MATH 405 FALL HOMEWORK SOLUTIONS 1-5

DANIEL PEZZI

Note that there may be typos and errors in these solutions. Consider it
an exercise to find them!

HOMEWORK 1

Chapter 0 Problem 2

Let P(k) be a statement that is true or false for each natural

number k. The principle of induction is as follows:

(1) Suppose P(1) is true and P(k) being true implies P(k+
1) is true for all £ € N. Then P(k) is true for all k.

The principle of strong induction is as follows.

(1) Suppose P(1) is true and P(1),..., P(k) being true im-
plies P(k + 1) is true for all k£ € N. Then P(k) is true
for all k.

To show the two are equivalent, we must show that any-
thing proven true for all £ by one can be proven true for all k&
by the other. Note that, trivially, proving something is true
by induction implies one can prove it using strong induction.
This is because strong induction assumes more than induc-
tion, and assuming more things are true will not change the
result if it is proven without those additional assumptions.

Therefore, we must show that anything proven with strong
induction can be proven with induction. Assume this is not
the case, that is there exists a statement Py(k), indexed by
the natural numbers, such that strong induction proves Py(k)
is true for all £ but induction does not. Note: the difficulty of
the problem is the difference between something being true
and something being proven to be true by a specific method.

By assumption, there exists a smallest k' such that induc-
tion cannot prove P(k’) but strong induction can. In this
case we have

P(K' — 1) is true but it does not imply P(k') is true.

However, induction allows us to assume P(1) is true. And,
as k' is the smallest such that the implication fails, we know
P(2) is true. We also know P(3) is true, and so on, up to
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P(k' — 1). However, P(k’) can be proven by strong induc-
tion. We have show the requirements for strong induction
are met, and so P(k’) must be true. However, we only used
the assumptions of regular induction, so regular induction
can prove P(k’ — 1) implies P(k"). This is a contradiction,
and therefore k' cannot exists, and so the two methods must
be equivalent.

Chapter 0 Problem 7

(1) This is a Venn diagram with the middle not shaded in
but everything else is.

(2) Let x € AAB. Suppose without loss of generality that

xz € A (otherwise, rename A and B). Then = ¢ B, and
sox € A\ B. Soz € (A\ B)N(B\ A) and therefore, as
x was arbitrary, AAB C (A\ B)N(B\ A4).
Now suppose x € (A\B)N(B\A). Then either z € A\ B
or z € B\ A. Assume without loss of generality that
x € A\ B. Then z € Abut = ¢ B, and so x € AAB.
Therefore, as x was arbitrary, (A\ B)N(B\A) C AAB.
As each is a subset of the other, the two sets must be
equal.

(3) Let x € AAB. Then x € AN B as x must be in either
A or B. However, + ¢ AU B by definition, and so
z € (AU B)(AN B) and so as z was arbitrary we have
AAB C (AUB)\ (AN B).

Suppose x € (AUB)\ (AN B). Then z € Aor z €
B. Assume A without loss of generality. Then z ¢ B
as otherwise it would be in the intersection. As such
x € AAB as it is in one but not the other. As x was
arbitrary, we have (AU B) \ (AN B) C AAB.

As each is a subset of the other, the two sets must be
equal.

Chapter 0 Problem 10

(1) Suppose f is not injective. Then there exits a1, as such
that f(a1) = f(az). But this forces (g - f)(a1) = (g -
f)(a2), contradicting the injectivity of g - f.

(2) Suppose g is not surjective. Then there exists ¢ € C
such that ¢ is not in the range of g. But the range of
g - f is a subset of the range of g, and so g - f is not
surjective.

(3) Let f:{0} — R be given by f(0) =1. Let g : R — {2}
be given by g(z) = 2 forallz € R. Then g-f : {0} — {2}
bijectively, but clearly neither f nor g are bijective.
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Chapter 0 Problem 12

The largest subset of A has cardinality n. Enumerate the
elements of A as ai,as,...,a,. We also consider the set of
n-tuples with entries 0 or 1. That is, all sets of the form
(1,1,1,...), (0,1,1,...), (1,0,0,...) and so on. The number of
these sets is 2" has each slot has two choices: either contain-
ing a 0 or containing a 1, and there are n slots.

