
Deep Learning-Based Numerical Methods for
High-Dimensional Parabolic PDEs and BSDEs

Hao Quan

Johns Hopkins University

haoquan@jhu.edu

November 11, 2021

Hao Quan (JHU) Deep BSDE Method November 11, 2021 1 / 27

Semilinear Parabolic PDEs

We consider a general class of semilinear parabolic PDEs, which is of the
form:

∂u

∂t
(t, x)+

1

2
Tr[σσT (t, x)Hxu(t, x)]+∇u(t, x) ·µt,x+ f (t, x , u, σT∇u) = 0

(1)
Note that:

PDE is defined on [0,T]× Rd

Tr is the trace

Hxu(t, x) is the Hessian matrix w.r.t. x

σ(t, x) : R× Rd → Rd×d is a known matrix-valued function

µ(t, x) : R× Rd → Rd is a known vector-valued function

f is a known nonlinear function

We want to find a function u satisfying the PDE given a terminal
condition u(T , x) = g(x) for some function g .

Hao Quan (JHU) Deep BSDE Method November 11, 2021 2 / 27

Examples

Nonlinear Black-Scholes equation

∂u

∂t
+ µx · ∇u +

σ̄2

2

d∑
i=1

∂2u

∂x2i
= −[(1− δ)Q ◦ u]u − Ru (2)

Hamilton-Jabobi-Bellman equation (HJB) for linear-quadratic
Gaussian (LQG) control

∂u

∂t
+∆u − λ|∇u|2 = 0 (3)

Allen-Cahn equation

∂u

∂t
= ∆u + u − u3 (4)

Hao Quan (JHU) Deep BSDE Method November 11, 2021 3 / 27

Curse of dimensionality

It is well known that numerical algorithms for high-dimensional PDEs
have long suffered the so called ”curse of dimensionality”, namely,
the complexity of the algorithm grows exponentially as the dimension
grows.

A limited number of cases where practical high-dimensional
algorithms have been developed in the literature:

High dimensional linear parabolic PDEs: Feynman-Kac + Monte Carlo
Invscid Hamilton-Jabobi Equation: Algorithms based on Hopf formula
(Darbon and Osher 2016)
Semi-parabolic PDEs with polynomial nonlinearity: Branching
Duffusion method (Henry-Labordere 2012,Henry-Labordere, Tan, and
Touzi 2014)
General semi-parabolic PDEs: Multi-level Picard Method (Weinan,
Hutzenthaler, et al. 2019)

Hao Quan (JHU) Deep BSDE Method November 11, 2021 4 / 27

Curse of dimensionality

Deep Learning has emerged in machine learning in recent years and
has proven to be very effective in dealing with large class of
high-dimensional problems in computer vision, natural language
processing, time series analysis, etc. This leads to the hope that Deep
learning might hold the key to tackle the curse of dimensionality.

Hao Quan (JHU) Deep BSDE Method November 11, 2021 5 / 27

Hope

“Hope, it is the quintessential human delusion, simultaneously the
source of your greatest strength, and your greatest weakness.”

— The Architect, The Matrix Reloaded

Hao Quan (JHU) Deep BSDE Method November 11, 2021 6 / 27

Curse of dimensionality

However, Deep Learning has emerged in machine learning in recent
years and has proven to be very effective in dealing with large class of
high-dimensional problems in computer vision, natural language
processing, time series analysis, etc. Deep learning might hold the key
to tackle the curse of dimensionality.

The bridge between high dimensional parabolic PDEs and Deep
Learning is Backward Stochastic Differential Equation.

Hao Quan (JHU) Deep BSDE Method November 11, 2021 7 / 27

Nonlinear Feynman-Kac formula

Let (Ω,F ,P) be a probability space, W : [0,T]× Ω → Rd be a
d-dimensional standard Brownian motion, and {Ft}t∈[0,T] be the filtration
generated by {Wt}t∈[0,T]. Consider {Ft}t∈[0,T]-adapted process
{(Xt ,Yt ,Zt)}t∈[0,T] s.t.

