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1. Introduction (Mike Hopkins)

Today I want to talk about how the theory of (∞, 1)-categories came to our attention.
(“Wait a minute. I have to pull up my lecture preparation simulator.”) It starts with a
question of Quillen, in Quillen’s theory of homotopical algebra.

Quillen noticed that if C is a model category you can define, for X,Y ∈ C, a set
hoC(X,Y). This is actually a lot like classical homotopy theory. Can form

X

��

//

p

CX ∼ ∗

��
∗ // ΣX

Just like in the classical case you have to assume these maps are pointed. So then hoC(ΣX,Y)
is a group and you can iterate and hoC(Σ2X,Y) is an abelian group.

Q. Can one associate a homotopy type hoC(X,Y) ∈ hoTop so that π0hoC(X,Y) = hoC(X,Y)
and so that πkhoC(X,Y) = hoC(ΣkX,Y).

Date: Spring 2013.
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The answer to this is yes (due to Dan Kan and Bill Dwyer around 1982) is yes, and this
seems rather remarkable. Somehow it means that as soon as you allow a homotopy into
the game you get all the higher dimensional simplices.

If the category is the category of chain complexes, these groups are Ext groups so this
unifies homotopy theory with homological algebra, which was part of the design.

Dwyer-Kan showed that you can associate to C a category C which is enriched over
simplicial sets with the property that C(X,Y) has the correct homotopy type. They actu-
ally had many constructions for this, some of which worked better than others for different
purposes. Some were only weakly enriched. The existence of multiple constructions pre-
cipitated a need for comparison, to show that they were the “same.” This is where the story
for (∞, 1)-categories really begins.

Specifically, Dwyer and Kan introduced a notion of weak equivalence for simplicial cat-
egories (categories enriched over simplicial sets) which are now called DK equivalences
(the renaming maybe due to Julie Bergner?). Suppose C is a category enriched over sim-
plicial sets. Given a, b ∈ C we have a simplicial set C(a, b). Then π0C(a, b) is a set. Let’s
call the category with these hom-sets π≤1C. It’s objects are the objects of C and its hom-
sets are π≤1C(a, b) = π0C(a, b).1 By analogy with homotopical algebra, they called this the
homotopy category of C, perhaps denoted hoC.

Definition 1.1. A DK-equivalence is a simplicial functor F : C → D so that
• hoF : hoC → hoD is an equivalence of categories
• for all a, b ∈ C, the map C(a, b)→ D(Fa, Fb) is a weak homotopy equivalence.

We also have an enriched homotopy category hoC which is enriched over hosSet. The
objects are again the objects of C and hoC(a, b) = C(a, b) ∈ hosSet, the homotopy type of
the hom-space. This is a category intrinsically associated to the weak equivalence class of
the simplicial category C.

Q. If two simplicial categories C andD have equivalent enriched homotopy categories are
they DK-equivalent? Certainly if there is a map but the consensus is that the answer is no,
maps can be obstructed.

Even in the 1980s people were already (in secret) talking about the “homotopy theory
of homotopy theories” but Mike’s impression is that this was regarded as a somewhat
fantastical idea. Phil says this was called the “mother of all homotopy theories” but Dan
didn’t expect that joke would last.

Lifting problem. Kan, Dwyer, and Jeff Smith in the 1980s. Starting with an ordinary
category I and a Quillen model category C. Given a diagram

C

��
I //

==|
|

|
|

hoC

does there exist a lift and if so how many? What are the obstructions?
There were some antecedents to this: e.g., G a group and I the encoding as a one-object

category.
There are some very simple examples where there are more than one lift. For example

Z/2 acting on S 1 (e.g. when you’re driving). You want it to act trivially up to homotopy.

1This is exactly the underlying category of the enriched category C.
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You can lift it to the trivial action. Or you can lift it to the antipodal action. And these can’t
be the same because the one has only fixed points and the other none.

This is very representative of Dan’s work. The question is set up in such an organized
way that the answer feels like the obvious one, but there’s really some depth to this.

