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Motivation

Discrete-time Markov Chains Pólya’s Theorem

Basic Settings

The following are some notations that we use throughout these
slides:

N = {1, 2, 3, . . .};
N0 = {0, 1, 2, . . .}.

The triple (Ω,F ,P) is a probability space, all the random
variables of our interests are defined on it.
The state space S is countable. It is equipped with discrete
topology and S is the Borel σ-algebra on S.
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Motivation

Discrete-time Markov Chains Pólya’s Theorem

Basic Settings

Let X = (Xn)n∈N0 be a time-homogeneous Markov chain
adapted to (F X

n )n∈N0 taking values in S. Its corresponding
transition probabilities are specified by a function
P(·, ·) : S × S → [0, 1], in other words,

P(x, y) = P(Xn+1 = y |Xn = x) for all n ∈ N0.

Conventions
If the distribution of X0 under P is µ, that is,

P(X0 ∈ A) = µ(A) for all A ∈ S ,

then we write P as Pµto indicate the initial distribution. If µ = δx,
we use Px as an abbreviation for Pδx .
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Motivation

Discrete-time Markov Chains Pólya’s Theorem

Simple Symmetric Random Walk on Zd

Given d ∈ N.

Definition

A simple symmetric random walk X on Zd is a Markov chain
whose state space S is Zd with transition probability P given by

P(x, y) =

{
1

2d if |x − y| = 1;
0 otherwise.

Q: Is this chain recurrent or transient?

Ao Sun Simple Symmetric Random Walk on Zd Fall 2021 6 / 39
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Motivation

Discrete-time Markov Chains Pólya’s Theorem

Pólya’s Theorem

Pólya’s Theorem (1921)

Simple symmetric random walk on Zd is recurrent if and only if
d ≤ 2.

As a quote from Kakutani put: "A drunken man will eventually
find his way home but a drunken bird may get lost forever."

Many traditional proofs are known:
Combinatorial methods;
Chung-Fuchs theorem via Fourier-Stieltjes transform;
Local central limit theorem.
See more in Durrett [2019]

Ao Sun Pólya’s Theorem Fall 2021 7 / 39
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Motivation

Discrete-time Markov Chains Pólya’s Theorem

Pólya’s Theorem

However, all of the aforementioned methods are not very robust
and would need a substantial improvement in order to cope
with even a very small local change in P.

They all exploit the independence and identical distribution
structure in the construction of X = (Xn)n∈N0 as

Xn := X0 +
n∑

k=1

ξk,

where ξk’s are i.i.d. with distribution

ξk =


ei for each i = 1, . . . , d with probability 1

2d ;

−ei for each i = 1, . . . , d with probability 1
2d ;

0 otherwise.

Ao Sun Pólya’s Theorem Fall 2021 8 / 39
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Motivation

Discrete-time Markov Chains Pólya’s Theorem

Pólya’s Theorem

Integer lattice Z2 Z2 with removed edges

Q: Is this chain still recurrent if some edges are removed from
the integer lattice Z2?
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Motivation

Discrete-time Markov Chains Pólya’s Theorem

Pólya’s Theorem

Intuitively, such a local change should not affect the global
behavior such as recurrence if irreducibility still holds. We need
to resort to other tools to answer this question rigorously.

Electrical Networks!
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Dirichlet Problems

Harmonic Functions Reversibility

Harmonic Functions

Definition
Let A be a nonempty subset of S. A function f : S → R is called
harmonic on A if

Pf (x) :=
∑
y∈S

f (y)P(x, y) (2.1)

exists for all x ∈ A and Pf = f on A.

Example
If X is irreducible and transient, given any a ∈ S, the Green
function G(x, a) := Ex[

∑∞
n=0 1{Xn=a}] =

∑∞
n=0 P(n)(x, a) is

harmonic on S \ {a}.
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Dirichlet Problems

Harmonic Functions Reversibility

Harmonic functions

Example

Let B be an nonempty proper subset of S and
τ+B = inf{n ∈ N : Xn ∈ B}. Let g : B → R be a bounded
function. Then the function

f (x) :=

{
Ex

[
g
(
Xτ+B

)
1{τ+B <∞}

]
if x ∈ S \ B;

g(x) if x ∈ B
(2.2)

is harmonic on S \ B.

