Real Analysis I: Midterm Exam Sample, 10/8/2025

Your name:
This is a closed-book in-class exam. Cell phones are NOT allowed in the exam.
1. (10 pts) True or False:
(1): The set $\mathbb Q$ has the least-upper-bound property.
(2): Let $f:D\to\mathbb{R}$ be a bounded function. Then, there exists $x\in D$ such that $f(x)=\sup_{y\in D}f(y)$.
(3): Let $f,g:D\to\mathbb{R}$ be bounded functions and $f(x)\leq g(x)$ for all $x\in D$. Then $\sup_{x\in D}f(x)\leq\inf_{x\in D}g(x)$.
(4): A divergent sequence can have a convergent subsequence.
(5): If both subsequences $\{x_{2n}\}_{n\geq 1}$ and $\{x_{2n-1}\}_{n\geq 1}$ converge, then $\{x_n\}$ itself converges.
 2. (20 = 5+15 pts) Supremum and infimum. (a) State the definition of the supremum of a set A ⊂ ℝ. (b) Let A, B ⊂ ℝ be nonempty bounded sets. Let C = {a + b : a ∈ A, b ∈ B}. Prove that

 $\sup C = \sup A + \sup B.$

- 3. (20 points) Limit superior and limit inferior.
- (a) State the definition of $\liminf_{n\to\infty} x_n$ for a sequence $\{x_n\}_{n=1}^{\infty}$. (b) Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{R} such that both limit superior and limit inferior are finite. Prove that the sequence $\{x_n\}_{n=1}^{\infty}$ is bounded.

- 4. (25 pts) Cauchy sequence.
- (a) State the definition of a Cauchy sequence in \mathbb{R} .
- (b) Let $\{x_n\}_{n=1}^{\infty}$ be a Cauchy sequence in \mathbb{R} . Prove that the sequence $\{x_n\}_{n=1}^{\infty}$ is bounded.

- **5.** (25 pts) Series.
- (a) Prove that $\lim_{n\to\infty} n^{1/n} = 1$. (Hint: use ratio test on $\{\frac{n}{(1+\epsilon)^n}\}$ to show $n < (1+\epsilon)^n$ for large n.)
 (b) Find the radius of convergence of the power series $\sum_{n=1}^{\infty} n \frac{(x-2)^n}{3^n}$.