They set up a moduli space of lifts, i.e., a simplicial set whose 0-simplices are literally
lifts I → C that either exactly lift the original functor (or up to a specified isomorphism,
but let’s assume the strict thing). Calling the functor F : I → hoC an n-simplex is then a
sequence of lifts

F0
∼
−→ F1

∼
−→ · · ·

∼
−→ Fn

all covering the identity natural transformation of F .
They also set up an obstruction theory. The first approach was to replace the indexing

category by a simplicial category Ĩ• → I of a very special kind. Recall a simplicial
category Ĩ• can be encoded as an identity-on-objects simplicial object in Cat. Here, for
Ĩ• each Ĩn is free on some set of morphisms and furthermore the degenerate images of
the generating morphisms for Ĩk are among the generators for Ĩn for all n > k.2 The final
property is that for each a, b ∈ I the map Ĩ•(a, b) → I(a, b) is a weak equivalence (where
the codomain is a discrete simplicial set).3

The moduli space of lifts
C

��
Ĩn

>>|
|

|
|

// hoC

is easy to describe because the category Ĩn is free on a reflexive directed graph: You just
have to lift the generating arrows.

This leads to an obstruction theory, i.e., a spectral sequence for computing the homotopy
group for the moduli space of lifts, which let’s call liftsF . The E2-term can be identified in
Quillen-style terms.

Aside. This isn’t a spectral sequence of abelian groups or anything. It can converge to the
empty-set. (“It’s one of these really super duper spectral sequences.”) Simplicial objects
in things satisfying any algebraic identities form a model category (“Theorem SA”). Cat-
egories are an example of this. There’s a homology that Quillen associates to this (some
derived functor of abelianization). So there’s some abstracted version of cohomology.

What’s interesting is the original problem

C

��
I //

==|
|

|
|

hoC

doesn’t really have any topology involved but it naturally leads into the structures that
Dwyer-Kan were thinking about. This method requires the use of simplicial categories and
DK-equivalences. It is some kind of Atiyah-Hirzebruch spectral sequence for computing
maps in some kind of homotopy theory of simplicial categories and DK-equivalences.

2This is exactly to say that Ĩ is cofibrant in the Bergner model structure.
3This, plus the fact that these things will have the same objects, is exactly to say that Ĩ → I, the latter thing

again the discrete simplicial category, is a DK-equivalence.
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Model category of simplicial categories. Now in the 2000s, Julia Bergner shows that cat-
egories enriched over simplicial sets and DK-equivalences form a model category [Ber07a].
She advocated for this as a “homotopy theory of homotopy theories.” This was asserted
by Dwyer and Kan in the 1980s but they got some of the details wrong (wrong generat-
ing acyclic cofibrations?). This allows us to approach some of these problems a bit more
systematically.

The Dwyer-Kan obstruction theory was a way to formulate and approach these lifting
problems. But do all of the lifting problems determine the homotopy theory? By an obser-
vation of Bob Thomason: yes it does! Suppose I have two model categories C and Dand
suppose hoC = hoD and suppose the moduli spaces of all the lifts as the same. Solving
the lifting problem

C

��

//____ D

��
hoC = // hoD

gives the map that is the missing piece.
Other approaches: We can look at strings of composable arrows in I and study lifts

C

��
∆[n] x

//

66mmmmmmmm
I

F

// hoC

Another observation of Dwyer-Kan is that

liftF = holim liftF ◦x.

This motivated work of Alex Heller. Another approach is due to Charles Rezk [Rez01].

Complete Segal spaces. Associate to C a sequence of simplicial sets X0, X1, . . . where
Xn is the classifying space of the category (i.e., is the category, i.e., is the nerve of the
category) of all functors ∆[n] → C and whose maps are natural weak equivalences. So a
j-simplex in Xn is a map from ∆[n] × ∆[ j] so that the components in the j direction are
weak equivalences.

