Stochastic ODEs HW5
Joshua Agterberg

Problem 1

We assume without loss of generality that Wy = 0 (or otherwise replace W; by W; — Wy).

First, observe that by Ito’s formula applied to a(X;), it holds that
1
da(X;) = a' (X;)dX; + §a”(Xt)(dXt)2
1
=d(X;) [a(Xt)dt + b(Xt)th} + §a”(Xt)b2(Xt)dt, (1)

where the standard convention (dW;)? = dt has been used implicitly. Consequently, we have the
Ito-Taylor expansion

() = alXo)) = [ da(x,)
= /OS {a’(XT) {a(Xr)dr + b(Xr)dWT] + ;G/I(Xr)bQ(Xr)dr}
= [ et [, [ S (R0

Therefore, we obtain that

[ e —acxanas = [{ [ @xacear+ [Caecmecian, + [ Laccmocr i

// drds-i—// r)dW,ds
+ /0 /O S (X)X, )drds. (2)

By applying the analogous argument for db(X;) as in (1), we have

/(b( 2) — b(Xo))dW, = // {b’ { )dr + b(X )dWT}+1b”(X,n)b2(X,a)dr}dW
/ / Y (X,)a(X,)drdW, + / / W (X)b(X, ) AW, d W,
/ / b (X)X, ) drdWs. (3)

X, :X0+/0 a(Xo)ds+/O b(XO)dI/VSJr/O [a(Xs)fa(Xo)}der/o [b(X) — b(Xo)]dW,

Therefore, we have that

= Xo + ta(Xo) + Wib(Xo) + /O [a(X,) — a(Xo)]ds + /0 [b(X ) — b(Xo)|dW,
—Xo‘i’taX() +Wt( )

/ / drds+/ / ) AW, ds—i—/ / X, )drds
//b’ r)drdW, +/ / b'(X ) AW, dW +// b (X,)b* (X, )drdWs,



where in the final equality we have plugged in (2) and (3). Rearranging similar terms we obtain

Xt X0+taX0 +Wt( )

//( )+;a”(Xr)b2 )drds-i—// )AW,.ds
[ (b’(X»a(Xm;b“( ) Jara + [ / (XX AW, (4)

This is where we would stop for the schemes studied in class. However, for the 1.5-order scheme,
we also need to further expand the double stochastic integral. Note that

d(b’b) = (b'D)(X,)dX, + = (b’b)”(Xt)(dXt)
= (b'b) a(X;)dt + (b'b) (X:)b(Xy)dW; + %(b’b)”(Xt)bz(Xt)dt.
Therefore, we expand out
/0 /0 V(X,)b(X,)dW,.dW, = / / (V' (X:)b(X,) — b (Xo)b(Xo))dW,.dW, +/ / b (Xo)b(Xo)dW,.dW,
- ((b’b)'(Xt)a(Xt)qur(b’b)’(Xt)b(Xt)qu
0 0 0

+ ;(b’b)”(Xt)bz(Xt)dq) AW,.dW,

4 /O t /0 Y (Xo)b(Xo) AW, dW,

- /0 t /O ) /O (DY (X a(X)dgd W d W, + /0 t /O s /O ) (XWX AW, AW, W,
N /O t /0 W (Xo)b(Xo)dW, dIV,
[ [ oo eda,ar,

:/t/s/T(b'b)’(Xt)b(Xt)qudWrdWS+/t/sb,(Xo)b(X0)dWTdWs+O(t3/2)
o Jo OT o Jo t
=/ / / (b’b)/(Xt)b(Xt)qudWTdWS+b’(X0)b(XO)/ WadW, + o(£/2),
0

where the notation o(+) is taken to mean in probability as ¢ — 0. Therefore, plugging this back
into equation (4), we obtain

Xt X0+ta 0)+Wt ( )

[ (w0 + o xopee) Jarts + [ [ Ocpoe s
4 /O /0 (b’(Xr)a(XrH—;b”(X,.)b2(XT))drdWs

t s r o , t . /2
+ / / / (W0) (X)X AW, dW,d W, + b (Xo)b(Xo) /0 WLdW, + o(t¥2).  (5)

We now approximate a'(X,), a(X,),b(X,), b (X,) and b"(X,) by their leftpoint evaluations at



X respectively. Then for small ¢,
Xt = XO + ta(X()) + Wtb(X())

+ (a’(Xo)a(Xo) + ;a (Xo)b*(Xo) ) / / drds + o' (Xo)b(Xo) / / dW,ds
+ (b’(Xo)a(Xo) ;b” (X0)b?*(Xo ) / / drdW,

+ b/ (Xo)b( XO/WdW

+ (V'b) (Xo)b Xo///deWdW

+ 1 (Xo)b(Xo) / W,dW,
0
= Xo + ta(Xo) + Wtb(Xo)

2

+ t2<a'(X0)a(Xo) + ;G/I(X(])bz(X())) + CLI(X(])b(X())‘/O WSdS

+ (b/(Xo)a(Xo) + ;b’/(Xo)b%Xo)) /0 sdW,
L e [ [ wawaw,
B (X0 )b(Xo) / W,
0
= Xo + t(l(X()) + Wtb(Xo)

+ t;(a’(Xo)a(Xo) + %a”(Xo)bz( )) +a'(Xo)b / W,ds
+ (b/(Xo)a(Xo) + ;b//(Xo)bz(XOO (tWt —/0 Wsds) + (b'b)(X0)b(Xo) /Ot /Os W dW,.dW

t
+b/(Xo)b(Xo)/ WedW
0

= Xo + ta(Xo) + Wtb(Xo)
+ ’i(d(xo)a(xo) + %a”(Xo)b2( )) +a'(Xo)b / Wds

X,
+ (b/(Xo)a(Xo) + ;b”(Xo)bQ(Xo)) <tWt 7/0 Wsds) + 5(b’b)/(Xo)b(Xo)/0 (W2 — 5)dW,
+ g (Xo)b(Xo) (W7 1) (6)

Note that we used here the fact that fot WsdW, = %(Wf —t). We now calculte the integral
fot(V[/'S2 — s)dW;. By Exercises 3.1 and 3.2,

t t 1 t t
/ WdeS—/ sdW, = fo’—/ Wsds—/ sdW,
0o 0 3 0 0

1
= gwf — tW;.

