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Solution to the IBVP?

∂tu = κ∂xxu + Q(x, t), with x ∈ (0,L), t ≥ 0
u(x, 0) = f (x)

u(0, t) = ϕ(t), u(L, t) = ψ(t)

Recall ODEs:
ay′′ + by′ + cy︸ ︷︷ ︸

Ly

= g(x); y(x0) = α; y(x1) = β.

▶ Step 1: solve the linear equation Ly = 0 ⇒ y1(x), y2(x)
▶ Step 2: find the specific solution Ly = g ⇒ ys(x)

⇒ general solution: y = c1y1 + c2y2 + ys with c1, c2 TBD by BC/IC.

Same for PDE? key principles?
linear homogeneous ⇒ Principle of Superposition (PoS)
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Section 2.2: Linearity

Linear operator: for any c1, c2 ∈ R,

L(c1u1 + c2u2) = c1L(u1) + c2L(u2), ∀u1, u2 ∈ Dom(L)

Examples: which operator(s) is nonlinear?
A. L = ∂xxx; B. L = ∂t − κ∂xx;
C. L(u) = ∂x(sin(x)∂xu); D. L(u) = ∂xxu + u∂xu
E. L(u) = u(x, 0) F. L(u) = c1u(0, t) + c2∂xu(1, t)

Linear homogeneous equation L(u) = f with f = 0
otherwise (if f ̸= 0), nonhomogeneous.
▶ linearity and homogeneity also apply to BC.
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Principle of Superposition L linear,

if L(u1) = L(u2) = 0, then L(c1u1 + c2u2) = 0 .
▶ if u1, u2 solve L(u) = 0, then so does c1u1 + c2u2

▶ T/F? L(u1) = f1,L(u2) = f2 ⇒ L(u1 + u2) = f1 + f2.

Application: Solution Decomposition. Decompose the solution of
∂tu = κ∂xxu + Q(x, t), with x ∈ (0,L), t > 0 ;
IC: u(x, 0) = f (x) with x ∈ [0,L] ,
BC: u(0, t) = ϕ(t), u(L, t) = ψ(t) with t > 0 .

to u(x, t) = v(x, t) + w(x, t) such that
∂tv = κ∂xxv,
IC: v(x, 0) = f (x) ,
BC: v(0, t) = 0, v(L, t) = 0 .

HomoEq+ HomoBC;


∂tw = κ∂xxw + Q(x, t),
IC: w(x, 0) = 0,
BC: w(0, t) = ϕ(t), u(L, t) = ψ(t) .

HomoIC
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Application 2. Consider
∂tu = κ∂xxu, with x ∈ (0,L), t > 0 ;
IC: u(x, 0) = f (x) with x ∈ [0,L] ,
BC: u(0, t) = A, u(L, t) = B with t > 0 .

The displacement trick:
▶ Equilibrium solution: uE(x) = A + x

L (B − A).
▶ Displacement from the equilibrium: v(x, t) = u(x, t)− uE(x).
▶ We get

∂tv = κ∂xxv, with x ∈ (0,L), t > 0 ;
IC: v(x, 0) = f (x)− uE(x) with x ∈ [0,L] ,
BC: v(0, t) = 0, v(L, t) = 0 with t > 0 .

We will discuss the general Non-homogeneous case in Chapter 8.
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HE: homogeneous IBVP

∂tu = κ∂xxu,

u(x, 0) = f (x)

u(0, t) = 0, u(L, t) = 0

▶ equation and BC: linear homogeneous
▶ physical meaning:

1D rod with no sources and both ends immersed at 0o.
How the temperature evolve to Equilibrium?

▶ a first step for general IBVP (from previous slide)
can be solved by method of separation of variables ↓
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Separation of variables

Seek solutions in the form (Daniel Bernoulli 1700s)

u(x, t) = ϕ(x)G(t)

Reduce PDE to ODEs:

∂tu = ϕ(x)G′(t) = κ∂xxu = κϕ′′(x)G(t)

G′(t)
κG(t)

=
ϕ′′(x)
ϕ(x)

for any x,t
= −λ

▶ λ is a constant TBD
▶ two ODEs:

In time: G′(t) = −λκG(t) ⇒
In space: ϕ′′(x) = −λϕ(x) ⇒

▶ IC: trivial solution when f (x) = 0, u ≡ 0 with G ≡ 0;
otherwise, u(x, 0) = G(0)ϕ(x) = f (x): G(0) TBD

▶ BC: for non-trivial solution ⇒ ϕ(0) = ϕ(L) = 0
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Time dependent ODE

G′(t) = −λκG(t) ⇒ G(t) = G(0)e−λκt.