Example 4 can be verified by an easy first-step analysis. It
provides us with a solution to the Dirichlet problem in the next
slide.
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Dirichlet Problems

Harmonic Functions Reversibility

Dirichlet Problem

Definition
Let B be a nonempty proper subset of S. The Dirichlet problem
is defined by finding f : S → R such that{

(P − I)f (x) = 0 for x ∈ S \ B;
f (x) = g(x) for x ∈ B,

(2.3)

where g : B → R is a given bounded function.

We have shown the existence of the solution to (2.3). Clearly,
the solution is not unique in general, for example, when P = I,
then any function that coincides with g on B is a solution.
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Dirichlet Problems

Harmonic Functions Reversibility

Absorbing Chain

In order to describe formally the irreducibility condition that we
have to impose, we introduce the transition probability PB of the
chain XB = (XB

n )n∈N0 absorbed upon reaching B by

PB(x, y) :=

{
P(x, y) if x ∈ S \ B;
δxy if x ∈ B.

For x, y ∈ S, define the hitting probability

ρB(x, y) := Px(τ
+
y < ∞),

where τ+y is the hitting time inf{n ∈ N : XB
n = y}. Let

SB(x) := {y ∈ S : ρB(x, y) > 0}.
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Dirichlet Problems

Harmonic Functions Reversibility

Maximum principle

Theorem (Maximum principle)

Let f be a harmonic function on S \ B.
1 If there exists an x0 ∈ S \ B such that

f (x0) = sup
x∈SB(x0)

f (x),

then f (y) = f (x0) for any y ∈ SB(x0).
2 In particular, if ρB(x, y) > 0 for all x, y ∈ S \ B, and if there

exists an x0 ∈ S \ B such that f (x0) = sup(f (S)), then
f (y) = f (x0) for any y ∈ S \ B.
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Dirichlet Problems

Harmonic Functions Reversibility

Uniqueness of the Solution

Superposition principle
If f and g are harmonic functions on A and let α, β ∈ R. Then
αf + βg is also harmonic on A.

Theorem (Uniqueness)

Let X = (Xn)n∈N0 be an irreducible Markov chain with transition
probability P. Let B ( S be a nonempty proper subset of S with
|S \ B| < ∞. Given two harmonic functions f1 and f2 on S \ B, if
f1 = f2 on B, then f1 = f2 on S. In other words, the Dirichlet
problem (2.3) has a unique solution.

The proof is based on maximum principle and superposition
principle for Harmonic functions.
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Dirichlet Problems

Harmonic Functions Reversibility

Random Walks on Graphs

Recall a measure µ on S is called reversible if it satisfies the
detailed balanced equation

µ(x)P(x, y) = µ(y)P(y, x).

If µ is a probability measure, then the corresponding Markov
chain is called reversible.

Example

Let |S| < ∞, given the adjacency matrix A = (C(x, y))x,y∈S for a
weighted graph without self-loops and isolated vertices, one
can construct the transition probabilities P as

C(x) :=
∑
y∈S

C(x, y), P(x, y) =
C(x, y)
C(x)

. (2.4)
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Harmonic Functions Reversibility

Graph Laplacian

For a function u : S → R, consider the function

Lu(x) = Ex[u(X1)− u(X0)] = (P − I)u(x),

it measures the expected change in one step of the chain if the
chain starts at state x. Let D be the degree matrix of the graph,
then

L = P − I = D−1(A − D)

is called the weighted graph Laplacian.

Example (Simple symmetric random walk on Zd)

Lu(x) =
1

2d

d∑
i=1

(u(x + ei)− u(x)− (u(x)− u(x − ei))).