We claim the collection of these n-tuples is in bijection
with the power set of A. We define a map between the two as
follows: If Pg is an element of the power set of A, it contains
some number of ay, ..., a,. The map f sends this set to the n-
tuple generated by having 1 in the first slot if Pg contains aq
and 0 otherwise, a 1 in the second slot if Pg contains as and
a 0 otherwise, and so on. Showing this map is a bijection
follows immediately from the definition as every n-tuple is
sent uniquely to a subset and every subset is sent uniquely
to an n-tuple. Therefore the power set has cardinality 2".
Note the empty set gets sent to the n-tuple with all Os.

Hint: If the above explanation is still mysterious, write
out the sets and maps in the case of n = 2, 3.

Chapter 0 Problem 14

We proceed by induction. The claim is obviously true for
n = 1. Next, assume

P22+ 4+ (n-1)7°= <(n21)n)2

We then have

(n—l)n)?+ 3 (n2—2n+1)n2+ 5 nt42n3 4+ n? ((n+1
—_— n = = =

4 "= 4
And the induction closes.

2

Chapter 0 Problem 20

Consider Ay = {0} U [k, 00)

Chapter 0 Problem 24

(1) Let f: N — B be a bijection between the natural num-
bers and the set B, which is guaranteed to exist by the
cardinality of B. This allows us to order the elements
of B in the following way. To each b € B, assign a
natural number given by f~!(B). We say that b < ' if
f=Y(b) < f~L(¥'), with similar notation for greater than,

)n)%
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equal to, and so on. Note this is well defined precisely

because f is a bijection.

Assume A is non-empty. If it is empty then we are done.

We define a function g in the following way:

(a) g(1) is the smallest element of A.

(b) g(2) is the smallest element of A\ {g(1)}

(c) ¢(3) is the smallest element of A\ {g(1),4(2)}

(d) And so on
If at any point the set {g(1),...,g(k)} = A for a finite
k, we do not define g any further. If A is finite then
g : {l,...,k} — A in a bijective manner. If A is not
finite then g : N — A in a bijective manner. In any
case, A is countable.

(2) The above construction shows that either A is empty,
finite, or in bijection with the natural numbers. If |A| <
IN|, the process defined before must terminate, and A
must be empty or finite.

Chapter 0 Problem 25

Let A be the countably infinite subset of S. If S has a car-
dinality larger than A, then S\ A must have the same car-
dinality as A (so there exists a bijection between the two).
If not, then S can be written as the union of finitely many
countable sets and would be countable.

Now assume S is countably infinite. Then, by definition,
there exists a bijection f: N — S. Let

A={se€ S: f(n)=s, and n is an even number}.

Then, f is a bijection, the set S\ A is countably infinite
as it is in bijection with the set of odd natural numbers. As
S\ A has the same cardinality as S there exists a bijection
between them, so we are done.

HOMEWORK 2

Chapter 1.1 Problem 2

We induct on the cardinality of A. If |A| =1, then A = {a}
for some a € S. A is then bounded as every element of
A is < g and > a. This also shows A has an infimum and
supremum as a is both. It is easily checked a has the required
property.

For the inductive step, we will only show that A con-
tains its supremum and infimum. It immediately follows A is
bounded. We focus first on the supremum. Assume any set
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with cardinality n has and contains its supremum. Assume
|Al = n+ 1. We write A = {ay, ..., an}{an+1} where a,41 is
any element of the set. We can always label A in this way
because it is finite.

The set {aq, ..., a,} has and contains its supremum by the
inductive hypothesis. Call that element a*. There are two
cases. If a* < an41, then ay,1 is easily seen to be a supremum
for A. If not, then a* is the supremum of A. In either case
A contains its supremum and we are done.

The case for infimum follows identically, except with dif-
ferent conclusions based on the comparison of the infimum
from the inductive step and the elements a,1.

