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Unsupervised learning

Data: Unlabeled input X, output Y.
Goal: Learn the function f that Y = f(X).
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Unsupervised learning

Data: Unlabeled input X, output Y.
Goal: Learn the function f that Y = f(X).

Problem formulation
Consider the state-space model:

State model: dX: = a(Xy)dt + b(X;)dB;, with a, b known;

Observation model: Yy = fre(Xt), with fzye unknown.

Data: { y{mm

to:t; Sm=1-

Goal: Identify the observation function fie.
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Generalized moments method

Let g : REFY — RK is a functional of the trajectory Yi,.;,. We are
matching the moments

We estimate the observation function fi,,e by minimizing a notion of
discrepancy between these two empirical generalized moments:

f = argmin Em(f),
feH

where Ey(f) 1= dist (Em[g(Yey:r, )], E [g(f(Xto:tL))])2
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Proper choice of g

For efficient optimization, we select the functional g such that the
moments E [g(f(Xzy:t,))] for f = 3.7, cidj can be efficiently evaluated for
all c = (e1,...,¢n).

For example,
Q a1(Yet,) = Yeootss
Q@ oo(Yit,) = Yt%;tL;
(s g3(Yt0:tL) = (Yto Yi, o Yo, YtL);
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Moments from Itd formula

For f € Cg, i.e., 2nd-order differentiable with bounded derivatives,
applying It6 formula:

1
df (X)) = VFf - b(Xe)dW; + [V -a+ EHess(f) : bTb](Xt)dt.
In integral form, it is
t+6 t+6
f(Xirs) — F(Xp) = J V- b(Xs)dWs + f LF(Xs)ds.
t t
where the 2nd-order differential operator L is

1
Lf = VF-a+ Hess(f): b'b

Qingci An (Joint work with Fei Lu) Unsupervised learning of observation function




Moments from Itd formula

For Y: = frrue(Xt) and AY: = Yiis — Yi, we have the following equalities
for moments

E[AY;:] = E[Jm Lfirue(Xs)ds] = E[Lfoue(X:)d] + O(62),
E [YtA Yt] = [ftrue(Xt) Jt+6 Eftrue(Xs)dS] = IE‘:[fﬁftrue()Q)(s] + 0(52)7

E[(AY,)?] = H Vforue b |ds]+EH EfX)ds)]

L E[ J LF(X.)ds f Vb(X,)dW,]
t t
= B[|V foueb(Xs)[26] + O(6%)
o g4(Yt0:tL) = (Yt1 - Yto) T, YtL - YtL_l);

Q g5(Yet,) = (Yo (Yo — o)y . Yo (Yo, — Yo )
o g6<Yt0:fL) = ((Ytl - Yto)27 T 7<Yt1_ - YtL—1)2);
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Loss functionals

The generalized moments we consider include the first and the second
moments, as well as the one-step temporal correlation:

L L
£(F) = 7 D [EIF(X)] ~ BIYe] +20 D) [EIF(X)) ~EIVZIP
I1=1 =1

£1(f) £2(f)

L
a7 D BIFOGF %)) — E[Ya Yo
=1

)

~—

&(F)
EM(f) := Replace E[Y;], ]E[Yg], E[Y% Yt_,| by their empirical mean.
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Hypothesis space

n

H={f= Z Cidi : Ymin < F(X) < Ymax for all x € supp(pT)}.
i=1
While ideally ymin and ymax are bounds for fie, these are typically
unknown, and we use instead the empirical upper and lower bounds:

LM
I,m=1>

LM

Ymin = min{Yt(lm) Ymax = max{ Yt(,m) Im=1-
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Estimator

The estimator from data is

n

EDICT

i=1

c= arg min EM(c).
ceR" s.t. D7, cigieH
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|dentifiability by quadratic loss functional

Definition (ldentifiability)

We say that the observation function fi,, is identifiable by a data-based
loss functional £ on a hypothesis space H if fie is the unique minimizer
of £ in H.

Rewrite the quadratic loss function as:
gl(f) = <f — ftrues LKl(f - ﬂrue)>L2(ﬁLT),

where

@ Ly, isan integral operator with kernel Ki,

° Kl(X7X,) = (x)p LZI 1Pt,( )ptl(xl)'

@ py is the den5|ty of Xt,,

° ,ELT is the average density of p;,, / =0, -+, L.
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Inverse problem

VE&I(f) = L, (f — frrue)
f="Lg!" L (firue)

@ When Lk, is not strictly positive (eg, X; stationary process), the
inverse problem is ill-defined on L?(pY) .

@ On the reproducing kernel hilbert space H,, the operator L, is

invertible but unbounded, the inverse problem is ill-posed on the
RKHS.
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Numerical examples: double-well potential

dX; = (X¢ — X2)dt + dB;

Three observation function f(x) representing typical challenges:
nearly invertible, non-invertible, non-invertible discontinuous:

Sine function:

=N

—~
x

N—
Il

n(x);

sin
Sine-Cosine function: (x) =2sin(x) + cos(6x);

Arch function: (x) =(-2(1— ) +1.5(1—x)+ 0-5) ]-XE[O,I]'
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Numerical examples:

Bl
Space x 2 0

(a) Process (X;),

unobserved
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Time step
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(b) Process (Y:)
for fipye = sine
function

0

A Time step
Spacey 4 0

(c) Process (Y;)
for ftrue =
sine-cosine
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(d) Process (Y;)
for fiue = arch
function




Estimation results
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Figure: Learning results of Sine function f(x) = sin(x)
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Figure: Learning results of Sine-Cosine function f(x) = 2sin(x) + cos(6x)
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Figure: Learning results of Arch function f3
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