Plugging this back into (6), we obtain

X, = Xo +ta(Xo) + Wib(Xo) + f(a%xe)a(Xo) . ;a”(Xo)bQ(Xo))

T d(Xo)b(Xo) /0 Wads + (b’(Xo>a(Xo> ; ;b”(Xo)b2(Xo)> (tWt - /O t Wsds)

1

[=p}

(V') (X0)b(Xo) (Wf’ — 3tWt> + %b’(XO)b(XO)(Wf —t).



Note that the only random variables appearing are W; and fg Wsds. Let Z; = f(f Wsds. Note
that both W; and Z; are Gaussian random variables with mean zero, so it suffices to calculate
their second moments and covariance. Clearly W; ~ N(0,t). Furthermore,

E(/O Wsds) - E(tWt - /0 des)

t t
=E(t*W?) — IEQtWt/ sdW + ]E(/ deS>
0 0

2 2

2

t t 2
0 0

t t
=13 — 283 + QtEWt/ Weds + E/ s2ds
0 0
¢ 1
=3 -2t + 2t/ min(t, s)ds + gt?’
0
. . ¢ 1.
=3 72t‘3+2t/ sds 4+ —t3
0 3
_

Furthermore,

t t
EW,Z, = ]EWt/ Weds = / EW,W,ds
0 0

t ¢ 1
:/ min(t, s)ds :/ sds = —t2.
0 0 2

Therefore, Z; ~ N (0, %t?’) and W; ~ N(0,t), and the two have covariance %tQ. To simulate this,
we want independent Gaussians. Let & and & be independent N (0, 1) random variables. Note
that for positive coefficients aq, as, and as,

Eai1&1a2(asé + aséa) = arasas.

Therefore, if a1&; = W, in distribution, we must have a; = v/f. Moreover, by matching expecta-
tions we need that

1
t1/2a2a3 = itz;
2.2 02l
azaz + asay = gt .

This is a system with several solutions. Therefore, we can arbitrarily select ag = 1, to see that

as = 3t%/? and a4 = % Consequently, if we set

AZy, = az(azéy + asé2) = %t3/2(51 + %52)

and AW, = a1& = \/iﬁl, we see that
EAZ, AW, = %tQ.

With this, we arrive at the 1.5-order scheme:

Xoes = Xo -+ talX,) + A1,806) + S8 (o (oya(x0) + L e
+a' (Xo)b(X0)AZ, + (b’(Xn)a(Xn) + ;b”(Xn)b2(Xn)) (AtAWn - AZn>

L0/ (Xh(Xo) ((Avm”’ - 3AtAWn) XX (AW)? - A1),



Problem 2

(a) First, we have that

Y, = (1 + )\(5)Yn_1 + O'\/gfn_l
= (14+X0)%Yp o+ (1 +A)oVoE, 2 + oV, _1.
Therefore, doing this n times yields

n—1

Yo = (14 X)"Yo+ 0V (14 A6) & k1.

k=0
Taking second moments, by independence of £;’s, we have

n—1

EY,? = (14 X)*"EYS + 076 Y (14 Ad)**
k=0
n—1
=020y (14X
k=0

Recall that A < 0. If § < 0, then 1+ Ad > 1, meaning that this sum does not converge. If § > 0,
then this sum converges as long as § < f%. Therefore, the full range of convergence is given by
0<d< \%\I Though it should perhaps be noted that this expectation is finite for all n regardless
of the choice of ¢, though if § > % then this sum is of order n (as opposed to order 1 in the

other case).

To calculate the limiting variance, we can sum the geometric series:

imEY;? = 026 ) (1 + Ad)*
k=0

= =)

1
-2
=00 g

0.2

—2X — A2§°
To check this, we can also solve the fixed-point equation:
z=(1+X)%z+ 020

28 o2

I TI AN C2A A%

To check this matches our intuition, as § — |27‘7 the time step increases, so the variance should
increase, which it does. Similarly, § — 0, the time step decreases, so the variance should decrease,
which it does.

(b) Similar to part (a), we rearrange and expand out the recursion to obtain

0
Y, = (1 - )‘6)71Yn—1 + 10_7\[)\5@%—1

n—1

ovVé

=(1-20)"Yo+ = > (=286 F
k=0

O_\/g n—1 B
=1 > (=2 .
k=0



Just as in part (a), this sum converges when |1 — Ad| > 1, which means that we need 1 — X0 > 1,
which is equivalent to § > 0 since A < 1. Similarly, we also need § > 2/A, which is vacuous
compared to § > 0. Therefore, we only need ¢ > 0.

To calculate the limiting variance we sum up the geometric series as before:

: 0% _
k=0
%6 1

(1-X6)21— ﬁ
a%s (1 —X6)2
(1—=X5)2(1—-X)2—-1
o)
—2M0 + A262

o2

—2X + A\2%6°

This is again an increasing function for § > 0, with lower bound f—;)\ as § — 0. This matches
with our intuition that the limiting variance should increase for larger time steps. We could also
solve the fixed-point equation to check our work:

2
o 9 loal)
xz=(1-X\)) x+7(1_/\5)2
— *702
T o



