Chapter 8: Non-homogeneous Equations

Fei Lu
Department of Mathematics, Johns Hopkins

Solution to the IBVP?

\[\partial_t u = \kappa \partial_{xx} u + Q(x, t), \quad \text{with } x \in (0, L), t \geq 0 \]

\[u(x, 0) = f(x) \]

BC: \[u(0, t) = \phi(t), u(L, t) = \psi(t) \]

Section 8.2: Heat flow with source and non-homo BC
Section 8.3: Methods of eigenfunction expansion (homo-BC)
Section 8.4: MEE (non-homo BC): after Chp5
Section 8.5: Forced vibrating membrane and Resonance
Section 8.6: Poisson’s Equation
Outline

Section 8.2: Heat flow with source and non-homo BC

Section 8.3: Methods of eigenfunction expansion (homo-BC)

Section 8.4: MEE (non-homo BC): after Chp5

Section 8.5: Forced vibrating membrane and Resonance

Section 8.6: Poisson’s Equation
Section 8.2: Heat flow with source and non-homo BC

1. Time-independent BC
Consider first
\[
\frac{\partial}{\partial t} u = \kappa \frac{\partial^2}{\partial x^2} u, \quad \text{with } x \in (0, L), \ t > 0 \\
\]
\[
u(x, 0) = f(x)
\]
BC: \(u(0, t) = A, u(L, t) = B \)

1> Equilibrium solu \(u_E(x) = A + \frac{x}{L}(B - A) \).
Section 8.2: Heat flow with source and non-homo BC

1. Time-independent BC
Consider first

\[\partial_t u = \kappa \partial_{xx} u, \quad \text{with } x \in (0, L), t > 0 \]
\[u(x, 0) = f(x) \]
BC: \(u(0, t) = A, u(L, t) = B \)

1> Equilibrium solu \(u_E(x) = A + \frac{x}{L} (B - A) \).
2> Displacement from Equilibrium

\[v(x, t) = u(x, t) - u_E(x) \]

\[\partial_t v = \kappa \partial_{xx} v, \]
\[v(x, 0) = f(x) - u_E(x) \]
\[v(0, t) = 0, v(L, t) = 0 \]
\[v(x, t) = \sum_{n=0}^{\infty} a_n e^{-\kappa \lambda_n t} \sin \frac{n\pi}{L} x \]
Section 8.2: Heat flow with source and non-homo BC

1. Time-independent BC
Consider first

\[\partial_t u = \kappa \partial_{xx} u, \quad \text{with } x \in (0, L), t > 0 \]
\[u(x, 0) = f(x) \]
BC: \(u(0, t) = A, u(L, t) = B \)

1> Equilibrium solu \(u_E(x) = A + \frac{x}{L} (B - A) \).
2> Displacement from Equilibrium

\[v(x, t) = u(x, t) - u_E(x) \]

\[v(x, t) = \sum_{n=0}^{\infty} a_n e^{-\kappa \lambda_n t} \sin \frac{n \pi}{L} x \]

Extension (exe): steady source

\[\partial_t u = \kappa \partial_{xx} u + Q(x) \]
\[u(x, 0) = f(x) \]
\[u(0, t) = A, u(L, t) = B \]
2. Time-dependent non-homo PDE&BC

$$\partial_t u = \kappa \partial_{xx} u + Q(x, t),$$

$$u(x, 0) = f(x)$$

$$u(0, t) = A(t), u(L, t) = B(t)$$

1> Homogenization:

▶ Equilibrium solu?

▶ May NOT be able o reduce both PDE and BC to homo.
choose one: PDE or BC?
2. Time-dependent non-homo PDE&BC

\[\partial_t u = \kappa \partial_{xx} u + Q(x, t), \]
\[u(x, 0) = f(x) \]
\[u(0, t) = A(t), u(L, t) = B(t) \]

1> Homogenization:

► Equilibrium solu?

► May NOT be able to reduce both PDE and BC to homo.

choose one: PDE or BC?

⇒ reference solution \(r(x, t) \) s.t.

\[r(0, t) = A(t); r(L, t) = B(t) \]

► any \(r^{***} \)

► \(r(x, t) = A(t) + \frac{x}{L} [B(t) - A(t)]. \)
2. Time-dependent non-homo PDE&BC

\[\partial_t u = \kappa \partial_{xx} u + Q(x, t), \]
\[u(x, 0) = f(x) \]
\[u(0, t) = A(t), u(L, t) = B(t) \]

1> Homogenization:

▶ Equilibrium solu?