L ≈ 1
2d

∆

Ao Sun Graph Laplacian Fall 2021 19 / 39
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Electrical Networks

Finite Networks Infinite Networks

Electrical Circuits

A finite electrical network is a undirected connected simple
graph G with vertex set S and edge set E on which a weight
function C is defined such that |S| < ∞.

Definition
The conductance of an edge e ∈ E with e = {x, y} is

C : E → [0,∞), C : e 7→ C(e) = C({x, y}) =: C(x, y) = C(y, x).

The reciprocal R(e) := 1/C(e) is called the resistance of the
edge e.

An electrical network is denoted by the pair (G,C) . For x, y ∈ S,
we write x ∼ y to indicate that {x, y} ∈ E.
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Electrical Networks

Finite Networks Infinite Networks

Electrical Circuits

Let B be the boundary set in the Dirichlet problem (2.3).

Definition
A function θ on ordered pairs of adjacent vertices in S is called
a flow if

θ(x, y) = −θ(y, x) for all x ∼ y in S,∑
y∼x

θ(x, y) = 0 for all x ∈ S \ B.

The second equation satisfied by θ is called Kirchhoff’s node
law.
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Electrical Networks

Finite Networks Infinite Networks

Electrical Circuits

Definition
A flow I is called a current flow if there exists a function
u : S → R such that Ohm’s law is satisfied:

I(x, y) =
u(x)− u(y)

R(x, y)
for all x, y ∈ S and x ̸= y.

In this case, I(x, y) is called the current flow from x to y and u(x)
is called the electrical potential or voltage at x.

In physics, Ohm’s law is an empirical statement about electrical
current’s linear response to voltage differences.
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Electrical Networks

Finite Networks Infinite Networks

Voltage Function is Harmonic

Theorem
An voltage u on a network (G,C) is a harmonic function on
S \ B. If its corresponding reversible Markov chain is irreducible,
then u is uniquely determined by its values on B.

Proof.
By Kirchhoff’s node law and Ohm’s law, given x ∈ S \ B,

0 =
∑
y∼x

I(x, y) =
∑
y∼x

C(x, y)(u(x)− u(y))

= C(x)
∑
y∼x

P(x, y)(u(x)− u(y))

= −C(x)Lu(x).
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Voltage Function is Harmonic

Theorem
An voltage u on a network (G,C) is a harmonic function on
S \ B. If its corresponding reversible Markov chain is irreducible,
then u is uniquely determined by its values on B.

Proof.
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Effective Conductance and Resistance

Suppose the boundary B ⊆ S can be further partitioned into two
disjoint nonempty set A and Z such that B = A ⊎ Z.

Unit Voltage

The set A is the set of sources and Z is the set of sinks. The
boundary condition on B is g = 1A.

Definition
The total current between A and Z is defined by

I(A → Z) :=
∑
x∈A

∑
y∼x

I(x, y).

The effective resistance is Reff (A → Z) = 1
I(A→Z) , its reciprocal

Ceff (A → Z) is called the effective conductance.
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Effective Conductance and Resistance

It is easy to verify that the effective resistance is the same if A
and Z are switched, so it is usually denoted by Reff (A ↔ Z).

Our main goal is to compute the effective conductance between
two sets of vertices. The idea is to reduce a complex network to
a combination of the following three types of connections.

Series
Parallel

Star
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Network Reduction

Not every network can be reduced to a combination of the
previous three cases. Sometimes it might be quite tricky, many
algorithms are developed to reduce a large-scale network. Let’s
content ourselves with this brief discussion and move to the
topic why we care about effective conductance probabilistically.
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Probabilistic interpretation

For simplicity, assume A = {a} is a singleton, the following
theorem demonstrates the connection between certain
probabilistic quantity and effective conductance.

Theorem
Given an irreducible reversible Markov chain X, for a ∈ S and
nonempty Z ⊆ S with a /∈ Z,

Pa(τZ < τ+a )C(a) = C(a ↔ Z).

