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1 Problem 2.8
Proof.

1. According to (2.2.3) in [2], the characteristic function under the probability measure Px

(an n-dimensional Gaussian process starts at x) of the random vector

Z “ pBt1 , . . . , Btkq
J
P Rnk

is
Ex

“

exp
`

iuJZ
˘‰

“ exp

ˆ

´
1

2
uJCu` iuJM

˙

, (1)

where u :“ pu1, . . . , unkq P Rnk, the matrix C P Rnkˆnk is the covariance matrix of Z and
M “ ExrZs.

Now choose k “ 1, n “ 1, t1 “ t and x “ 0 in (1). In this case M “ E0rZs “ E0rBts “

0. The covariance matrix C is also a scalar which is exactly the variance of Bt, that is
VarpBtq “ t. Hence

E0rexppiuBtqs “ exp

ˆ

´
1

2
u2t` 0

˙

“ exp

ˆ

´
1

2
u2t

˙

for all u P R. (2)

2. As the author doesn’t ask for a rigorous proof for this part, I will follow the steps suggested
by the author without careful justification, but a rigorous proof can be done by invoking
for example Theorem 6.4.1 in [1]. Consider the Taylor expansion on both sides of (2), one
finds that

8
ÿ

m“0

piuqm

m!
E0rB

m
t s “

8
ÿ

k“0

p´1qk

2kk!
u2ktk.

By comparing the coeffients of um when m is an even number, we have

p´1qk
1

p2kq!
E0rB

2k
t s “

p´1qk

2kk!
tk ùñ E0rB

2k
t s “

p2kq!

2kk!
tk (3)

for all k P N.

3. Since the marginal distribution of Bt is N p0, tq, it is immediate that

E0rfpBtqs “
1

?
2πt

ż

R
fpxqe´

x2

2t dx (4)

for all Borel function f . Let fpxq “ x2k, we prove the desired result by induction on k P N.

• Base case: When k “ 1, then

E0rB
2
t s “ VarpBtq ` pE0rBtsq

2
“ t “

2!

2
t.
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• Induction hypothesis: Suppose the formula holds for k ď m for m P N.
• Induction step: For k “ m` 1, using (4) and integration by parts, we have

E0

”

B
2pm`1q
t

ı

“
1

?
2πt

ż

R
x2m`2e´

x2

2t dx

“
´t
?
2πt

p´1q

ż

R
e´

x2

2m p2m` 1qx2m dx

“
tp2m` 1q
?
2πt

ż

R
x2me´

x2

2m dx

“ tp2m` 1q
p2mq!

2mm!
tm

“
2pm` 1qp2m` 1q

2pm` 1q

p2mq!

2mm!
tm`1

“
p2pm` 1qq!

2m`1pm` 1q!
tm`1.

This completes the induction step.

Thus the desired result follows from the principles of mathematical induction.

4. In this part, the Brownian motion pBtqtě0 takes value in Rn and starts at x. We shall show
the formula

Exr|Bt ´Bs|
4
s “ npn` 2q|t´ s|2 for all t, s P Rě0, (5)

where | ¨ | is the Euclidean distance in Rn. This can also be done by induction on n P N.
For the case t “ s, the desired formula (5) is trivial, it suffices to prove the case for
0 ď s ă t ă 8. The case for 0 ď t ă s ă 8 follows from the preceding case and the
symmetric roles that s and t play in the expression given in (5). Before we dive into the
induction procedures, let’s first simplify the left-hand side of (5) using Markov property.
Let pFtqtě0 be the natural filtration generated by pBtqtě0. Hence

Exr|Bt ´Bs|
4
s “ ExrExr|Bt ´Bs|

4
|Fsss

“ ExrEBsr|Bt´s ´B0|
4
ss

“
1

p2πsqn{2

ż

R
Eyr|Bt´s ´ y|

4
s e´

|y´x|2

2s dy

“
1

p2πsqn{2

ż

R

1

p2πpt´ sqqn{2

ż

R
|z ´ y|4e´

|z´y|2

2pt´sq dz e´
|y´x|2

2s dy

“
1

p2πsqn{2

ż

R
e´

|v|2

2s dv
1

p2πpt´ sqqn{2

ż

R
|u|4e´

|u|2

2pt´sq du

“
1

p2πpt´ sqqn{2

ż

R
|u|4e´

|u|2

2pt´sq du,

where the second equality from bottom follows from changes of variables and translation
invariance of Lebesgue integration. The last display shows that Exr|Bt´Bs|

4s “ E0r|Bt´s|
4s.

Denote the kth coordinate of the Brownian motion at time t by Bpkqt .
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• Base case: When n “ 1, setting k “ 2 in (3) shows that

E0r|Bt´s|
4
s “

4!

222!
pt´ sq2 “ 3|t´ s|2 “ 1 ¨ p1` 2q|t´ s|2.