Chapter 1.1 Problem 8

(1) The value of 040,041 and 042 is fixed by the definition
of 0. The same is true for multiplication by 1. We must
also have 0z = 0 as

-1

0r=0r+0 < 0=0+02"" = 0=0z"".

This is true for every z=! € F, we have that multipli-
cation by 0 is always 0 when = # 0. In the case where
z =0, we have 0 = (14+0)0 = 0-0 = 0. This
only leaves 2 - 2. Suppose 2 -2 = 2. Then by applying
the multiplicative inverse we have 2 = 1 which is false.
Suppose 2 -2 = 0. Then by applying the multiplicative
inverse we have 2 = 0 which is false. Therefore 2-2 = 1.
This concludes the multiplication part of the problem.
For addition we must fill in 14+1,1+2, and 2+2. Suppose
142 = 1. Then 2 = 0 which is impossible. Additionally,
suppose 1 + 2 = 2. Then 1 = 0 which is impossible. So
1+2=0. Suppose 1 +1 =0. Then 1+ 1 =1+ 2 which
implies 1 = 2, which is impossible. Suppose 1 +1 = 1.
Then 1 = 0 which is impossible. Suppose 2 + 2 = 0.
Then 1 + 1 = 0 by applying the multiplicative inverse
which is impossible. Suppose 2 + 2 = 2. Then 2 = 0
which is impossible. Therefore 2+2 = 1. This concludes
the addition part of the problem.

(2) Assume F is an ordered field. Because 27! = 2 and
17! = 1, we cannot order 1 and 2 as not matter what
we choose, property (v) will be violated.

Chapter 1.1 Problem 12
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We claim the set {n-1: n € N} is countably infinite. Here, we
write n-1 = 1+4...+1 where n copies of 1 are added together.
Suppose this set is finite. Then there must be some m such
that m - 1 = 0. However, in any ordered field we have 1 > 0
as 1 is a square. The existence of such an m violates property
vitas 1 =140 < 141 = 2. Repeatedly adding 0 on the left
and 1 on the right reaches a contradiction as must eventually
have 1 <m-1=0.

Chapter 1.1 Problem 13

The only difference between N and N, is the element oo,
and so to show Ny, is an ordered set we only need to show
k < oo for all £ € N which we assume (also nothing the
obvious 0o = ).

Let E C Noo. Suppose F is bounded. Then it is finite and
has an contains its supremum by problem 2. Suppose it is not
bounded but does not contain co. Then oo is the least upper
bound. By assumption it is an upper bound. It must be the
smallest as any smaller number kg is in N, but we assumed F
was not bounded and so ky cannot be an upper bound. Now
suppose co € E. Then oo is obviously the supremum as it is
greater than or equal to every element of Ng.

Chapter 1.2 Problem 9

We prove the result for supremums first. To show sup A +
sup B is an upper bound for C, one simply uses the ordered
field property that x < a and y < b implies x +y < a + b.
Apply this with ¢ < sup A and b < sup B. We must now
show it is the least upper bound. Suppose there exists a
smaller upper bound called U. Then U < sup A + sup B -
and so U —sup B < sup A. We will show that U — sup B is
an upper bound for for A. Let a € A. Then a+ b € C for
every b€ B. Soa+b<U. And so a < U — b. As this must
hold for every b € B, there must exit a sequence b,, — sup B
(otherwise sup B would not be the supremum). We must
then have, for every a € A that a < U — b,. By taking the
limit in n of both sides we have a < U — sup B which implies
U — sup B is an upper bound smaller than sup A, which is a
contradiction.

Therefore, sup C = sup A+ sup B. The proof for infimums
can be proven the following way. For any bounded subset
of real numbers A, define —A = {—a : a € A}. It is easy
to show that inf(—A) = —sup A and vice versa. The proof
above then goes through by considering —A, —B and —C =
—A — B =—(A+ B) all defined appropriately.
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Chapter 1.1 Problem 10

This follows the same outline as the previous problem. It is
clear sup C is an upper bound. To show it is a least upper
bound, assume there exists U such ab < U for every a € A
and b € B and U < (sup A)(sup B). Assume sup B # 0. If
sup B = 0 then B = {0} and the claim is trivial. Thena < ¥
for every b # 0. If the supremum is attained, one can just
conclude that U/ sup B is an upper bound for A. If not take
a sequence b, — sup B. Applying limits gives that U/ sup B
is an upper bound of A less than sup A.

