i Ai,jvj |2 ď δ21}v}2; also, }Av}2 “
ř

i“1 |
ř

j Ai,jvj |2 ď
ř

i“1r
ř

j A
2
i,j

ř

j |vj |2s ď δ22}v}2, and similarly,

}AJu}2 ď δ22}u}2.
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Using these four bounds, we have }E}2op “ supuPRM ,vPRN ,}u}2`}v}2“1 }E

„

u
v

ȷ

}2, then }E}2op “
ř

i |
ř

j Ai,jui|
2`

}Av}2`
ř

j |
ř

i Ai,jvj |2`}AJu}2 ď δ21`δ22 ď δ1`δ2. Combining with Weyl’s inequality, we conclude the proof.

Proof of Proposition 11. The bound for the eigenvalues in (33) follows from (32) and Lemma 13. To prove the
bounds for the condition number, recall that in the proof of Theorem 9, we have shown that λ1 :“ λ1pHpΠ˚qq “
1
N ` 1

M and λN`M´1 :“ λN`M´1pHpΠ˚qq “ 1
2λ1

“

1 ´
?
1 ´ 4∆

‰

P rλ1∆, 2λ1∆s with ∆ “ λ´2
1 pσ2

1 ´ σ2
2q. For

δ ` δ2 “ tλ1∆ with t P r0, 1q, Eq.(33) implies that

p1 ´ tqλ1∆ ď λN`M´1 ´ δ ´ δ2 ď λN`M´1pHpΠqq ď λN`M´1 ` δ ` δ2

ď p2 ` tqλ1∆

λ1p1 ´ t∆q ď λ1 ´ pδ ` δ2q ď λ1pHpΠqq ď λ1 ` δ ` δ2 ď λ1p1 ` t∆q.

Consequently, we obtain the bounds by noting that

1 ` t∆

p2 ` tq∆
ď

λ1 ´ pδ ` δ2q

λN`M´1 ` pδ ` δ2q
ď κpHpΠqq ď

λ1 ` pδ ` δ2q

λN`M´1 ´ pδ ` δ2q
ď

1 ` t∆

p1 ´ tq∆
.

Proof of Example 12. Part (a): Note that the cost matrix C is Cij “ }yi ´ yj}22 “ 4 sin2
`

x|j´i|{2
˘

and the

Gibbs kernelKij “ exp
´

´
4 sin2

p|i´j|π{Nq

ϵ

¯

is circulant, whose rows and columns sum is λ1pKq “
řN´1

j“0 exp
´

´
4 sin2

pjπ{Nq

ϵ

¯

.

Then the matrix Π˚ “ K
λ1pKqN satisfies the uniform marginal constraints on Π˚, hence, it is the optimal coupling

matrix due to uniqueness of the solution of the contraint optimization (4).
Part (b) follows directly from Corollary 10.
Part (c), We first compute the largest two eigenvalues of K. Recall that the matrix K is symmetric and

positive-definite, so its singular values are the same as its eigenvalues. SinceK is circulant, the first two eigenvalues
of K are (see e.g., [16]), we have

λ1pKq “

N´1
ÿ

j“0

exp

˜

´
4 sin2p

jπ
N q

ϵ

¸

, λ2pKq “

N´1
ÿ

j“0

exp

˜

´
4 sin2p

jπ
N q

ϵ

¸

cos

ˆ

2jπ

N

˙

Meanwhile, combining Part (a) and Part (b), we have λ2N´1pHq “ 1
N p1 ´

λ2pKq

λ1pKq
q. Thus, to study the limits, we

first study the limit of λ1pKq and λ2pKq.
As N Ñ `8, the Riemann summations in λ1 and λ2 approaches the integrals

lim
NÑ`8

λ1pKq

N
“

1

π

ż π

0

exp

ˆ

´
4 sin2pxq

ϵ

˙

dx “ exp

ˆ

´
2

ϵ

˙

I0

ˆ

2

ϵ

˙

lim
NÑ`8

λ2pKq

N
“

1

π

ż π

0

exp

ˆ

´
4 sin2pxq

ϵ

˙

cosp2xqdx “ exp

ˆ

´
2

ϵ

˙

I1

ˆ

2

ϵ

˙

,

where I1pxq and I2pxq are the modified Bessel functions of first kind. Then, the limit of the second smallest
eigenvalue of H is

lim
NÑ`8

pN ¨ λ2N´1pHqq “ 1 ´ lim
NÑ`8

λ2pKq

λ1pKq
“ 1 ´

I1p2{ϵq

I0p2{ϵq
.

When ϵ is small, we can expand I1pxq and I0pxq around x “ `8,

lim
NÑ`8

pN ¨ λ2N´1pHqq “ 1 ´

pϵ{2q
1{2

?
2π

´
3pϵ{2q

3{2

8
?
2π

` Opϵ{2q5{2

pϵ{2q1{2
?
2π

`
pϵ{2q3{2

8
?
2π

` Opϵ{2q5{2
“

ϵ

4
` Opϵ2q.

Then, we have limϵÑ0` limNÑ`8
N ¨λ2N´1pHq

ϵ “ 1
4 , and limϵÑ0` limNÑ`8 ϵ λ1pHq

λ2N´1pHq
“ 8, which gives (34).

To prove (35), note first that when N is fixed and ϵ Ñ 0`, λ1pKq and λ2pKq are approximated by the three
largest terms,

λ1pKq “ 1 ` 2 expp´
4

ϵ
sin2p

π

N
qq ` Oϵ, λ2pKq “ 1 ` 2 expp´

4

ϵ
sin2p

π

N
qq cosp

2π

N
q ` Oϵ
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where Oϵ :“ O
´

exp
´

´
4 sin2

p2π{Nq

ϵ

¯¯

. Consequently,

exp

ˆ

4

ϵ
sin2p

π

N
q

˙

Nλ2N´1pHq “
2p1 ´ cosp 2π

N qq ` Oϵ

1 ` 2 exp
`

´ 4
ϵ sin

2
p π
N q

˘

` Oϵ

.

Taking the limits with limNÑ`8 limϵÑ0` , we obtain

lim
NÑ`8

lim
ϵÑ0`

N3 exp

ˆ

4 sin2pπ{Nq

ϵ

˙

λ2N´1pHq “ 4π2.
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