Minimizer of a class of quartic polynomials
 Fei Lu
 feilu@math.jhu.edu
 Last updated: 10/17/2018

Summary: seek analytical minimizer of a multivariate quartic polynomial with random coefficients and study the asymptotic behavior of the minimizer.

1 Minimization of quartic polynomial

Consider the minimization of the polynomial of $x \in \mathbb{R}^{d}$:

$$
\begin{equation*}
g(x)=\sum_{k=1}^{K}\left|c_{k}-2 x^{T} b_{k}-x^{T} A_{k} x\right|^{2} \tag{1}
\end{equation*}
$$

where $c_{k} \in \mathbb{C}, b_{k} \in \mathbb{C}^{d}, A_{k} \in \mathbb{C}^{d \times d}$ for each $k=1, \ldots, K$, and $A=A^{T}$.
We can assume that A, b, c are random arrays, identically distributed for different k 's (in general, stationary stochastic processes indexed by k).

GOAL: The goal is to find an analytical minimizer (if possible) of g (in terms of $\mathrm{A}, \mathrm{b}, \mathrm{c}$) and analyze its asymptotic behavior as K increases.

Numerical tests The minimizer seems to be unique (via fminunc in MATLAB) for g :

$$
g(x)=\sum_{k=1}^{K} \operatorname{Real}\left(c_{k}-2 x^{T} b_{k}-x^{T} A_{k} x\right)^{2}+\operatorname{Imag}\left(c_{k}-2 x^{T} b_{k}-x^{T} A_{k} x\right)^{2}
$$