▶ May NOT be able o reduce both PDE and BC to homo.
 choose one: PDE or BC?

⇒ reference solution \(r(x, t) \) s.t.

\[r(0, t) = A(t); r(L, t) = B(t) \]

▶ any \(r \) ***

▶ \(r(x, t) = A(t) + \frac{x}{L} [B(t) - A(t)]. \)

2> Displacement solution

\[\nu(x, t) = u(x, t) - r(x, t) \]

\[\partial_t \nu = \kappa \partial_{xx} \nu + \overline{Q}(x, t), \]
\[\nu(x, 0) = f(x) - r(x, 0) \]
\[\nu(0, t) = 0, \nu(L, t) = 0 \]

▶ \(\overline{Q} =? \): ***

▶ can we use separation of variables?
\[\nu(x, t) = h(t) \phi(x) \]

\(\overline{Q} \) and no POS.

▶ Fourier series

\[\nu(x, t) = \sum_{n=0}^{\infty} a_n(t) \sin \frac{n\pi}{L} x \]
\[\overline{Q}(x, t) = \sum_{n=0}^{\infty} q_n(t) \sin \frac{n\pi}{L} x \]

→ method of eigenfunction expansion ↓

Section 8.2: Heat flow with source and non-homo BC
Outline

Section 8.2: Heat flow with source and non-homo BC

Section 8.3: Methods of eigenfunction expansion (homo-BC)

Section 8.4: MEE (non-homo BC): after Chp5

Section 8.5: Forced vibrating membrane and Resonance

Section 8.6: Poisson’s Equation
Section 8.3: Methods of eigenfunction expansion

separation of variables: homo PDE + homo BC

generalize \rightarrow non-homo PDE + homogeneous BC

Seek solution of the form

$$u(x, t) = \sum_{n=0}^{\infty} a_n(t) \cos \frac{n\pi}{L} x + b_n(t) \sin \frac{n\pi}{L} x,$$

- homo BC determines the eigenfunctions to use (sine/cosine/both, denote by $\phi_n(x)$)
- works for equation with source $\partial_t u = \kappa \partial_{xx} u + Q(x, t)$
- solve $a_n(t), b_n(t)$ from the PDE + IC (use TBTD, under conditions)
Method of eigenfunction expansion

\[\partial_t v = \kappa \partial_{xx} v + Q(x, t), \]
\[v(x, 0) = g(x) \]
\[v(0, t) = 0, v(L, t) = 0 \]
\[\phi_n(x) = \sin \frac{n \pi}{L} x \]

\[v(x, t) = \sum_{n=0}^{\infty} b_n(t) \phi_n(x), \quad (b_n \text{ TBD} \downarrow) \]

\[g(x) = \sum_{n=0}^{\infty} b_n(0) \phi_n(x), \quad b_n(0) =? \]

\[Q(x, t) = \sum_{n=0}^{\infty} q_n(t) \phi_n(x) \]
Method of eigenfunction expansion

\[\partial_t v = \kappa \partial_{xx} v + \overline{Q}(x, t), \]

\[v(x, 0) = g(x) \]

\[v(0, t) = 0, v(L, t) = 0 \]

\[\phi_n(x) = \sin \frac{n\pi}{L} x \]

\[v(x, t) = \sum_{n=0}^{\infty} b_n(t) \phi_n(x), \quad (b_n \text{ TBD} \downarrow) \]

\[g(x) = \sum_{n=0}^{\infty} b_n(0) \phi_n(x), \quad b_n(0) = ? \]

\[\overline{Q}(x, t) = \sum_{n=0}^{\infty} \overline{q}_n(t) \phi_n(x) \]