One can also deduce the result for infimums by either re-
peating the above proof or by the following observations. If
either inf A or inf B is 0, then inf C' = 0 and the claim is
trivial. As such, assume A and B are bounded from below
by positive numbers. Define A~! and B~ in the obvious way
and prove a relation between sup A~! and inf A. The result
follows.

Chapter 1.2 Problem 12

Suppose not. then there exists ey > 0 such that SN (sup S —
€o,sup S) = (). But then sup S — @ is a least upper bound
which is a contradiction of the definition of sup S.

Chapter 1.2 Problem 13

We induct. The claim for n = 1 is trivial. Assume 1 + nx <
(1 4+ 2)™. Then we have

I+n+Dz=14+nzx+z<(1+2)"+z.

We also have (14 2)"*! = (1 +2)"(1+2) = (1 +2)" +
x(14z)™.

So we would be done if we prove z < x(1 + z)". This is
clearly true if 0 = z or 0 < x. Suppose —1 < z < 0 (the
lower bound comes from the assumption of the problem).
Then we want to show 1 > (1 4+ x)" after dividing through
by x. However the bound on z implies 0 < 1 + z < 1. One
can prove 1 > (1 + z)™ by proving that the product of any
two positive numbers smaller than 1 is smaller than 1. this
is easily done by applying property v and ¢ of ordered fields.
And so we are done.
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HOMEWORK 3

Chapter 1.3 Problem 2

We will handle part a and b simultaneously. Suppose = = y.
Then J(z+y+|z—y|) = 3(x+y) =2z =y. And so in
either case we have the conclusion as max{z,y} = x =y =
min{z, y}.

Next, assume x — y > 0. Then the max is x and the min
is y. We then compute

[z —yl=z—y.
The result immediately follows using max{z,y} = = and
min{z,y} = y. The case for v —y < 0 is similar with |z—y| =
y —x and max{z,y} = y and min{z,y} = .

Chapter 1.3 Problem 7

(1) As sup(—f) = —inf(f), proving the result for supre-
mums immediately implies it for infimums. We focus on
the case of supremums. Note that we have

f(x) + g(z) < sup f(z) + sup g(z)
€D zeD

just by the definition of supremum. Note the right hand
side is not a function of . As such we can apply sup,cp
to both side. As the right hand side is constant we have

sup (f(w) + g(fﬂ)) < sup (sup f(z) + sup g(fﬂ)) = sup f(z) + sup g(z),
xeD xe€D Mze€D xeD xeD xeD

which gives the conclusion.

(2) For strict equalities, consider f(z) = g(x) = 0. Any
functions f and g which have the same sign will work
here.

Chapter 1.3 Problem 8

(1) Suppose |f(z)| < M. Then |af(x)| < a|f(z)] < M. So
af is bounded.

(2) Suppose |f(z)] < M and |g(z)|] < N. Then |f(z)+
g(@)| < |f(@)| +|g9(z)] < M+ N. So f + g is bounded.

Chapter 1.3 Problem 9(ab)
(1) Write f = f + g — g. By the triangle inequality |f| <
|f —g|l+lg]. As f = g and g are bounded, so is f.
(2) Let f(z) =« and g(z) = —z with D = R.

Chapter 1.4 Problem 1
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Note b # 0 as otherwise the set is empty. Let f(z) = ¢(z—a).
Then f : (a,b](0,1) is a bijection. Indeed, f(x) = f(y). Then
i(x—a) = $(y —a) <= =z =y by arithmetic. Now let
z € (0,1]. We claim f(bz 4+ a) = a. Indeed, f(ba + z) =
#(bz + a — a) = z. Moreover, bz +a € (a,b] if z € (0,1].

