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Problem 1

Consider the SDE with smooth bounded a, b:

dXt = a(Xt) dt+ b(Xt) dWt (1)

Derive the strong order 1.5 Itô-Taylor scheme (ref. the class notes or Kloeden+Platen Chapter 10). [Hint:
you will need to use the multiple integrals, paying attention to their relations:]

I1 =

∫ h

0

dWs

I01 =

∫ h

0

∫ s

0

dWs1 ds

I11 =

∫ h

0

∫ s

0

dWs1 dWs

I111 =

∫ h

0

∫ s

0

∫ r

0

dWu dWr dWs

Solution

We follow the process described in the notes:

After applying the Itô-Taylor expansion to the integral form of Equation (1) we have:

Xt = X0 + a(X0)t+ b(X0) (Wt −W0)︸ ︷︷ ︸
I1

+[b′b] (X0)

∫ t

0

∫ s

0

dWr dWs︸ ︷︷ ︸
I11

+ [b′a+
1

2
b′′b2](X0)

∫ t

0

sdWs︸ ︷︷ ︸
I01

+[a′b] (X0)

∫ t

0

(Ws −W0) ds︸ ︷︷ ︸
I10

+ [(b′b)′b] (X0)

∫ t

0

∫ s

0

∫ r

0

dWu dWr dWs︸ ︷︷ ︸
I111

+

[
a′a+

1

2
a′′b

]
(X0)

1

2
t2 + o(t3/2))

Ignoring the last term (which tends to 0) leaves us with the more compact equation

Xt = X0 + a(X0)t+ b(X0)I1 + [b′b] (X0)I11

+ [b′a+
1

2
b′′b2](X0)I01 + [a′b] (X0)I10 (2)

+ [(b′b)′b] (X0)I111 +

[
a′a+

1

2
a′′b

]
(X0)

1

2
t2

1



The first four terms are familiar since they are shared by the EM and Milstein schemes, and give us

Yn+1 = Yn + a(Yn)∆t+ b(Yn)∆Wn︸ ︷︷ ︸
Euler Maruyama

+ [b′b(Xtn)
1

2
(∆W 2

n −∆t)]︸ ︷︷ ︸
Milstein

+ . . . (3)

Now we simplify the remaining four terms. It is clear that for the last term[
a′a+

1

2
a′′b

]
(X0)

1

2
t2 7→

[
a′a+

1

2
a′′b

]
(Yn)

1

2
∆t2 (4)

The remaining terms have the stochastic integrals. Recall (ref. Example 4.1.4, pp. 45) that∫ t

0

sdBs = tBt −
∫ t

0

Bs ds

Thus, we have

I01 =

∫ t

0

sdWs

= tWt −
∫ t

0

Ws ds

= tWt −∆Z

where, for convenience, we will define

∆Z =

∫ t

0

Ws ds

which then translates to:[
b′a+

1

2
b′′b2

]
(X0)I01 7→

[
b′a+

1

2
b′′b2

]
(Yn)(∆t∆Wt −∆Z) (5)

Continuing,

I10 =

∫ t

0

(Ws −W0) ds

=

∫ t

0

(Ws) ds

= ∆Z

and so

[a′b](X0)I10 7→ [a′b] (Yn)∆Z (6)

Finally:

I111 =

∫ t

0

∫ s

0

∫ r

0

dWu dWr dWs

=

∫ t

0

I11 dWs

=

∫ t

0

1

2

(
(Ws −W0)2 − s

)
dWs

=
1

2

∫ t

0

W 2
s dWs −

1

2

∫ t

0

sdWs

=
1

2

(
1

3
W 3

t −
∫ t

0

Ws ds

)
− 1

2
tWt +

1

2

∫ t

0

Ws ds

=
1

6
W 3

t −
1

2
tWt

2



where we have used (see Problem 4.2, pp. 55) that using the 1-d Itô formula:

d

(
1

3
B3

t

)
= Bt dt+B2

t dBt

⇐⇒
1

3
B3

t =

∫ t

0

B2
s dBs +

∫ t

0

Bs ds

So we have:

[(b′b)′b] (X0)I111 7→ [(b′b)′b] (Yn)

(
1

6
∆W 3

t −
1

2
∆t∆Wt

)
(7)

combining the results (equations 3-7) allows us to write the strong 1.5 order scheme of equation (2) as

Yn+1 = Yn + a(Yn)∆t+ b(Yn)∆Wn + [b′b(Xtn)
1

2
(∆W 2

n −∆t)]

+

[
b′a+

1

2
b′′b2

]
(Yn)(∆t∆Wt −∆Z) + [a′b] (Yn)∆Z

+ [(b′b)′b] (Yn)

(
1

6
∆W 3

t −
1

2
∆t∆Wt

)
+

[
a′a+

1

2
a′′b

]
(Yn)

1

2
∆t2

where

∆Wn = Wtn+1−Wtn
∼
√

∆tξn

with ξn ∼ N (0, 1).

