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Problem 1
Consider the SDE with smooth bounded a,b:

Derive the strong order 1.5 Ité-Taylor scheme (ref. the class notes or Kloeden+Platen Chapter 10). [Hint:
you will need to use the multiple integrals, paying attention to their relations:/
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Solution
We follow the process described in the notes:

After applying the It6-Taylor expansion to the integral form of Equation (1) we have:
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Ignoring the last term (which tends to 0) leaves us with the more compact equation
Xt = XO + CL(Xo)t + b(Xo)Il + [b/b] (Xo)Ill
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The first four terms are familiar since they are shared by the EM and Milstein schemes, and give us
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Now we simplify the remaining four terms. It is clear that for the last term
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The remaining terms have the stochastic integrals. Recall (ref. Example 4.1.4, pp. 45) that
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where, for convenience, we will define
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Finally:
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where we have used (see Problem 4.2, pp. 55) that using the 1-d It6 formula:
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So we have:
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combining the (equations 3-7) allows us to write the strong 1.5 order scheme of equation (2) as
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where
AWW = th+1—th ~ VvV Atfn
with &, ~ N(0,1).

We are still left with AZ (which we in principle need to simulate if we are to apply the numerical scheme):
Since the quantities in

Iip =tl — Ipy

(ex. 4.1.4) are all gaussian, we can describe AZ in terms of it’s mean, variance, and correlation to I; (which
we have already sampled).
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where for the first result we have used Problem 2.8, pp. 17, for the second result we have used that
E[W,W;] = s(= s A t) and the third result follows by the It6 Isometry.

Thus the variance V[I3,] = g Since we want to keep the correlation between I; and I3y when generating
our samples, we will write:
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where ¢, ~ N(0,1) as well. One can check that the variance of the above expression is indeed:
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where by independence of &, (,, the variances are additive, while retaining the desired correlation:

E[AzL] = E[;(At)?’/?(m)l/?gg] = %(At)z = E[I,011]



Problem 2

Consider the Ornstein-Uhlenbeck equation with A < 0:
dX, = AX; dt + o dW, (8)
1. Find the range of the time step size § such that the Fuler-Maruyama scheme
Y1 =Yy + AY,0 +0VoE,;  Yo=0
where &, ~ N (0,1), is stable in the sense that E[Y,?] < oo for all n and compute the lim,,_, ., E[Y?].
2. Find the range of the time step size 0 so that the implicit Euler scheme
Vi1 =Yy 4+ AYi16 + 0VoEy; Yo=0

where &, ~ N(0,1), is stable in the sense that E[Y,?] < oo for all n and compute the lim,,_, ~ E[Y,?]

Solution

We rewrite the EM scheme as
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Note that E[Y,] is finite for all n since by linearity of expectation and the zero initial condition this will
always be trivial. So we consider the second moment:
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This simplifies dramatically since Yy = 0 and from the independence of the ;. We are left with:
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Then, since the variance of the &; is known, we are left with a geometric series in (1 + AJ)? which converges
if and only if
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2
§< —=
0<do< h\

Now, if for an appropriate choice of § this limit exists, we will have:
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Now consider Case 2. Grouping the Y;, ;1 terms of the implicit scheme together, and then solving for them
gives us the equivalent equation
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Since Yy = 0. Again, E[Y,,] = 0 by linearity of expectation and the independence of the &;. Then,
B[Y2,] = 0% 3 (1 - A0) 20+
§=0

again using the same argument as in Case 1, which is a geometric series in (1 — A§)~2. This time however,
because § > 0, A < 0 the quantity (1 — Ad) > 1 all (positive) d, and hence the geometric series will converge
for any value of the step size. Using the closed form of the geometric series limit gives us:
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One may alternatively show this using the recursion scheme directly, without the geometric series results.
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