Xt = ξ +

∫ t

0
µ(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs (5)

Yt = g(XT) +

∫ T

t
f (s,Xs ,Ys ,Zs)ds −

∫ T

t
ZT
s dWs (6)

Under suitable regularity assumption on µ, σ and f , one can prove
existence and uniqueness of the solution process and ∀t ∈ [0,T], and it
holds P−a.s. (see Pardoux and Peng 1992) that

Yt = u(t,Xt), Zt = σT (x ,Xt)∇u(t,Xt) (7)

Hao Quan (JHU) Deep BSDE Method November 11, 2021 8 / 27

Conversion to BSDE

Now the solution u of the PDE(1) satisfies the following BSDE

u(t,Xt)− u(0,X0) = −
∫ t

0
f (s,Xs , u(s,Xs), σ

T∇u(s,Xs))ds (8)

+

∫ t

0
[∇u(s,Xs)]

Tσ(s,Xs)dWs (9)

Hao Quan (JHU) Deep BSDE Method November 11, 2021 9 / 27

Discretization and Euler scheme

In order to numerically solve this BSDE, we apply a temporal discretization
to the equation (8)-(9). We discretize time via following partition:

[0,T] : 0 = t0 < t1 < t2 < · · · < tN = T (10)

We consider the Euler-Maruyama scheme for
n ∈ {0, 1, 2, . . . ,N − 1},∆tn = tn+1 − tn,∆Wn = Wtn+1 −Wtn :

Xtn+1 − Xtn ≈ µ(tn,Xtn)∆tn + σ(tn,Xtn)∆Wn (11)

and we approximate u(t,Xt):

u(tn+1,Xtn+1)− u(tn,Xtn) = −f (tn,Xtn , u(tn,Xtn), σ
T∇u(tn,Xtn))∆tn

+ [∇u(tn,Xtn)]
Tσ(tn,Xtn)∆Wn

Hao Quan (JHU) Deep BSDE Method November 11, 2021 10 / 27

Unknown gradient

The finite difference equation (FDE) in incremental form:

u(tn+1,Xtn+1)− u(tn,Xtn) = −f (tn,Xtn , u(tn,Xtn), (σ
T∇u)(tn,Xtn))∆tn

+ [∇u(tn,Xtn)]
Tσ(tn,Xtn)∆Wn

However, ∇u(tn,Xtn) is unknown and hard to estimate. A deep learning
approach can be used to obtain an estimate for σT∇u(tn,Xtn)) at each
time step. This approach is so called ”Deep BSDE method”

Hao Quan (JHU) Deep BSDE Method November 11, 2021 11 / 27

Deep BSDE method

Given the temporal discretization, {Xtn}0≤n≤N can be easily sampled by
Monte-Carlo using equation (11). The key step next is to approximate the
function x → σT (t, x)∇u(t, x) at each time t = tn by feedforward neural
network:

(σT∇u)(tn,Xtn) ≈ (σT∇u)(tn,Xtn ; θn) (12)

for n = 1, . . . ,N − 1, where θn denotes parameters of the neural network
approximating x → σT (t, x)∇u(t, x).

Hao Quan (JHU) Deep BSDE Method November 11, 2021 12 / 27

Deep BSDE method

We stack all the subnetworks in (12) together to form a deep neural
network as a whole via the summation of the incremental (FDE) over
n = 1, . . . ,N − 1.

Input: {(Xtn ,Wtn)}0≤n≤N

Intermediate output: (σT∇u)(tn,Xtn)0≤n≤N−1

Final output: û(tn+1,Xtn+1)0≤n≤N−1

Set of all parameters:

θ = {θu0 , θ∇u0 , θ1, θ2, . . . , θN−1} (13)

Hao Quan (JHU) Deep BSDE Method November 11, 2021 13 / 27

Deep BSDE method

Inspired by the terminal condition:

E[|g(XT)− u(T ,XT)|2] = 0 (14)

We define the loss function:

ℓ(θ) := E[|g(XtN)− u(tN ,XtN)|
2] (15)

Commonly used optimization methods like Stochastic Grdient
Descent (SGD) or Adam optimizer fit very well to minimize ℓ(θ) over
θ, as paths {Xt}t∈[0,T] can be easily simulated.