Chapter 1.4 Problem 2

We know tan(z) is bijection from (-7, 7). Let g(z) be a
bijection from (—1,1) to (—3, §) which is given by g(z) =
%’@". Then tan-g - f is a bijection from [—1,1] to R as the
composition of bijective functions is bijective.

Chapter 1.4 Problem 6

(1) Consider I,, = (a — L,a+ 1). Clearly [a,b] C N,1,. By
the Archimedean property, every element of the inter-
section is < b and > a, so N, I, = [a, b].

(2) Let I, = [a+ %,b — 1] where we only consider n large
enough so that I, is non-empty. Then (a,b) = UI,.
For any z € (a,b) there exists an n such that a + = <
x <b-— % Moreover, a,b are not in the set for every
n. Same holds for any number larger than b or smaller
than a trivially.

(3) We may think of [ay, by] as the intersection of {z € R :
x > ay} and {x : = < by}. The intersection of every
open interval is then

{r € R:x <byand z > ayVA}.

Let B = infyby. Let A = supyay. If A or B are in-
finite, then the intersection is empty. If A = B, then
the intersection is the singleton {A}. Suppose the two
are not equal and are both finite. Then we claim the
intersection is [A, B]. This follows from the definition
of infimum and supremum. All points larger than a)
for every A are given by [A4, co. All points smaller than
by for each A\ are given by (—oo, B]. Computing the
intersection is obvious.

Chapter 1.4 Problem 7

For each s € S define a function f where f(z) = ¢s where g
is a rational number contained in s = (a, b). The existence of
such a ¢ is guaranteed by density of the rationals. One can
easily show this function is a bijection from S to a subset of Q.
Surjectivity follows by considering Im(f) C Q. Injectivity
follows from the disjoint property of S.
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HOMEWORK 4

Chapter 2.1 Problem 7

(1) Let € > 0. Let N be such that for every n > N, we
have |z, — 0| < €. Then clearly the same holds true for
||zn| —0]. The reverse direction also holds using the fact
that [|z|| = |z].

(2) The sequence x,, = (—1)" works.

Chapter 2.1 Problem 12

Bounded implies the supremum exists. For every ¢ > 0, we
know there exists x € S such that supS—e < x <supS. Let
Ty be such that the previous statement holds for € = % The
conclusion follows. A similar proof holds for the infimum or
from the supremum result by considering the negative of the
set..

Chapter 2.1 Problem 22

Denote Z¢yen, the limit of {2, }, denote z,44 the limit of {zgy,+1},
and z the limit of 2{3n}.

Consider the subsequence of z(3n} given by the even in-
dices, so n = 2k for some k. The subsequence is convergent
as the original subsequence is convergent and converges to x.
However, it is also a subsequence of {2, } and therefore must
also converge t0 Teyen. Therefore x = Sepen. By consider
n = 2k + 1 we can get a subsequence of z(3n} that is also
a subsequence of {2,4+1}. This similarly implies z,5q = x.
Therefore x,qq = Teven.

Fix € > 0. Let Neyen be a number such that |9, — x| < €
for n > Neyen. Use a similar definition for N,4q. Let N =
max{Nodd, Neven}. Then for every € > 0, n > N implies
|z, — x| < € so we have convergence.

Chapter 2.1 Problem 23

Let x be the limit of the subsequence. Then z is an upper
bound for x,. Suppose there exists an zp > x. But as
x, monotone then x > x,, > z; which is a contradiction.
Therefore z,, converges as it is bounded and monotone. The
result follows.

Chapter 2.2 Problem 9

Define a,, = z,, — z which is a well defined sequence as = € R.
Apply the ratio test for sequences to a,, to get lim, o, a,, = 0.
the conclusion follows.
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Chapter 2.2 Problem 11
This follows Example 2.2.8. We write

2:1:% - :1:% +r :1:721 +r
Tntl = 22, 2,
If 1 > 0 this is always positive. If x1 < 0 then this is
always negative by induction.

