## Stochastic ODEs HW5

## Joshua Agterberg

## Problem 1

We assume without loss of generality that  $W_0 = 0$  (or otherwise replace  $W_t$  by  $W_t - W_0$ ).

First, observe that by Ito's formula applied to  $a(X_t)$ , it holds that

$$da(X_t) = a'(X_t)dX_t + \frac{1}{2}a''(X_t)(dX_t)^2$$
  
=  $a'(X_t)\left[a(X_t)dt + b(X_t)dW_t\right] + \frac{1}{2}a''(X_t)b^2(X_t)dt,$  (1)

where the standard convention  $(dW_t)^2 = dt$  has been used implicitly. Consequently, we have the Ito-Taylor expansion

$$[a(X_s) - a(X_0)] = \int_0^s da(X_r)$$

$$= \int_0^s \left[ a'(X_r) \left[ a(X_r) dr + b(X_r) dW_r \right] + \frac{1}{2} a''(X_r) b^2(X_r) dr \right]$$

$$= \int_0^s a'(X_r) a(X_r) dr + \int_0^s a'(X_r) b(X_r) dW_r + \int_0^s \frac{1}{2} a''(X_r) b^2(X_r) dr.$$

Therefore, we obtain that

$$\int_{0}^{t} (a(X_{s}) - a(X_{0}))ds = \int_{0}^{t} \left\{ \int_{0}^{s} a'(X_{r})a(X_{r})dr + \int_{0}^{s} a'(X_{r})b(X_{r})dW_{r} + \int_{0}^{s} \frac{1}{2}a''(X_{r})b^{2}(X_{r})dr \right\} ds 
= \int_{0}^{t} \int_{0}^{s} a'(X_{r})a(X_{r})drds + \int_{0}^{t} \int_{0}^{s} a'(X_{r})b(X_{r})dW_{r}ds 
+ \int_{0}^{t} \int_{0}^{s} \frac{1}{2}a''(X_{r})b^{2}(X_{r})drds.$$
(2)

By applying the analogous argument for  $db(X_t)$  as in (1), we have

$$\int_{0}^{t} \left( b(X_{s}) - b(X_{0}) \right) dW_{s} = \int_{0}^{t} \int_{0}^{s} \left\{ b'(X_{r}) \left[ a(X_{r}) dr + b(X_{r}) dW_{r} \right] + \frac{1}{2} b''(X_{r}) b^{2}(X_{r}) dr \right\} dW_{s}$$

$$= \int_{0}^{t} \int_{0}^{s} b'(X_{r}) a(X_{r}) dr dW_{s} + \int_{0}^{t} \int_{0}^{s} b'(X_{r}) b(X_{r}) dW_{r} dW_{s}$$

$$+ \int_{0}^{t} \int_{0}^{s} \frac{1}{2} b''(X_{r}) b^{2}(X_{r}) dr dW_{s}. \tag{3}$$

Therefore, we have that

$$X_{t} = X_{0} + \int_{0}^{t} a(X_{0})ds + \int_{0}^{t} b(X_{0})dW_{s} + \int_{0}^{t} \left[ a(X_{s}) - a(X_{0}) \right] ds + \int_{0}^{t} \left[ b(X_{s}) - b(X_{0}) \right] dW_{s}$$

$$= X_{0} + ta(X_{0}) + W_{t}b(X_{0}) + \int_{0}^{t} \left[ a(X_{s}) - a(X_{0}) \right] ds + \int_{0}^{t} \left[ b(X_{s}) - b(X_{0}) \right] dW_{s}$$

$$= X_{0} + ta(X_{0}) + W_{t}b(X_{0})$$

$$+ \int_{0}^{t} \int_{0}^{s} a'(X_{r})a(X_{r})drds + \int_{0}^{t} \int_{0}^{s} a'(X_{r})b(X_{r})dW_{r}ds + \int_{0}^{t} \int_{0}^{s} \frac{1}{2}a''(X_{r})b^{2}(X_{r})drds$$

$$+ \int_{0}^{t} \int_{0}^{s} b'(X_{r})a(X_{r})drdW_{s} + \int_{0}^{t} \int_{0}^{s} b'(X_{r})b(X_{r})dW_{r}dW_{s} + \int_{0}^{t} \int_{0}^{s} \frac{1}{2}b''(X_{r})b^{2}(X_{r})drdW_{s},$$

where in the final equality we have plugged in (2) and (3). Rearranging similar terms we obtain

$$X_{t} = X_{0} + ta(X_{0}) + W_{t}b(X_{0})$$

$$+ \int_{0}^{t} \int_{0}^{s} \left( a'(X_{r})a(X_{r}) + \frac{1}{2}a''(X_{r})b^{2}(X_{r}) \right) drds + \int_{0}^{t} \int_{0}^{s} a'(X_{r})b(X_{r})dW_{r}ds$$

$$+ \int_{0}^{t} \int_{0}^{s} \left( b'(X_{r})a(X_{r}) + \frac{1}{2}b''(X_{r})b^{2}(X_{r}) \right) drdW_{s} + \int_{0}^{t} \int_{0}^{s} b'(X_{r})b(X_{r})dW_{r}dW_{s}.$$
(4)