For Xt0 = ξ ∈ Rd , once a number of iterations have occurred, a final
estimate of the initial value of the solution is reached:

θu0 ≈ u0(ξ) = u(t0, ξ) (16)

Hao Quan (JHU) Deep BSDE Method November 11, 2021 14 / 27

Network Architecture

Figure: (Weinan, Han, and Jentzen 2017) Illustration of the network architecture
for solving semilinear parabolic PDEs. Each column corresponds to a subnetwork
at time t = tn with H hidden layers and intermediate neurons h1n, . . . , h

H
n . The

whole network has (H+1)(N-1) layers in total that involve free parameters to be
optimized simultaneously

Hao Quan (JHU) Deep BSDE Method November 11, 2021 15 / 27

Ex.1 Hamilton-Jacobi-Bellman equation

We consider a classical linear-quadratic Gaussian control problem in
dimension d = 100:

dXt = 2
√
λc(t)dt +

√
2dWt (17)

with t ∈ [0,T],X0 = x , constant λ > 0, the control {c(t)}t∈[0,T] and the
state process {Xt}t∈[0,T].
The goal is to minimize the cost functional:

J(c) = E
[∫ T

0
|c(t)|2dt + g(XT)

]
(18)

with
g(x) = log((1 + |x |2)/2) (19)

Hao Quan (JHU) Deep BSDE Method November 11, 2021 16 / 27

Ex.1 Hamilton-Jacobi-Bellman equation

Then the HJB equation for this problem is given by:

∂u

∂t
+∆u − λ|∇u|2 = 0, u(T , x) = g(x) (20)

The value of the solution u at time t = 0 represents the optimal cost when
the state starts from x . By Itô’s formula, one can show that (20) admits
the explicit formula:

u(t, x) = − 1

λ
log(E[exp(−λg(x +

√
2WT−t))]) (21)

Hao Quan (JHU) Deep BSDE Method November 11, 2021 17 / 27

Ex.1 Hamilton-Jacobi-Bellman equation

Figure: (Han, Jentzen, and Weinan 2018) Relative error of the deep BSDE
method for u(t = 0, x = (0, ..., 0)) when λ = 1 against the number of iteration
steps in the case of the 100-dimensional HJB Eq. (20) with N = 20 equidistant
time steps and learning rate 0.01. The shaded area depicts the mean ± the
standard deviation of the relative error for five different runs. The deep BSDE
method achieves a relative error of size 0.17% in a runtime of 330 s

Hao Quan (JHU) Deep BSDE Method November 11, 2021 18 / 27

Ex.1 Hamilton-Jacobi-Bellman equation

Figure: (Han, Jentzen, and Weinan 2018) Optimal cost u(t = 0, x = (0, ..., 0))
against different values of λ in the case of the 100-dimensional HJB Eq. (20),
obtained by the deep BSDE method and classical Monte Carlo simulations of Eq.
(21)

Hao Quan (JHU) Deep BSDE Method November 11, 2021 19 / 27

Ex.2 Allen Cahn equation

We consider the following problem of dimension d = 100:

∂u

∂t
= ∆u + u − u3 (22)

subject to the initial condition:

u(0, x) = g(x) = 1/(2 + 0.4|x |2) (23)

Consider the time reversal t̃ = T − t. Then the problem becomes:

∂ũ

∂ t̃
+∆ũ + ũ − ũ3 = 0 (24)

subject to the terminal condition:

ũ(T , x) == u(0, x) = g(x) = 1/(2 + 0.4|x |2) (25)

Hao Quan (JHU) Deep BSDE Method November 11, 2021 20 / 27

Ex.2 Allen Cahn equation

Suppose we want to estimate the solution u at
t = 0.3, x = 0 = (0, . . . , 0) ∈ Rd . Since the equation (22) lacks analytical
solution, we replace the exact solution u(0.3, 0) by 0.0528, which is
computed by the branching diffusion method (see Henry-Labordere 2012
and Henry-Labordere, Tan, and Touzi 2014)

