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1 Problem 2.8
Proof.

1. According to (2.2.3) in [2], the characteristic function under the probability measure P,
(an n-dimensional Gaussian process starts at ) of the random vector

7 = (Btl, . ,Btk)T € Rnk
is )
E, [exp(iuTZ)] = exp <—§uTCu + iuTM), (1)
where u := (u1, ..., Un:) € R™, the matrix C € R™ " is the covariance matrix of Z and
M = E,[Z].

Now choose k =1, n =1, ¢, =t and z = 0 in (1). In this case M = Ey[Z] = Eo[B;] =
0. The covariance matrix C is also a scalar which is exactly the variance of By, that is
Var(B;) = t. Hence

1 1
Eolexp(iuB;)] = exp (—§u2t + 0) = exp (—§u2t) for all u e R. (2)

2. As the author doesn’t ask for a rigorous proof for this part, I will follow the steps suggested
by the author without careful justification, but a rigorous proof can be done by invoking
for example Theorem 6.4.1 in [1]. Consider the Taylor expansion on both sides of (2), one

finds that
= m' ol kk' '

By comparing the coeffients of 4 when m is an even number, we have

po 1 ok (DR oy (2K)!
(=1) @EO[Bt |= L] t = Eo[B"] = 2;%!75 (3)

for all £ € N.

3. Since the marginal distribution of By is N'(0, ), it is immediate that

Eolf(B))] f f(e)e 5 da (4)

1
B \ 27t R
for all Borel function f. Let f(z) = 22*, we prove the desired result by induction on k € N.

e Base case: When k£ = 1, then

Eo[B2] = Var(B,) + (Eo[B,])2 =t = —t.



e Induction hypothesis: Suppose the formula holds for k¥ < m for m € N.

e Induction step: For k = m + 1, using (4) and integration by parts, we have
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This completes the induction step.
Thus the desired result follows from the principles of mathematical induction.

. In this part, the Brownian motion (B;);> takes value in R™ and starts at . We shall show
the formula
E.[|B; — Bs|*] = n(n + 2)|t — s> for all t,s € Ry, (5)

where | - | is the Euclidean distance in R™. This can also be done by induction on n € N.
For the case t = s, the desired formula (5) is trivial, it suffices to prove the case for
0 < s <t < o. Thecase for 0 <t < s < w0 follows from the preceding case and the
symmetric roles that s and ¢ play in the expression given in (5). Before we dive into the
induction procedures, let’s first simplify the left-hand side of (5) using Markov property.
Let (F;)i=0 be the natural filtration generated by (B;):>¢. Hence

ExHBt - BS|4] = Em[]Ea:HBt - Bs|4 | fs]]
= ]Er[]EBs[ By s — BO|4]]
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where the second equality from bottom follows from changes of variables and translation
invariance of Lebesgue integration. The last display shows that E,[| B;— Bs|*] = Eo[|B:—s|*].
Denote the kth coordinate of the Brownian motion at time ¢ by Bt(k)
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e Base case: When n = 1, setting k£ = 2 in (3) shows that
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e Induction hypothesis: Suppose (5) holds for n < m for m € N.

—(t—s8)? =3|t—sP=1-(14+2)|t —s|.

e Induction step: For n = m + 1, we have

Eol| B:—|"] = Eo 2 (Bt(k)s>2> ]

k=1
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= IEO t s Ts+1))2> ]
| k:l
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_E, Z (Bt(ﬁ)s)2> 49 <2 (Bt(ﬁ)s)2> (B§T5+1)>2 n (Bt(in:l))4

3

k=1 k=1

Since coordinates of B; are independent, we apply the induction hypothesis to derive

that
Eo[|Bi—s[*] = m(m + 2)[t — s|* + 2m(t — s)(t — s) + 3|t — s|?
= (m+1)(m + 3)|t — s|%, (6)
where (2.2.10) in [2] is used in the second to last equality. This completes the induction
step.

We can conclude that (5) holds for all n € N by the principles of mathematical induction.

||
2 Problem 2.16

Proof. Suppose Et = %Bcgt for ¢ > 0. The continuity of sample path follows immediately from

that of (By)i=0. To show (B;);>0 is a one-dimensional Brownian motion starting at x, it suffices

to verify that it is a Gaussian process with finite dimensional distribution specified by the p.d.f.
Py (By, € day, ..., By, € dag) = pi(x, 1) Dy—t, (01, T2) - Dty—ty, (Tr—1, Tgp) dvy - - - day,

for any 0 < t; < -+ < tx < oo (Note that the notation that I use for transition probability
density is different from what’s given in [2| which should cause no confusion), where the transition
probability density p;(z,y) is

1 x—y)?
pe(z,y) = W exp (—%) for all z,y € R and t € Rx,.

If xo = x and ty = 0, we find that
i (Iz - xz’—1>2
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Therefore,

P, (chztl edxy,...,cBay, € d.:z:k) = Hpti—tm(xi—lv x;) dxy - - dag.

i=1
This completes the proof. m

3 Problem 2.17

Proof.
L. Let Py, = {to,t1, . tn-1,tn} With 0 =tg <t; <--- <t,; <t, =t be a partition of [0,?]
and |P,| = maxi<i<n [tk — ti—1|. Note that

E, [Z(‘Btk Btk 1
k=1

Since one-dimensional Brownian motion has independent increments, then
n 2 n
[(Z Btk Btk 1 - t) Z(Btk - Btk—1)2]
el k=1
> Var (B, - By, _,)]
=1
=23 [ty — te

k=1

n
2 th—too1) = tn —to = t.

= Var

=

where the last equality follows from (5).
Note that

n n
Dtk = tia P < [Pl D Itk = taa] = t[Pul.
h—1

k=1

2
So > (B, — By, ,)? L t as [P, — 0. An application of Chebyshev’s inequality yields that
S (B, — By, ,)? Y tas |P.| — 0. Since convergence in probability implies convergence a.s.
along a subsequence, the quadratic variation (B); =t a.s..

2 We inherit the notations used in part (a). Hence

Z |Btk Btk 1 < Sup ‘Btk Btk 1| 2 |Btk Btk 1|

1<k<n =1

The supremum on the right-hand side of the equation above tends to 0 by the continuity of sample
paths, while the left-hand side tends to ¢t a.s. as |P,| — 0. It follows that >, |B:, — B, ||
tends to +o a.s. as |P,| — 0. Therefore, the total variation on [0, t]

VEi(B) = sup {Z |Bi, — Bt | : P = {to,t1,...,t,} is a partition of [O,t]}

k=1

must be +00 a.s. m
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