The proof is based on the uniqueness and existence of the
solution to the Dirichlet problem (2.3) with B = {a} ⊎ Z.
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Question

We have only considered finite electrical networks in our
discussion so far, but Zd is an infinite network. How do we go
from the case when |S| < ∞ to the one when |S| = ∞?

Pass to the Limit!

Ao Sun Question Fall 2021 29 / 39



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Electrical Networks

Finite Networks Infinite Networks

Approximating an Infinite Network

Given an infinite electrical network (G,C). Let (Gn)n∈N be an
increasing sequence of finite subgraphs of G such that∪∞

n=1 Gn = G. Let Zn be the set of vertices in G \ Gn. Let GW
n be

the graph obtained from G by identifying Zn to a single vertex zn

in the vertex set of GW
n . So GW

n is a finite network.

Definition
Given a ∈ S, the escape probability from a is defined by

lim
n→∞

Pa(τZn < τ+a ).

Theorem
The escape probability is well-defined and is equal to
Pa(τ

+
a = ∞).
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Criterion for Recurrence

Definition
The effective conductance from a to ∞ is defined by

Ceff f (a ↔ ∞) := C(a) lim
n→∞

Pa(τZn < τ+a ).

Corollary

A state a ∈ S is recurrent if and only if Ceff f (a ↔ ∞) = 0.
Consequently, the corresponding reversible Markov chain is
recurrent if and only if the effective conductance from any
vertices to infinity is 0.
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Rayleigh’s Principle

We are almost ready to answer the question concerning
random walk on Zd. The following lemma turns out to be
extremely useful in practice.

Rayleigh’s Monotonicity Principle

Let G be a connected graph (possibly infinite) with two weight
function C and C′ indicating the conductances on its edges with
C(e) ≤ C′(e) for all e ∈ E.

1 If G is finite and A and Z are two nonempty disjoint subsets
of S, then Ceff (A ↔ Z) ≤ C′

eff (A ↔ Z).
2 If G is infinite and a is one of its vertices, then

Ceff (a ↔ ∞) ≤ C′
eff (a ↔ ∞).
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Random Walk on Subgraphs

Since removing edges from a connected graph decrease the
effective conductance, the following result is an immediate
consequence of Rayleigh’s Monotonicity Principle.

Corollary

Let the electrical network (G,C) correspond to an irreducible
reversible Markov chain. If a simple random walk on G is
recurrent, then so is the simple random walk on any connected
subgraph of G.

A simple random walk on a connected subgraph of Z2 is still
recurrent. Our intuition is right!
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Random Walk on Subgraphs

Since removing edges from a connected graph decrease the
effective conductance, the following result is an immediate
consequence of Rayleigh’s Monotonicity Principle.

Corollary

Let the electrical network (G,C) correspond to an irreducible
reversible Markov chain. If a simple random walk on G is
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Proof of Pólya’s Theorem

Q: Can we come up with new proofs of Pólya’s theorem using
electrical networks?

A: Yes!

Adding and remove edges in Zd so that the effective
conductance Ceff (0 ↔ ∞) becomes computable. See
Chapter 19 in Klenke [2020] for more details.
The Nash-Williams Criterion gives an easy condition on
cutsets of a graph to verify recurrence. Energy and
Random Path Method can be used to show transience.
See Chapter 2 in Lyons and Peres [2016] and Lyons [1983]
for more details.
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Other Applications

Relating reversible Markov chains to electrical networks is a
surprising but powerful technique in probability theory. Its
applications have been found in the following stochastic
processes and probabilistic models:

Branching processes;
Random walk on groups;
Percolation;
Random spanning trees;
Discrete Gaussian free field;
· · ·
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Further References

Some further references are listed here for those of you who
are interested in these topics:

1 For an introduction to random walks and electrical
networks, see the short monograph by Doyle and Snell
[1984].

2 For a comprehensive treatment to finite Markov chains and
networks, see the book by Levin et al. [2017].

3 For an exhaustive discussion of reversible Markov chains
and random walks on graphs, see the unpublished
monograph by Aldous and Fill [2002].
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