Assume that G(0) > 0,
▶ λ < 0: G(t) ↑ ∞
▶ λ = 0:
▶ λ > 0:

Physical setting: λ ≥ 0
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Boundary value problem

ϕ′′(x) = −λϕ(x), ϕ(0) = ϕ(L) = 0

▶ λ < 0: ϕ(x) = c1e
√
−λx + c2e−

√
−λx

▶ λ = 0: ϕ(x) =
▶ λ > 0: ϕ(x) =

Eigenfunctions: Lϕ = λϕ, ϕ(0) = ϕ(L) = 0, with Lϕ := −ϕ′′

ϕn(x) = sin(
nπ
L

x), λn = (
nπ
L
)2, n = 1, 2, · · · ,
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Solution to HE-IBVP:

∂tu = κ∂xxu,

u(x, 0) = f (x)

u(0, t) = 0, u(L, t) = 0

λn = ( nπ
L )2, n = 1, 2, . . .

u(x, t) = ϕn(x)Gn(t) = sin(
nπ
L

x)e−λnκt

PoS:

uN(x, t) =
N∑

n=1

Bn sin(
nπ
L

x)e−λnκt → u(x, t) =
∞∑

n=1

Bn sin(
nπ
L

x)e−λnκt

▶ if f (x) =
∑N

n=1 Bn sin(
nπ
L x), uN is a solution

▶ if f (x) =
∑∞

n=1 Bn sin(
nπ
L x), u is a solution

( convergence of function series: Chp3:Fourier series)

For a general f , how to determine Bn? Orthogonalityˆ L

0
sin(

nπ
L

x) sin(
mπ

L
x)dx = δm−n

L
2

Bn =
2
L

ˆ L

0
f (x) sin(

nπ
L

x)dx
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Compute Bm Multiply both sides by sin(mπ
L x), and integrate them

ˆ L

0
f (x) sin(

mπ

L
x)dx =

∞∑
n=1

Bn

ˆ L

0
sin(

nπ
L

x) sin(
mπ

L
x)dx

= Bm

ˆ L

0
sin2(

mπ

L
x)dx =

BmL
2

.

(when can we exchange
∑∞

n=1 and
´ L

0 ?)

Bm =
2
L

ˆ L

0
f (x) sin(

mπ

L
x)dx .

Example: f (x) ≡ 100,

Bn =
2
L

ˆ L

0
100 sin(

nπ
L

x)dx =
200
L

(
− L

nπ
cos(

nπ
L

x)
) ∣∣∣∣L

0

=
200
nπ

(1 − cos(nπ)) =

{
0 n even ;
400
nπ n odd .
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Review of the method: separation of variables (SoV)

PDE︸︷︷︸
linear, homo

+ BC︸︷︷︸
linear, homo

+ IC

1. linear + homo ⇒ PoS

2. SoV: PDE+BC ⇒ ODEs

3. Solve EigenvalueP

4. IC ⇒ coefficients

(orthogonality ↓ )

5. Conclude solution

∂tu = κ∂xxu,

u(0, t) = 0, u(L, t) = 0
u(x, 0) = f (x)

G′(t)
κG(t)

=
ϕ′′(x)
ϕ(x)

= −λ

G(t) = G(0)e−λκt.

ϕ′′(x) = −λϕ(x), ϕ(0) = ϕ(L) = 0

ϕn(x) = sin(
nπ
L

x), λn = (
nπ
L
)2, n ≥ 1

u(x, t) =
∞∑

n=1

Bn sin(
nπ
L

x)e−λnκt

Bn =
2
L

ˆ L

0
f (x) sin(

nπ
L

x)dx
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Orthogonality
In finite dimensional space: a = (a1, a2, . . . , aN),b ∈ RN :

a ⊥ b ⇔ ⟨a,b⟩ =
N∑

i=1

aibi = 0

For functions: ϕ, ψ ∈ C[0,L] (connection? )

ϕ ⊥ ψ ⇔ ⟨ϕ, ψ⟩ =
ˆ L

0
ϕ(x)ψ(x)dx = 0

Recall {ϕn, λn} with ϕn(x) = sin( nπ
L x) and λn = nπ

L solve:

ϕ′′(x) = −λϕ(x), ϕ(0) = ϕ(L) = 0

We have ⟨ϕn, ϕm⟩ = δm−n
L
2 .
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Section 2.4: HE with other boundary values

HE+ BCNeumann, homo + IC

∂tu = κ∂xxu,

∂xu(0, t) = 0, ∂xu(L, t) = 0
u(x, 0) = f (x)

1. linear homo: ⇒ PoS

2. SoV: u(x, t) = ϕ(x)G(t)

3. Solve EigenvalueP

4. Determine coefs. by IC/BC.

5. Conclude solution

u(x, t) = A0 +

∞∑
n=1

Ane−λnκtϕn(x), ϕn(x) = cos(
nπ
L

x)

limt→∞ u(x, t) =?

Section 2.4: HE with other boundary values 17



From the IC u(x, 0) = f (x) and the orthogonality relation:

ˆ L

0
cos(

nπ
L

x) cos(
mπ
L

x)dx :=


0 m ̸= n ;
L/2 m = n ̸= 0 ;
L m = n = 0 ,

we have for Am ( assuming exchange of
∑∞

n=1 and
´ L

0 )

A0 =
1
L

ˆ L

0
f (x)dx , Am =

2
L

ˆ L

0
f (x) cos(

mπ
L

x)dx ,m = 1, 2, · · · .

Then as t → ∞, the solution approaches a steady state:

lim
t→∞

u(x, t) = A0 =
1
L

ˆ L

0
f (x)dx .
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HE in a circular ring
∂tu = κ∂xxu,

u(L, t) = u(−L, t)

∂xu(L, t) = ∂xu(−L, t)

u(x, 0) = f (x)

1. linear homo: ⇒ PoS

2. SoV: u(x, t) = ϕ(x)G(t)

3. Solve EigenvalueP

4. Determine coefs. by IC/BC.

5. Conclude solution

u(x, t) = a0 +

∞∑
n=1

e−λnκt[anϕn(x) + bnψn(x)]

limt→∞ u(x, t) =?
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Summary of boundary value problems for ϕ′′ = −λϕ:
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