This is where we would stop for the schemes studied in class. However, for the 1.5-order scheme, we also need to further expand the double stochastic integral. Note that

$$d\left(b'b\right) = (b'b)'(X_t)dX_t + \frac{1}{2}(b'b)''(X_t)(dX_t)^2$$
  
=  $(b'b)'a(X_t)dt + (b'b)'(X_t)b(X_t)dW_t + \frac{1}{2}(b'b)''(X_t)b^2(X_t)dt.$ 

Therefore, we expand out

$$\begin{split} \int_0^t \int_0^s b'(X_r)b(X_r)dW_r dW_s &= \int_0^t \int_0^s \left(b'(X_r)b(X_r) - b'(X_0)b(X_0)\right)dW_r dW_s + \int_0^t \int_0^s b'(X_0)b(X_0)dW_r dW_s \\ &= \int_0^t \int_0^s \int_0^r \left((b'b)'(X_t)a(X_t)d_q + (b'b)'(X_t)b(X_t)dW_q \\ &\qquad \qquad + \frac{1}{2}(b'b)''(X_t)b^2(X_t)dq\right)dW_r dW_s \\ &\qquad \qquad + \int_0^t \int_0^s b'(X_0)b(X_0)dW_r dW_s \\ &= \int_0^t \int_0^s \int_0^r (b'b)'(X_t)a(X_t)dqdW_r dW_s + \int_0^t \int_0^s \int_0^r (b'b)'(X_t)b(X_t)dW_q dW_r dW_s \\ &\qquad \qquad + \int_0^t \int_0^s b'(X_0)b(X_0)dW_r dW_s \\ &\qquad \qquad + \int_0^t \int_0^s \int_0^r \frac{1}{2}(b'b)''(X_t)b^2(X_t)dqdW_r dW_s \\ &\qquad \qquad = \int_0^t \int_0^s \int_0^r (b'b)'(X_t)b(X_t)dW_q dW_r dW_s + \int_0^t \int_0^s b'(X_0)b(X_0)dW_r dW_s + o(t^{3/2}), \end{split}$$

where the notation  $o(\cdot)$  is taken to mean in probability as  $t \to 0$ . Therefore, plugging this back into equation (4), we obtain

$$X_{t} = X_{0} + ta(X_{0}) + W_{t}b(X_{0})$$

$$+ \int_{0}^{t} \int_{0}^{s} \left( a'(X_{r})a(X_{r}) + \frac{1}{2}a''(X_{r})b^{2}(X_{r}) \right) drds + \int_{0}^{t} \int_{0}^{s} a'(X_{r})b(X_{r})dW_{r}ds$$

$$+ \int_{0}^{t} \int_{0}^{s} \left( b'(X_{r})a(X_{r}) + \frac{1}{2}b''(X_{r})b^{2}(X_{r}) \right) drdW_{s}$$

$$+ \int_{0}^{t} \int_{0}^{s} \int_{0}^{r} (b'b)'(X_{t})b(X_{t})dW_{q}dW_{r}dW_{s} + b'(X_{0})b(X_{0}) \int_{0}^{t} W_{s}dW_{s} + o(t^{3/2}). \tag{5}$$

We now approximate  $a'(X_r), a(X_r), b(X_r), b'(X_r)$  and  $b''(X_r)$  by their leftpoint evaluations at