TBTD \(\partial_t v, \partial_{xx} v \) PS; \(v, \partial_x v \) continuous; (BC?) \(\Rightarrow \)

\[\partial_t v = \sum_{n=0}^{\infty} b'_n(t) \phi_n(x) \]

\[\kappa \partial_{xx} v + \overline{Q}(x, t) = \sum_{n=0}^{\infty} \left[-\lambda_n \kappa b_n(t) + \overline{q}_n(t) \right] \phi_n(x) \]

\[\Rightarrow b'_n + \lambda_n \kappa b_n(t) = \overline{q}_n(t) \]

\[b_n(t) = b_n(0) e^{-\kappa \lambda_n t} + \int_0^t e^{-\kappa \lambda_n (t-s)} \overline{q}_n(s) \, ds \]

\[\Rightarrow \text{Check: if } \overline{Q}(x, t) = 0: b_n(t) = b_n(0) e^{-\kappa \lambda_n t}. \]
Example
Find a solution of

\[
\partial_t u = \kappa \partial_{xx} u + e^{-t} \sin 3x
\]

\[
u(x, 0) = f(x)
\]

\[
u(0, t) = 0, \quad u(\pi, t) = 1
\]
Example

Find a solution of

\[\partial_t u = \kappa \partial_{xx} u + e^{-t} \sin 3x \]

\[u(x, 0) = f(x) \]

\[u(0, t) = 0, u(\pi, t) = 1 \]

\[L = \pi, \lambda_n = n^2; \]

1> reference solution:

\[r(x, t) = 0 + \frac{x}{\pi} (1 - 0) = \frac{x}{\pi} \]
Example

Find a solution of

\[
\begin{align*}
 &\partial_t u = \kappa \partial_{xx} u + e^{-t} \sin 3x \\
 &u(x, 0) = f(x) \\
 &u(0, t) = 0, u(\pi, t) = 1
\end{align*}
\]

\[L = \pi, \lambda_n = n^2;\]

1> reference solution:

\[
r(x, t) = 0 + \frac{x}{\pi} (1 - 0) = \frac{x}{\pi}
\]

2> let \(v(x, t) = u(x, t) - r(x, t) \)

\[
\begin{align*}
 &\partial_t v = \kappa \partial_{xx} v + \overline{Q}(x, t), \\
 &v(x, 0) = f(x) - r(x, 0) \\
 &v(0, t) = 0, v(L, t) = 0
\end{align*}
\]

\[\overline{Q}(x, t) = e^{-t} \sin 3x + 0\]

\[\text{BC} \Rightarrow \phi_n(x) = \sin nx\]

Seek \(v(x, t) = \sum_{n=0}^{\infty} b_n(t) \phi_n(x) \)
Example
Find a solution of

\[\partial_t u = \kappa \partial_{xx} u + e^{-t} \sin 3x \]
\[u(x, 0) = f(x) \]
\[u(0, t) = 0, u(\pi, t) = 1 \]

\[L = \pi, \lambda_n = n^2; \]

1> reference solution:
\[r(x, t) = 0 + \frac{x}{\pi} (1 - 0) = \frac{x}{\pi} \]

\[\bar{Q}(x, t) = e^{-t} \sin 3x + 0 \]
\[\text{BC} \Rightarrow \phi_n(x) = \sin nx \]

Seek \(v(x, t) = \sum_{n=0}^{\infty} b_n(t) \phi_n(x) \)

\[\text{TBD} \partial_t v, \partial_{xx} v \text{ PS; } v, \partial_x v \text{ continuous; } \Rightarrow \]
\[b_n(t) = b_n(0) e^{-\kappa \lambda_n t} + \int_0^t e^{-\kappa \lambda_n (t-s)} q_n(s) ds \]

\[u(x, t) = v(x, t) + \frac{x}{\pi} \]

Section 8.3: Methods of eigenfunction expansion (homo-BC)
Outline

Section 8.2: Heat flow with source and non-homo BC

Section 8.3: Methods of eigenfunction expansion (homo-BC)

Section 8.4: MEE (non-homo BC): after Chp5

Section 8.5: Forced vibrating membrane and Resonance

Section 8.6: Poisson’s Equation
In the method of eigenfunction expansion, what if

- TBTD conditions not satisfied
- More general equations \(\partial_{xx} \rightarrow \frac{d}{dx}(p(x)\frac{d}{dx}) \)

Back to it after chapter 5.
Outline

Section 8.2: Heat flow with source and non-homo BC

Section 8.3: Methods of eigenfunction expansion (homo-BC)

Section 8.4: MEE (non-homo BC): after Chp5

Section 8.5: Forced vibrating membrane and Resonance

Section 8.6: Poisson’s Equation
Outline

Section 8.2: Heat flow with source and non-homo BC

Section 8.3: Methods of eigenfunction expansion (homo-BC)

Section 8.4: MEE (non-homo BC): after Chp5

Section 8.5: Forced vibrating membrane and Resonance

Section 8.6: Poisson’s Equation