• Induction hypothesis: Suppose (5) holds for n ď m for m P N.
• Induction step: For n “ m` 1, we have

E0r|Bt´s|
4
s “ E0

«˜

m`1
ÿ

k“1

`

B
pkq
t´s

˘2

¸2ff

“ E0

«˜

m
ÿ

k“1

`

B
pkq
t´s

˘2
`
`

B
pm`1q
t´s

˘2

¸2ff

“ E0

«˜

m
ÿ

k“1

`

B
pkq
t´s

˘2

¸2

` 2

˜

m
ÿ

k“1

`

B
pkq
t´s

˘2

¸

`

B
pm`1q
t´s

˘2
`
`

B
pm`1q
t´s

˘4

ff

.

Since coordinates of Bt are independent, we apply the induction hypothesis to derive
that

E0r|Bt´s|
4
s “ mpm` 2q|t´ s|2 ` 2mpt´ sqpt´ sq ` 3|t´ s|2

“ pm` 1qpm` 3q|t´ s|2, (6)

where (2.2.10) in [2] is used in the second to last equality. This completes the induction
step.

We can conclude that (5) holds for all n P N by the principles of mathematical induction.

2 Problem 2.16

Proof. Suppose pBt :“
1
c
Bc2t for c ą 0. The continuity of sample path follows immediately from

that of pBtqtě0. To show p pBtqtě0 is a one-dimensional Brownian motion starting at x, it suffices
to verify that it is a Gaussian process with finite dimensional distribution specified by the p.d.f.

Pxp pBt1 P dx1, . . . , pBtk P dxkq “ ptpx, x1qpt2´t1px1, x2q ¨ ¨ ¨ ptk´tk´1
pxk´1, xkq dx1 ¨ ¨ ¨ dxk

for any 0 ă t1 ă ¨ ¨ ¨ ă tk ă 8 (Note that the notation that I use for transition probability
density is different from what’s given in [2] which should cause no confusion), where the transition
probability density ptpx, yq is

ptpx, yq “
1

p2πtq1{2
exp

ˆ

´
px´ yq2

2t

˙

for all x, y P R and t P Rě0.

If x0 “ x and t0 “ 0, we find that

Px

`

Bc2t1 P dx1, . . . , Bc2tk P dxk
˘

“

k
ź

i“1

1

p2πc2pti ´ ti´1qq1{2
exp

ˆ

´
pxi ´ xi´1q

2

2pti ´ ti´1q

˙

dx1 ¨ ¨ ¨ dxk

“ c´k
k
ź

i“1

1

p2πpti ´ ti´1qq1{2
exp

ˆ

´
pxi ´ xi´1q

2

2pti ´ ti´1q

˙

dx1 ¨ ¨ ¨ dxk

“ c´k
k
ź

i“1

pti´ti´1
pxi´1, xiq dx1 ¨ ¨ ¨ dxk.
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Therefore,

Px

`

cBc2t1 P dx1, . . . , cBc2tk P dxk
˘

“

k
ź

i“1

pti´ti´1
pxi´1, xiq dx1 ¨ ¨ ¨ dxk.

This completes the proof.

3 Problem 2.17
Proof.

1. Let Pn “ tt0, t1, . . . , tn´1, tnu with 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn´1 ă tn “ t be a partition of r0, ts
and }Pn} “ max1ďkďn |tk ´ tk´1|. Note that

Ex

«

n
ÿ

k“1

pBtk ´Btk´1
q
2

ff

“

n
ÿ

k“1

ptk ´ tk´1q “ tn ´ t0 “ t.

Since one-dimensional Brownian motion has independent increments, then

E

«˜

n
ÿ

k“1

pBtk ´Btk´1
q
2
´ t

¸2ff

“ Var

«

n
ÿ

k“1

pBtk ´Btk´1
q
2

ff

“

n
ÿ

k“1

Var
“

pBtk ´Btk´1
q
2
‰

“ 2
n
ÿ

k“1

|tk ´ tk´1|
2,

where the last equality follows from (5).
Note that

n
ÿ

k“1

|tk ´ tk´1|
2
ď }Pn}

n
ÿ

k“1

|tk ´ tk´1| “ t}Pn}.

So
řn

k“1pBtk ´ Btk´1
q2

L2

Ñ t as }Pn} Ñ 0. An application of Chebyshev’s inequality yields that
řn

k“1pBtk ´ Btk´1
q2

P
Ñ t as }Pn} Ñ 0. Since convergence in probability implies convergence a.s.

along a subsequence, the quadratic variation xByt “ t a.s..

2 We inherit the notations used in part (a). Hence

n
ÿ

k“1

|Btk ´Btk´1
|
2
ď sup

1ďkďn
|Btk ´Btk´1

|

n
ÿ

k“1

|Btk ´Btk´1
|.

The supremum on the right-hand side of the equation above tends to 0 by the continuity of sample
paths, while the left-hand side tends to t a.s. as }Pn} Ñ 0. It follows that

řn
k“1 |Btk ´ Btk´1

|

tends to `8 a.s. as }Pn} Ñ 0. Therefore, the total variation on r0, ts

V t
0 pBq “ sup

#

n
ÿ

k“1

|Btk ´Btk´1
| : Pn “ tt0, t1, . . . , tnu is a partition of r0, ts

+

must be `8 a.s.
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