 $X_0$  respectively. Then for small t,

$$X_{t} = X_{0} + ta(X_{0}) + W_{t}b(X_{0})$$

$$+ \left(a'(X_{0})a(X_{0}) + \frac{1}{2}a''(X_{0})b^{2}(X_{0})\right) \int_{0}^{t} \int_{0}^{s} dr ds + a'(X_{0})b(X_{0}) \int_{0}^{t} \int_{0}^{s} dW_{r} ds$$

$$+ \left(b'(X_{0})a(X_{0}) + \frac{1}{2}b''(X_{0})b^{2}(X_{0})\right) \int_{0}^{t} \int_{0}^{s} dr dW_{s}$$

$$+ b'(X_{0})b(X_{0}) \int_{0}^{t} W_{s} dW_{s}$$

$$+ (b'b)'(X_{0})b(X_{0}) \int_{0}^{t} W_{s} dW_{s}$$

$$+ b'(X_{0})b(X_{0}) \int_{0}^{t} W_{s} dW_{s}$$

$$= X_{0} + ta(X_{0}) + W_{t}b(X_{0})$$

$$+ \frac{t^{2}}{2} \left(a'(X_{0})a(X_{0}) + \frac{1}{2}a''(X_{0})b^{2}(X_{0})\right) + a'(X_{0})b(X_{0}) \int_{0}^{t} W_{s} ds$$

$$+ \left(b'b'(X_{0})b(X_{0}) \int_{0}^{t} \int_{0}^{s} W_{r} dW_{r} dW_{s}$$

$$+ (b'b)'(X_{0})b(X_{0}) \int_{0}^{t} \int_{0}^{s} W_{r} dW_{r} dW_{s}$$

$$+ b'(X_{0})b(X_{0}) \int_{0}^{t} W_{s} dW_{s}$$

$$= X_{0} + ta(X_{0}) + W_{t}b(X_{0})$$

$$+ \frac{t^{2}}{2} \left(a'(X_{0})a(X_{0}) + \frac{1}{2}a''(X_{0})b^{2}(X_{0})\right) + a'(X_{0})b(X_{0}) \int_{0}^{t} W_{s} ds$$

$$+ \left(b'(X_{0})a(X_{0}) + \frac{1}{2}b''(X_{0})b^{2}(X_{0})\right) \left(tW_{t} - \int_{0}^{t} W_{s} ds\right) + \left(b'b'(X_{0})b(X_{0}) \int_{0}^{t} \int_{0}^{s} W_{r} dW_{r} dW_{s}$$

$$+ b'(X_{0})b(X_{0}) \int_{0}^{t} W_{s} dW_{s}$$

$$= X_{0} + ta(X_{0}) + W_{t}b(X_{0})$$

$$+ \frac{t^{2}}{2} \left(a'(X_{0})a(X_{0}) + \frac{1}{2}a''(X_{0})b^{2}(X_{0})\right) + a'(X_{0})b(X_{0}) \int_{0}^{t} W_{s} ds$$

$$+ \left(b'(X_{0})a(X_{0}) + \frac{1}{2}a''(X_{0})b^{2}(X_{0})\right) + a'(X_{0})b(X_{0}) \int_{0}^{t} W_{s} ds$$

$$+ \left(b'(X_{0})a(X_{0}) + \frac{1}{2}a''(X_{0})b^{2}(X_{0})\right) \left(tW_{t} - \int_{0}^{t} W_{s} ds\right) + \frac{1}{2}(b'b)'(X_{0})b(X_{0}) \int_{0}^{t} (W_{s}^{2} - s) dW_{s}$$

$$+ \frac{1}{2}b'(X_{0})b(X_{0})(W_{t}^{2} - t).$$
(6)

Note that we used here the fact that  $\int_0^t W_s dW_s = \frac{1}{2}(W_t^2 - t)$ . We now calculte the integral  $\int_0^t (W_s^2 - s) dW_s$ . By Exercises 3.1 and 3.2,

$$\int_0^t W_s^2 dW_s - \int_0^t s dW_s = \frac{1}{3} W_t^3 - \int_0^t W_s ds - \int_0^t s dW_s$$
$$= \frac{1}{3} W_t^3 - tW_t.$$

Plugging this back into (6), we obtain

$$\begin{split} X_t &= X_0 + ta(X_0) + W_t b(X_0) + \frac{t^2}{2} \bigg( a'(X_0) a(X_0) + \frac{1}{2} a''(X_0) b^2(X_0) \bigg) \\ &+ a'(X_0) b(X_0) \int_0^t W_s ds + \bigg( b'(X_0) a(X_0) + \frac{1}{2} b''(X_0) b^2(X_0) \bigg) \bigg( tW_t - \int_0^t W_s ds \bigg) \\ &+ \frac{1}{6} (b'b)'(X_0) b(X_0) \bigg( W_t^3 - 3tW_t \bigg) + \frac{1}{2} b'(X_0) b(X_0) (W_t^2 - t). \end{split}$$

