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Section 3.4 Term-by-term differentiation

fonl0,L]or [-L,L]:
» sine series: TBTD if f,f’ are PS, f continuous and
f(L)=f(0)=0.
> cosine series: TBTD if f,f’ are PS, f continuous.
» Fourier series: TBTD if £, f" are PS, f continuous and
f(L) =f(-L)
Q: how did we prove it? Integration by parts + definition f:

nmwx

CRICROEDY b 1) 0] cos "
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Method of eigenfunction expansion (generalizing separation of
variables) Seek solution of the form

Zan cos—x+b ()sm

» PDE+ BC determines the eigenfunctions to use

> works for equation with source d,u = Kk0,u + Q(x, 1)

> solve a, (1), b,(t) from the PDE + IC ( Assuming [ >~ =>" [)
Q: what about BC? Why solution in the form of Fourier series?
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Section 3.5 Term-by-term Integration

Theorem

Letf be a piece-wise smooth function. We can always do TBTI of f’s
Fourier series and the resulted series always converge to the integral

of fon[~L,L]. Thatis, ([ =3"1)

nmx
~a0+§ ancos +b SIHT

/Lf(y)dy =ap(x+L)+ nz:; /7L(a,1 cos ? + by sin ?)dy
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Section 3.5 Term-by-term Integration

Theorem

Letf be a piece-wise smooth function. We can always do TBTI of f’s
Fourier series and the resulted series always converge to the integral

of fon[~L,L]. Thatis, ([ =3"1)

nmx
Nao+§ ancos +b SIHT

[Lf(y)dy =ap(x+L)+ nz:; LL(an cos ? + by sin ?)dy

» Even if the original Fourier series has jump discontinuities
» The new series is continuous. Is it a Fourier series?
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f(x) ~ao + 3202 an cos BT + by sin "7

) X ]
/ fO)dy —ap(x+L)“ =" Z/ (an cos Y + b sin@)dy (1)
L ) L L

Proof( Basic idea: match the series. Shift ao(x + L) to get Fourier series)
Let G(x) = LHS = F(x) — ao(x + L). We verify (1).

1. Note that G(x) is PS+continuous, G'(x) = f(x) —ap, G(—L) =0=G(L).
= G(x)= its Fourier series= Ao + >~ A, cos 7 + B, sin 7=

2. Verify (1) by showing the coefficients are the same.

RHS = Zan— sin b,l—[ % — cos(nm)]
n=1
L
. . L
A, = l/ G(x) cos I i = ---integration by parts = —b,—
L), L nm
L
B, = %/_LG(x)sin%dx: :an%
Ao = G(L) — other terms = --- = — " A, cos(n)

** [ compute A from G(L) = 0, not - [*, G(x)dx]
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Fourier series: Convergence + TBTD + TBTI = A new world

Example 1: evaluate 1 + 312 + 512 + - -+ by Fourier sine series of
f)y=1: 1~ %Zzi] odd 1sin = x € [0,L].

2

Example 2: show that > ™ =

nlnz 6"

(Hint: use x ~23°7% | L (—1)"*!sin 22X and L?)
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Fourier series: Convergence + TBTD + TBTI = A new world

Example 1: evaluate 1 + 312 + 512 + - -+ by Fourier sine series of
f)y=1: 1~ %Z:ﬁ] odd 1sin = x € [0,L].

Example 2: show that 3>, L = .

(Hint: use x ~23°7% | L (—1)"*!sin 22X and L?)

— */ Kdx = / (—1)"T" sin
mn7r2

n,m=1

4L °°
= / sin T sin —dx ( Exchange of order)

mmwx | nmwx
sin —dx
L L
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Section 3.6 Complex form of Fourier series

Euler's Formula

; 1, . 1, . .
¢ = cosf +isinf; cosf = 5(619 +e ) sinfh = 5(610 — 1),

o0
f(x)wao—l—Zancos%—i-bnsin@

L
n=1
oo
> et
n—=——oo
where ¢y = ag, ¢, = (an +iby) = 57 f L f(x)[cos M + isin " )dx. In

L n7r).
short, ¢, = 57 [~ f(x)e'"T dx for all n.

Do we have orthogonality for {¢,(x) = €% }? (i.e. (¢, Dm) = Sn_m) 4
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X

Complex Orthogonality {¢,(x) = ¢/“T"}

1

1 [F E—
<¢n7¢m> - i [L ¢;1(X)¢,,1(X)dx = i

(note the complex conjugate)

Complex form of Fourier series

L (n—m)mx
/ e T di=0b,_p
-L

> - 1 [t s
f(x) ~ Z e ", o= Z/_Lf(X)elex

n=—oo

If f is a real-valued function, c_, = ¢,
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Summary of Chp 3: Fourier series
» Fourier series, sine/cosine/complex FS
» Fourier Theorem: convergence of FS

Aum+§:ammb x+bmn%w) ;V@j+j@ﬂ]

» TBTD:

— sine series: if f,f’ are PS, f continuous and f(L) = £(0) = 0.
f1@) ~ L) = FO)] + 3572, [Fon+ Z[(=1)"F(L) = £(0)]] cos **

— cosine series: if £, f are PS, f continuous.
— FS:if f,f" are PS, f continuous and f(L) = f(—L)

» TBTI: always! (if f PS)
» Enable us to treat infinite series!

— compute series
— method of eigenfunctions (non-homogeneous PDEs)
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3.4.6.

There are some things wrong in the following demonstration. Find the
mistakes and correct them.

In this exercise we attempt to obtain the Fourier cosine coefficients of e*:

e = Ao+ Ancos # (3.4.22)
e}
Differentiating yields
S L PR
ef = 2T nsin =,

the Fourier sine series of e*. Differentiating again yields

o
e g (%)zAncos = (34.23)

Since equations (3.4.22) and (3.4.23) give the Fourier cosine series of e,
they must be identical. Thus,

:0 ig } (obviously wrong!).

=

By correcting the mistakes, you should be able to obtain Ay and A, without
using the typical technique, that is, A, = 2/L [y’ e* cosnnz/L dx.
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Solution to 3-4-6:
Shwi 188 A=t T o )

Matobe, TV > €7 - F hEmE 7 quilty

= j——

Ase, el o, e'to = (o MT TBID I&W’”
Tnsted mcmdxwﬁ frf F@cemz st o~ é”‘i,qm”%zp Thon ]
| {on ~ o]+ % {%&fffﬁ)"ﬂu—ﬁ«a}j%

webwe &= () o +let-e] +${%(—fh5§)+%[w"€-c“]j wEy )
-

e hES 7 2l -] 7 |h= TR e/ nd)
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