We now prove monotonicity. Consider

2+ - _l’%—Ql’%—FT_T—IL‘%
2%, " 2%, 2,

If x, > 0 and 7 > 22 this is decreasing. If 0 < r < x2 this
is increasing. If x,, < 0 and r > 22 the sequence is decreasing.
If ,, < 0 and r < 22 the sequence is increasing. One can use
induction to prove that in each case it is monotone.

Taking the limits of both sides (using tails to make this
formal) we get

r =T —

' — x = £4/1.

Using monotonicity one can conclude z = /7 when 1 > 0
and x = —/r when x; < 0.

Chapter 2.2 Problem 14
2

We have z,41 — x, = x;, so the sequence is monotone in-
creasing. This immediately implies the sequence diverges if
vy >0asz >y = 22> 9% when 2 >y > 0, so the
amount being added to each term in the sequence increases.

Suppose 1 < —1. Then xo = :Jc% 4+ x1 > 0, and so we may
apply the previous argument to get divergence. Clearly the
sequence converges if any element equals 0, as any after must
be 0. This implies the sequence converges for z; = 0, —1.
Suppose —1 < z; < 0. Then |z1|> < |z1|. This implies
x? + 1 is larger than z; but still negative. By induction
Ty is a monotone increasing sequence bounded above 0. It
therefore converges. Taking limits we immediately conclude

r=2’+1r = z=0.
This handles all cases.

Chapter 2.2 Problem 15

Repeat the proof of Example 2.2.14 except consider the se-
n?+1 (n4+1)?+1
(1+e)m n2+1
clusion follows.

quence Crucially lim;, o0 = 1 and the con-
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HOMEWORK 5

Chapter 2.3 Problem 5

(1) Note |z,| = 1. We have lim, o |2,,| = 0. Therefore
lim, oo z, = 0. So the limsup and the liminf must
also be 0.

(2) Write x,, = (—1)" — (=1)"/n. The second term con-
verges to 0, so we can analyze just the first. This se-
quence is bounded by 1. It also has a subsequence that
goes to —1 and 1, so 1 is the limsup and —1 is the liminf.

Chapter 2.3 Problem 9

Once we have a sequence of distinct numbers we are done. By
BW we know this bounded sequence has a convergent subse-
quence. The limit of this subsequence is a cluster point. As
each element on the list is unique, we can apply the definition
of convergence to get an element of x, as close to the limit
point as we like that is not x.

Chapter 2.3 Problem 11

(1) If not, one can construct an unbounded subsequence
which contradicts the assumption.

(2) If x,, does not converge to x the limsup and liminf must
be distinct and so one must not be x. As we have proven
boundedness these must be finite. Then construct a
subsequence that approaches the limsup or the liminf
(whichever is not x). This cannot have a subsequence
that approaches z.

Chapter 2.3 Problem 16

As ay is the sup of a set but not a member, there is a subse-
quence approaching it. Additionally, a; is a strictly decreas-
ing sequence in terms of j. However, the tail of the subse-
quence that approaches q; is contained within {z,, : n > j}
for every j, and so a; < a;. This gives the result.

Chapter 2.3 Problem 18

Suppose not. Then there exists a subsequence going to posi-
tive or negative infinity. Therefore at least one is not bounded.

Chapter 2.4 Problem 2
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Consider |z, —x|. By repeated use of the triangle inequality
we can write this as

< |-Tn - xn+l| + ‘anrl - xn+2| + ...+ ‘ﬂfk—l - 33k|.

We can then write use the bound given repeatedly to get

<y — Tpp1|(1+ C + . CRFD),
Next we may apply the formula repeatdly again to get

1—Cn*

1-C )
As |z1 — x9| is fixed and l_ﬁnc_k is bounded above by 15,
we may make this as small as we like by taking n to be large.

A quick rewriting of this statements shows that the sequence
is Cauchy.

< |y — 2|C Y

Chapter 2.4 Problem 4

For every € > 0 select k. such that y;, < e. This works in
the definition of Cauchy.

Chapter 2.4 Problem 5

For every € > 0 there exists a N, such that |z, — x| < € when
n > N.. We also have two elements, one of which is positive
and one of which is negative. This implies every element with
j > N, must be within € of 0. The result follows.