Note that the only random variables appearing are  $W_t$  and  $\int_0^t W_s ds$ . Let  $Z_t = \int_0^t W_s ds$ . Note that both  $W_t$  and  $Z_t$  are Gaussian random variables with mean zero, so it suffices to calculate their second moments and covariance. Clearly  $W_t \sim N(0,t)$ . Furthermore,

$$\begin{split} \mathbb{E} \bigg( \int_0^t W_s ds \bigg)^2 &= \mathbb{E} \bigg( t W_t - \int_0^t s dW_s \bigg)^2 \\ &= \mathbb{E} (t^2 W_t^2) - \mathbb{E} 2t W_t \int_0^t s dW_s + \mathbb{E} \bigg( \int_0^t s dW_s \bigg)^2 \\ &= t^3 - 2t \mathbb{E} W_t (t W_t - \int_0^t W_s ds) + \mathbb{E} \bigg( \int_0^t s dW_s \bigg)^2 \\ &= t^3 - 2t^3 + 2t \mathbb{E} W_t \int_0^t W_s ds + \mathbb{E} \int_0^t s^2 ds \\ &= t^3 - 2t^3 + 2t \int_0^t \min(t, s) ds + \frac{1}{3} t^3 \\ &= t^3 - 2t^3 + 2t \int_0^t s ds + \frac{1}{3} t^3 \\ &= \frac{1}{3} t^3. \end{split}$$

Furthermore,

$$\mathbb{E}W_t Z_t = \mathbb{E}W_t \int_0^t W_s ds = \int_0^t \mathbb{E}W_t W_s ds$$
$$= \int_0^t \min(t, s) ds = \int_0^t s ds = \frac{1}{2}t^2.$$

Therefore,  $Z_t \sim N(0, \frac{1}{3}t^3)$  and  $W_t \sim N(0, t)$ , and the two have covariance  $\frac{1}{2}t^2$ . To simulate this, we want independent Gaussians. Let  $\xi_1$  and  $\xi_2$  be independent N(0, 1) random variables. Note that for positive coefficients  $a_1$ ,  $a_2$ , and  $a_3$ ,

$$\mathbb{E}a_1\xi_1a_2(a_3\xi_1 + a_4\xi_2) = a_1a_2a_3.$$

Therefore, if  $a_1\xi_1 = W_t$  in distribution, we must have  $a_1 = \sqrt{t}$ . Moreover, by matching expectations we need that

$$t^{1/2}a_2a_3 = \frac{1}{2}t^2;$$
$$a_2^2a_3^2 + a_2^2a_4^2 = \frac{1}{3}t^3.$$

This is a system with several solutions. Therefore, we can arbitrarily select  $a_3=1$ , to see that  $a_2=\frac{1}{2}t^{3/2}$  and  $a_4=\frac{1}{\sqrt{3}}$ . Consequently, if we set

$$\Delta Z_n := a_2(a_3\xi_1 + a_4\xi_2) = \frac{1}{2}t^{3/2}(\xi_1 + \frac{1}{\sqrt{3}}\xi_2)$$

and  $\Delta W_n = a_1 \xi_1 = \sqrt{t} \xi_1$ , we see that

$$\mathbb{E}\Delta Z_n \Delta W_n = \frac{1}{2}t^2.$$

With this, we arrive at the 1.5-order scheme:

$$\begin{split} X_{n+1} &= X_n + \Delta t a(X_n) + \Delta W_n b(X_n) + \frac{(\Delta t)^2}{2} \left( a'(X_0) a(X_0) + \frac{1}{2} a''(X_n) b^2(X_n) \right) \\ &+ a'(X_0) b(X_0) \Delta Z_n + \left( b'(X_n) a(X_n) + \frac{1}{2} b''(X_n) b^2(X_n) \right) \left( \Delta t \Delta W_n - \Delta Z_n \right) \\ &+ \frac{1}{6} (b'b)'(X_0) b(X_0) \left( (\Delta W_n)^3 - 3\Delta t \Delta W_n \right) + \frac{1}{2} b'(X_0) b(X_0) ((\Delta W_n)^2 - \Delta t). \end{split}$$

## Problem 2

(a) First, we have that

$$Y_n = (1 + \lambda \delta) Y_{n-1} + \sigma \sqrt{\delta} \xi_{n-1}$$
  
=  $(1 + \lambda \delta)^2 Y_{n-2} + (1 + \lambda \delta) \sigma \sqrt{\delta} \xi_{n-2} + \sigma \sqrt{\delta} \xi_{n-1}$ .