Xn is the Dwyer-Kan moduli space of sequences of n-tuples of composable arrows.
So X0 is the moduli space of objects, X1 is the moduli space of maps, etc. This X• is a
simplicial space and we have the Segal maps

Xn → X1 ×X0 · · · ×X0 X1,

Clark: implicitly we’re doing some sort of Reedy fibrant replacement on this simplicial
object. Then these maps are acyclic fibrations but already it was a weak equivalence.

Given an arbitrary simplicial space X• we could take as an axiom that these maps are
weak equivalences. There is one more axiom. There’s a way of expressing in terms of ar-
rows when a map is a weak equivalence (there exists an inverse and homotopies). Charles’
second condition on these simplicial spaces (which should also be Reedy fibrant) is that
the map X0 → Xequiv

1 is a weak equivalence. He calls these complete Segal spaces. He
produced a model structure on simplicial spaces with these fibrant objects and proposes
this as a model for the homotopy theory of homotopy theories.

Advantages of Rezk’s theory:
• complete Segal spaces are often what naturally arises in examples
• it lends itself to computation, especially when everything is symmetric monoidal



THURSDAY SEMINAR: HIGHER CATEGORY THEORY 5

This is a very nice theory growing out of another approach to the lifting problem.
Both Charles’ and Julie’s theories are really cornerstones of the homotopy theory of

homotopy theories but the fact that they were both published in the Transactions of the
AMS illustrates how under appreciated they were in their day. People really computed
with these (e.g. Hopkins-Miller theories, the theory of p-compact groups). These kind of
obstruction theories were used in a really practical, computational way.

There’s a third point of view on this that is really striking and I belong to a community
that as far as that viewpoint is concerned was really asleep at the wheel. This the theory
of quasi-categories. (Independently: Hirschowitz-Simpson and Tamsemani developed a
notion of Segal categories. These also have accompanying higher categorical versions.)

Quasi-categories. These were introduced by Boardman-Vogt in Homotopy invariant al-
gebraic structures in the 1970s? They gave definitions of things like the space of A∞-
structures on X, or the space of E∞-structures, or algebras over any operad, or things even
more general. They thought more in terms of the algebraic theories picture than the oper-
ads picture which makes it difficult to think about what they mean by a map. They define
an A∞-structure on a map f : X → Y to be an A∞-structure on the mapping cylinder cyl( f )
that extends the A∞-structure on the ends. But now there’s a new problem: you can’t com-

pose maps. Given X
f
−→ Y

g
−→ Z an A∞-structure on g and f don’t give an A∞-structure on

g f just because mapping cylinders don’t compose strictly.
“Haynes and I actually ran into this in the early 90s, and I thought this was a defect in

the theory.” The theory was set up so that you didn’t get a category. What Boardman-Vogt
did instead was introduce a quasi-category (which they called a “weak Kan complex”;
“quasi-category” is due to Joyal).

Definition 1.2. A quasi-category is a simplicial set X so that

Vk[n] //

��

X

∆[n]

=={
{

{
{

for all n ≥ 2, 0 < k < n, where Vk[n] ⊂ ∆[n] is the union of all codimension-1 faces
containing the k-th vertex.

Example 1.3. In a category you can fill a V1[2] but not necessarily a V0[2] or a V2[2].
Categories are quasi-categories. A category is a groupoid if and only if you can fill all the
horns in its nerve.

•
g

��???????

 

•
g

��???????

•

f
??�������

• •

f
??�������
g f

// •

Joyal undertook to do all of category theory in quasi-categories (limits, colimits, etc).
He introduced a model structure on simplicial sets whose fibrant objects are the quasi-
categories. He wrote several hundred pages of this. Around this time Jacob Lurie came
on the seen and used quasi-categories as a foundation for higher topos theory and in-
dependently developed all the basic category theory. He advocated calling these (∞, 1)-
categories.
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There are model structures and Quillen equivalences comparing the model categories:

simplicial categories

))SSSSSSSSSSSSSS
// Rezk spacesoo

vvmmmmmmmmmmmm

quasi-categories

iiSSSSSSSSSSSSSS

66mmmmmmmmmmmm

For Rezk spaces and quasi-categories there’s a nice paper by Joyal-Tierney. A summary is
in Bergner’s [Ber07b]. Because these homotopy theories are equivalent, any structure that
I’m looking at from any point of view, I should be able to extract from any other point of
view.