We are still left with ∆Z (which we in principle need to simulate if we are to apply the numerical scheme):
Since the quantities in

I10 = tI1 − I01

(ex. 4.1.4) are all gaussian, we can describe ∆Z in terms of it’s mean, variance, and correlation to I1 (which
we have already sampled).

E[∆Z] = E
[∫ t

0

Ws ds

]
= 0

Then

E[I10I1] = E
[∫ t

0

Ws dsWt

]
=

∫ t

0

E[WsWt] ds

=

∫ t

0

sds

=
1

2
t2

E
[
I210
]

= E

[(∫ t

0

Ws ds

)2
]

=

∫ t

0

s2 ds

=
t3

3

3



where for the first result we have used Problem 2.8, pp. 17, for the second result we have used that
E[WsWt] = s(= s ∧ t) and the third result follows by the Itô Isometry.

Thus the variance V[I210] = t3

3 . Since we want to keep the correlation between I1 and I10 when generating
our samples, we will write:

∆Zn ∼
1

2
(∆t)3/2

(
ξn +

1√
3
ζn

)
where ζn ∼ N (0, 1) as well. One can check that the variance of the above expression is indeed:

(∆t3)

4

(
4

3

)
=

(∆t)3

3

where by independence of ξn, ζn the variances are additive, while retaining the desired correlation:

E[∆ZI1] = E
[

1

2
(∆t)3/2(∆t)1/2ξ2n

]
=

1

2
(∆t)2 = E[I10I1]
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Problem 2

Consider the Ornstein-Uhlenbeck equation with λ < 0:

dXy = λXt dt+ σ dWt (8)

1. Find the range of the time step size δ such that the Euler-Maruyama scheme

Yn+1 = Yn + λYnδ + σ
√
δξn; Y0 = 0

where ξn ∼ N (0, 1), is stable in the sense that E[Y 2
n ] <∞ for all n and compute the limn→∞ E[Y 2

n ].

2. Find the range of the time step size δ so that the implicit Euler scheme

Yn+1 = Yn + λYn+1δ + σ
√
δξn; Y0 = 0

where ξn ∼ N (0, 1), is stable in the sense that E[Y 2
n ] <∞ for all n and compute the limn→∞ E[Y 2

n ]

Solution

We rewrite the EM scheme as

Yn+1 = (1 + λδ)Yn + σ
√
δξn

= (1 + λδ)
(

(1 + λδ)Yn−1 + σ
√
δξn−1

)
+ σ
√
δξn

= (1 + λδ)2Yn−1 + σ
√
δ(ξn + (1 + λδ)ξn−1)

= . . .

= (1 + λδ)n+1Y0 + σ
√
δ

n∑
j=0

(1 + λδ)jξn−j

Note that E[Yn] is finite for all n since by linearity of expectation and the zero initial condition this will
always be trivial. So we consider the second moment:

E
[
Y 2
n+1

]
= E


(1 + λδ)n+1Y0 + σ

√
δ

n∑
j=0

(1 + λδ)jξn−j

2


This simplifies dramatically since Y0 = 0 and from the independence of the ξj . We are left with:

E
[
Y 2
n+1

]
= E


σ√δ n∑

j=0

(1 + λδ)jξn−j

2


= σ2δE

 n∑
j=0

(1 + λδ)2jξ2n−j


= σ2δ

n∑
j=0

(1 + λδ)2jE[ξ2n−j ]

Then, since the variance of the ξi is known, we are left with a geometric series in (1 + λδ)2 which converges
if and only if ∣∣(1 + λδ)2

∣∣ < 1
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or

−1 < (1 + λδ) < 1

which corresponds to

0 < δ < − 2

λ

Now, if for an appropriate choice of δ this limit exists, we will have:

lim
n→∞

E
[
Y 2
n+1

]
= lim

n→∞

σ2δ

n∑
j=0

(1 + λδ)2j


=

σ2δ

1− (1 + λδ)2

Now consider Case 2. Grouping the Yn+1 terms of the implicit scheme together, and then solving for them
gives us the equivalent equation

Yn+1 = (1− λδ)−1
[
Yn + σ

√
δξn

]
= (1− λδ)−1

[
(1− λδ)−1

(
Yn−1 + σ

√
δξn−1

)
+ σ
√
δξn

]
= ...

= (1− λδ)−(n+1)Y0 + σ
√
δ

n∑
j=0

(1− λδ)−j−1ξn−j

= σ
√
δ

n∑
j=0

(1− λδ)−j−1ξn−j

Since Y0 = 0. Again, E[Yn] = 0 by linearity of expectation and the independence of the ξi. Then,

E
[
Y 2
n+1

]
= σ2δ

n∑
j=0

(1− λδ)−2(j+1)

again using the same argument as in Case 1, which is a geometric series in (1− λδ)−2. This time however,
because δ > 0, λ < 0 the quantity (1− λδ) > 1 all (positive) δ, and hence the geometric series will converge
for any value of the step size. Using the closed form of the geometric series limit gives us:

lim
n→∞

E
[
Y 2
n+1

]
=

(1− λδ)−2σ2δ

1− (1− λδ)−2

One may alternatively show this using the recursion scheme directly, without the geometric series results.
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