Therefore, doing this n times yields

$$Y_n = (1 + \lambda \delta)^n Y_0 + \sigma \sqrt{\delta} \sum_{k=0}^{n-1} (1 + \lambda \delta)^k \xi_{n-k-1}.$$

Taking second moments, by independence of  $\xi_k$ 's, we have

$$\mathbb{E}Y_n^2 = (1 + \lambda \delta)^{2n} \mathbb{E}Y_0^2 + \sigma^2 \delta \sum_{k=0}^{n-1} (1 + \lambda \delta)^{2k}$$
$$= \sigma^2 \delta \sum_{k=0}^{n-1} (1 + \lambda \delta)^{2k}.$$

Recall that  $\lambda < 0$ . If  $\delta < 0$ , then  $1 + \lambda \delta > 1$ , meaning that this sum does not converge. If  $\delta > 0$ , then this sum converges as long as  $\delta < -\frac{2}{\lambda}$ . Therefore, the full range of convergence is given by  $0 < \delta < \frac{2}{|\lambda|}$ . Though it should perhaps be noted that this expectation is finite for all n regardless of the choice of  $\delta$ , though if  $\delta \geq \frac{2}{|\lambda|}$  then this sum is of order n (as opposed to order 1 in the other case).

To calculate the limiting variance, we can sum the geometric series:

$$\lim \mathbb{E} Y_n^2 = \sigma^2 \delta \sum_{k=0}^{\infty} (1 + \lambda \delta)^{2k}$$
$$= \sigma^2 \delta \left( \frac{1}{1 - (1 + \lambda \delta)^2} \right)$$
$$= \sigma^2 \delta \frac{1}{-2\lambda \delta - \lambda^2 \delta^2}$$
$$= \frac{\sigma^2}{-2\lambda - \lambda^2 \delta}.$$

To check this, we can also solve the fixed-point equation:

$$x = (1 + \lambda \delta)^2 x + \sigma^2 \delta$$

$$\implies x = \frac{\sigma^2 \delta}{1 - (1 + \lambda \delta)^2} = \frac{\sigma^2}{-2\lambda - \lambda^2 \delta}.$$

To check this matches our intuition, as  $\delta \to \frac{2}{|\lambda|}$ , the time step increases, so the variance should increase, which it does. Similarly,  $\delta \to 0$ , the time step decreases, so the variance should decrease, which it does.

(b) Similar to part (a), we rearrange and expand out the recursion to obtain

$$Y_{n} = (1 - \lambda \delta)^{-1} Y_{n-1} + \frac{\sigma \sqrt{\delta}}{1 - \lambda \delta} \xi_{n-1}$$

$$= (1 - \lambda \delta)^{-n} Y_{0} + \frac{\sigma \sqrt{\delta}}{1 - \lambda \delta} \sum_{k=0}^{n-1} (1 - \lambda \delta)^{-k} \xi_{n-k-1}$$

$$= \frac{\sigma \sqrt{\delta}}{1 - \lambda \delta} \sum_{k=0}^{n-1} (1 - \lambda \delta)^{-k} \xi_{n-k-1}.$$

Just as in part (a), this sum converges when  $|1 - \lambda \delta| > 1$ , which means that we need  $1 - \lambda \delta > 1$ , which is equivalent to  $\delta > 0$  since  $\lambda < 1$ . Similarly, we also need  $\delta > 2/\lambda$ , which is vacuous compared to  $\delta > 0$ . Therefore, we only need  $\delta > 0$ .

To calculate the limiting variance we sum up the geometric series as before:

$$\begin{split} \lim \mathbb{E} Y_n^2 &= \frac{\sigma^2 \delta}{(1 - \lambda \delta)^2} \sum_{k=0}^{\infty} (1 - \lambda \delta)^{-2k} \\ &= \frac{\sigma^2 \delta}{(1 - \lambda \delta)^2} \frac{1}{1 - \frac{1}{(1 - \lambda \delta)^2}} \\ &= \frac{\sigma^2 \delta}{(1 - \lambda \delta)^2} \frac{(1 - \lambda \delta)^2}{(1 - \lambda \delta)^2 - 1} \\ &= \frac{\sigma^2 \delta}{-2\lambda \delta + \lambda^2 \delta^2} \\ &= \frac{\sigma^2}{-2\lambda + \lambda^2 \delta}. \end{split}$$

This is again an increasing function for  $\delta > 0$ , with lower bound  $\frac{\sigma^2}{-2\lambda}$  as  $\delta \to 0$ . This matches with our intuition that the limiting variance should increase for larger time steps. We could also solve the fixed-point equation to check our work:

$$x = (1 - \lambda \delta)^{-2} x + \frac{\sigma^2 \delta}{(1 - \lambda \delta)^2}$$
$$\implies x = \frac{\sigma^2}{-2\lambda + \lambda^2 \delta}.$$