Note from X a quasi-category there is an associated homotopy category hoX and also a
category hoX enriched over the homotopy category of spaces ho(sSet). The objects are the

vertices X0. The hom-set hoX(a, b) is defined to be the set of 1-simplices a
f
−→ b subject to

the equivalence relation f ∼ f ′ whenever there exists a 2-simplex with 1st face f , 2nd face
f ′, and 0th face degenerate at b. When X is a Kan complex, this recovers the Dwyer-Kan
definition of the fundamental groupoid of X.

Kan complexes are special kinds of quasi-categories. There is a model structure (Quillen’s)
in which these are exactly the fibrant objects.

Theorem 1.4 (Joyal). A quasi-category is a Kan complex if and only if hoX is a groupoid.

Because this was the fundamental group of spaces it’s more natural to denote this hoX
by π≤1X and call it the fundamental category of the quasi-category. As remarked in
Higher Topos Theory, this makes it plain that spaces (Kan complexes) are ∞-groupoids
sitting in (∞, 1)-categories.

There are a number of explicit (combinatorial) models for the homotopy type hoX(a, b).
For instance, you could take hoX(a, b)n to be (n + 1)-simplices in X whose initial vertex is
a and whose 0th face is degenerate at b. I gave a course on this stuff a few years ago that
discussed a lot of obstruction theory.

These quasi-categories are objects that we can think of like a category and like a space.
(“It’s like it has the head of a space and the body of the category. I never get a laugh out of
this joke. It’s like a liger.”)

We’re calling this a homotopy theory of homotopy theories but that’s just a name. What
is this the homotopy theory of? It’s not true that every quasi-category comes from a model
category. People say this is the homotopy theory of (∞, 1)-categories.

There were also many models for the homotopy theory of spaces (for instance, topolog-
ical spaces, which no one would ever use) and people seemed pretty happy about this.

Q. These are three examples of equivalent homotopy theories but what are these models
homotopy theories of, i.e., what are (∞, 1)-categories?

This question has a really beautiful formulation and answer due to Toën.

Axiomatic characterization. Toën axiomatically characterized a theory of (∞, 1)-categories
and showed that the moduli space of these is BZ/2, where the Z/2-action sends a category
to its opposite.

Again there is an antecedent: Grothendieck observed that the theory of spaces was the
homotopy theory freely generated by a point. But this work raised several problems:

• how to define any model of an (∞, n)-category
• how to characterize such theories
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In the first half of this semester we’ll spend some time on specific models of (∞, 1)- and
then (∞, n)-categories. Models for the latter include

• Simpson-Tamsemani Segal n-categories
• Θn-spaces of Joyal, Rezk or Θn-sets of Hahn
• n-fold complete Segal spaces of Barwick
• complicial sets of Street,4 Verity (early model)

Barwick–Schommer-Pries generalize Toën’s theorem and prove that the moduli space
of (∞, n)-categories B(Z/2)n.

14/2

2. Quasi-categories as (∞, 1)-categories (Emily Riehl)

My goal today is less to give a comprehensive introduction to quasi-categories as a
model for (∞, 1)-categories5 but rather to give one that is as close to the ground as possible.
For every statement that appears below, I’ll try to either explain the proof or at least give
some indication of how it is proven. This strongly influences the order of the topics. Some
of what will appear below is self-plagiarized from [Rie13, Part IV], written for a class I
taught here last spring. Some of the rest is copied from some joint papers with Dominic
Verity, which I hope will appear soon.

Here we go!