Hao Quan (JHU) Deep BSDE Method November 11, 2021 21 / 27

Ex.2 Allen Cahn equation

Figure: (Han, Jentzen, and Weinan 2018) Relative error of the deep BSDE
method for u(t = 0.3, x = 0) against the number of iteration steps in the case of
the 100- dimensional Allen–Cahn Eq.(22) with N = 20 equidistant time steps and
learning rate 0.0005. The shaded area depicts the mean ± the standard deviation
of the relative error for five different runs. The deep BSDE method achieves a
relative error of size 0.30% in a runtime of 647 seconds

Hao Quan (JHU) Deep BSDE Method November 11, 2021 22 / 27

Ex.2 Allen Cahn equation

Figure: (Han, Jentzen, and Weinan 2018) Time evolution of u(t, x = 0) for
t ∈ [0, 0.3] in the case of the 100-dimensional Allen–Cahn Eq. (22) computed by
means of the deep BSDE method

Hao Quan (JHU) Deep BSDE Method November 11, 2021 23 / 27

BSDE Method Flowchart

Semilinear
Parabolic PDE

BSDE

Incremental
FDE

Initial Value
Estimation

Gradient
Estimations

Neural Network

Feynman-Kac

Euler-Maruyama SGD

Hao Quan (JHU) Deep BSDE Method November 11, 2021 24 / 27

Conlcusion

The deep BSDE method was used to obtain results for
Hamilton-Jacobi-Bellman equation and Allen-Cahn equation

The deep BSDE method was able to obtain results close to analytical
solutions as well as solutions by other numerical methods

The deep BSDE method works well for high-dimensional problems.
However, for low dimensional problems, it might take much longer
time than traditional method, considering that it only tracks one
point at a time (as opposed to tracking over the whole domain)

Exploration of boundary value problem; reduction of redundancy of
the network architecture

Hao Quan (JHU) Deep BSDE Method November 11, 2021 25 / 27

References I

Darbon, Jérôme and Stanley Osher (2016). “Algorithms for
overcoming the curse of dimensionality for certain Hamilton–Jacobi
equations arising in control theory and elsewhere”. In: Research in the
Mathematical Sciences 3.1, pp. 1–26.
Han, Jiequn, Arnulf Jentzen, and E Weinan (2018). “Solving
high-dimensional partial differential equations using deep learning”. In:
Proceedings of the National Academy of Sciences 115.34,
pp. 8505–8510.
Henry-Labordere, Pierre (2012). “Counterparty risk valuation: A
marked branching diffusion approach”. In: Available at SSRN 1995503.
Henry-Labordere, Pierre, Xiaolu Tan, and Nizar Touzi (2014). “A
numerical algorithm for a class of BSDEs via the branching process”.
In: Stochastic Processes and their Applications 124.2, pp. 1112–1140.

Hao Quan (JHU) Deep BSDE Method November 11, 2021 26 / 27

References II

Pardoux, Etienne and Shige Peng (1992). “Backward stochastic
differential equations and quasilinear parabolic partial differential
equations”. In: Stochastic partial differential equations and their
applications. Springer, pp. 200–217.
Weinan, E, Jiequn Han, and Arnulf Jentzen (2017). “Deep
learning-based numerical methods for high-dimensional parabolic partial
differential equations and backward stochastic differential equations”.
In: Communications in Mathematics and Statistics 5.4, pp. 349–380.
Weinan, E, Martin Hutzenthaler, et al. (2019). “On multilevel Picard
numerical approximations for high-dimensional nonlinear parabolic
partial differential equations and high-dimensional nonlinear backward
stochastic differential equations”. In: Journal of Scientific Computing
79.3, pp. 1534–1571.

Hao Quan (JHU) Deep BSDE Method November 11, 2021 27 / 27

	References

