
Real Analysis I: Midterm Exam Sample, 10/8/2025

Your name:

This is a closed-book in-class exam. Cell phones are NOT allowed in the exam.

1. (10 pts) True or False:

(1) : The set Q has the least-upper-bound property.

(2) : Let f : D → R be a bounded function. Then, there exists x ∈ D such that f(x) =
supy∈D f(y).

(3) : Let f, g : D → R be bounded functions and f(x) ≤ g(x) for all x ∈ D. Then,
supx∈Df(x) ≤ infx∈Dg(x).

(4) : A divergent sequence can have a convergent subsequence.

(5) : If both subsequences {x2n}n≥1 and {x2n−1}n≥1 converge, then {xn} itself converges.

Answer. FFFTF

2. (20 = 5+15 pts) Supremum and infimum.
(a) State the definition of the supremum of a set A ⊂ R.
(b) Let A,B ⊂ R be nonempty bounded sets. Let C = {a+ b : a ∈ A, b ∈ B}. Prove that

supC = supA+ supB.

Answer (a). A real number s is called the supremum (or least upper bound) of a set A ⊂ R if it
satisfies the following two conditions: (1) s is an upper bound of A, i.e., a ≤ s for all a ∈ A. (2) s is
the least such upper bound, i.e., if t is any upper bound of A, then s ≤ t.
Answer (b). Let s = supA and t = supB. We show that supC = s+ t. Since a ≤ s for all a ∈ A
and b ≤ t for all b ∈ B, we have a+b ≤ s+t for all a ∈ A and b ∈ B. Thus, s+t is an upper bound of
C. Now, suppose there exists another upper bound u of C such that u < s+ t. Then, we can choose
ϵ = (s+ t− u)/2 > 0. By the definition of supremum, there exist elements a0 ∈ A and b0 ∈ B such
that s− ϵ < a0 ≤ s and t− ϵ < b0 ≤ t. Adding these inequalities, we get s+ t− 2ϵ < a0 + b0 ≤ s+ t.
This implies u < a0 + b0, which contradicts the fact that u is an upper bound of C. Therefore, no
such u exists, and hence s+ t is the least upper bound of C. Thus, we conclude that supC = s+ t.
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3. (20 points) Limit superior and limit inferior.
(a) State the definition of lim infn→∞ xn for a sequence {xn}∞n=1.
(b) Let {xn}∞n=1 be a sequence in R such that both limit superior and limit inferior are finite. Prove
that the sequence {xn}∞n=1 is bounded.

Answer (a). The limit inferior is defined as

lim inf
n→∞

xn = lim
n→∞

(
inf
k≥n

xk

)
.

This means that for each n, we consider the infimum of the tail of the sequence starting from index
n, and then take the limit of these infima as n approaches infinity (the limit exists since the sequence
is monotonic increasing).
Answer (b). Let L = lim supn→∞ xn and l = lim infn→∞ xn. Assume, for the sake of contradiction,
that the sequence is not bounded above, that is for any M , there exists an integer n > M such
that xn > L + 1. Thus, for M = 1, there exists an integer n1 > 1 such that xn1 > L + 1; for
M = nk−1 > k − 1 with k ≥ 1, there exists an integer nk > max{nk−1, k} such that xnk

> L + 1.
Then, yk := supn≥k xn ≥ xnk

> L + 1 and lim supn→∞ xn = limk yk > L + 1. This contradicts the
assumption that lim supn→∞ xn = L. Therefore, the sequence {xn}∞n=1 is bounded above.

Similarly, assume that the sequence is not bounded below, that is for any N , there exists an integer
m > N such that xm < l− 1. Thus, for N = 1, there exists an integer m1 > 1 such that xm1 < l− 1;
for N = mj−1 > j − 1 with j ≥ 1, there exists an integer mj > max{mj−1, j} such that xmj < l− 1.
Then, zj := infn≥j xn ≤ xmj < l − 1 and lim infn→∞ xn = limj zj < l − 1. This contradicts the
assumption that lim infn→∞ xn = l. Therefore, the sequence {xn}∞n=1 is bounded below.

Therefore, the sequence {xn}∞n=1 is bounded.
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4. (25 pts) Cauchy sequence.
(a) State the definition of a Cauchy sequence in R.
(b) Let {xn}∞n=1 be a Cauchy sequence in R. Prove that the sequence {xn}∞n=1 is bounded.
Answer (a). A sequence {xn}∞n=1 in R is Cauchy if for every ϵ > 0, there exists a positive integer
N such that for all integers m,n > N , the distance between the terms xm and xn is less than ϵ, i.e.,

∀ϵ > 0, ∃N ∈ N such that ∀m,n > N, |xm − xn| < ϵ.

Answer (b). Since {xn}∞n=1 is a Cauchy sequence, for ϵ = 1, there exists a positive integer N
such that for all integers m,n > N , we have |xm − xn| < 1. In particular, for any n > N , we have
|xn − xN+1| < 1. This implies that xn lies within the interval (xN+1 − 1, xN+1 + 1) for all n > N .
Therefore, the sequence {xn}∞n=1 is bounded.
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5. (25 pts) Series.
(a) Prove that limn→∞ n1/n = 1. (Hint: use ratio test on { n

(1+ϵ)n } to show n < (1 + ϵ)n for large n.)

(b) Find the radius of convergence of the power series
∑∞

n=1 n
(x−2)n

3n .

Answer (a). Let ϵ > 0 be given. We need to find an integer N such that for all n > N , we have
|n1/n − 1| < ϵ. This is equivalent to showing that 1 − ϵ < n1/n < 1 + ϵ for all n > N . For n > 1,
we have n1/n > 1 > 1 − ϵ. Now, we need to show that n1/n < 1 + ϵ for sufficiently large n. This is
equivalent to showing that n < (1 + ϵ)n. Consider the sequence {an} defined by an = n

(1+ϵ)n . We
will use the ratio test to show that limn→∞ an = 0. We compute the ratio:

an+1

an
=

(n+ 1) 1
(1+ϵ)n+1

n 1
(1+ϵ)n

=
(n+ 1)

n(1 + ϵ)
=

1 + 1
n

1 + ϵ
.

Taking the limit as n → ∞, we find limn→∞
an+1

an
= 1

1+ϵ < 1. Thus, by the ratio test, the series
an → 0. Therefore, there exists an integer N such that for all n > N , we have an < 1, which implies
that n < (1 + ϵ)n, equivalently, n1/n < 1 + ϵ. Hence, for all n > N , we have |n1/n − 1| < ϵ, i.e.,
limn→∞ n1/n = 1.

Answer (b). Approach 1: the radius of convergence is R = limn→∞( n
3n )

1
n = limn→∞ n1/n3 = 3,

since limn→∞ n1/n = 1 by part (a).

Approach 2: Since the series
∑∞

n=1 n
(x−2)n

3n is a power series in (x − 2), we can find its radius of
convergence using the ratio test. Consider the general term:

an = n
(x− 2)n

3n
.

We compute the ratio:

an+1

an
=

(n+ 1) (x−2)n+1

3n+1

n (x−2)n

3n

=
(n+ 1)(x− 2)

3n
.

Taking the limit as n → ∞, we find:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)|x− 2|
3n

=
|x− 2|

3
.

By the ratio test, the series converges if this limit is less than 1:

|x− 2|
3

< 1 =⇒ |x− 2| < 3,

and it diverges if the limit is greater than 1. Thus, the radius of convergence is R = 3.
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