Basic notions. Suppose a simplicial set is a quasi-category unless explicitly stated other-
wise. An important feature of quasi-categories that isn’t true for generic simplicial sets is
that for every relation in the homotopy category and any choice of representing 1-simplices,
there exists a 2-simplex that witnesses the relation. More precisely:

Proposition 2.1. Given 1-simplicies f , g, h ∈ X, h = g f in hoX if and only if there exists a
2-simplex in X with boundary

·
g

��>>>>>>>>

=

·

f
??��������
h

// ·

We have an adjunction ho: qCat � Cat : N whose right adjoint, the nerve functor, is
fully faithful. Sometimes it’s conventional to regard categories as quasi-categories without
writing the “N.” In every case we know of (certainly in every example we will mention) the
quasi-categorical notion, when restricted to the full subcategory of categories, will coincide
exactly with the categorical notion bearing the same name. So category theory is really a
subset of quasi-category theory.

Proposition 2.2. qCat is cartesian closed (and admits cotensors by arbitrary simplicial
sets) with the internal hom (cotensor) given by the internal hom for simplicial sets.

There is a bit of combinatorics that goes into the proof of this, which we will address
momentarily. The obvious fact is that the larger sSet is cartesian closed. To my mind, the
reason quasi-categories are such a convenient model of (∞, 1)-categories owes largely to
the fact that sSet, as a presheaf category, is so well behaved (in particular complete and
cocomplete closed symmetric monoidal). We’ll see later that a number of the objects used

4Street had a model of (∞,∞)-categories that he wanted to call weak ω-categories or “womcats.”
5A (m, n)-category is a (weak) category with cells up to dimension m so that every cell above dimension n is

(weakly) invertible.
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to build the category theory of quasi-categories are modeled by the analogous simplicial
weighted limits.

Let us think what is being asserted by this statement. From the definition, we are asked
to show that for any quasi-category X and simplicial set A there exist extensions

Λn
k

//

��

XA

∆n

>>}
}

}
}

!

A × Λn
k

��

// X

A × ∆n

<<y
y

y
y

y
!

X∆n

��
A

>>}
}

}
}

// XΛn
k

for all n ≥ 2, 0 < k < n.6 The two lifting problems correspond by adjunction. Let us think
what is being asserted by the latter. We are asked to choose cylinders ∆m × ∆n → X for
each m-simplex in A in a way that is compatible with the specified horn ∆m ×Λn

k → X and
also with previously specified cylinders ∂∆m × ∆n → X corresponding to the boundary of
the m-simplex. In other words, inductively, we must choose extensions

∂∆m

im
��

// X∆n

X jnk
��

∆m //

66nnnnnnn
A // XΛn

k

!

∂∆m × ∆n ∐
∂∆m×Λn

k

∆m × Λn
k

im×̂ jnk
��

// X

∆m × ∆n

77oooooooo

The indicated lifting problems are again transposes, on account of the Leibniz con-
struction applied to the two variable adjunction between the cartesian product and internal
hom.7 Assuming the ambient categories have the necessary pullbacks and pushouts, any
two-variable adjunction

C(a × b, c) � C(a, hom(b, c))
(such as a closed monoidal structure) gives rise to a two-variable adjunction

C2( f ×̂g, h) � C2( f , ˆhom(g, h))

on the arrow categories. The left adjoint is the pushout product bifunctor −×̂− and the right
adjoint, defined dually, might be called the pullback hom (or Leibniz hom) ˆhom(−,−). For
example, the map X∆n

→ XΛn
k is the Leibniz hom of Λn

k → ∆n with X → ∗.
Such extensions always exist on account of the following result.

Proposition 2.3 (Joyal). The pushout-product of an inner anodyne map with a cofibration
is inner anodyne.

Proof. It suffices to show this is true of the (∂∆m → ∆m)×̂(Λn
k → ∆n)’s because the bifunc-

tor −×̂− preserves colimits in each variable and the inner anodyne maps, as the left class
of a weak factorization system, is weakly saturated. This can be proven directly by decom-
posing these monomorphisms into pushouts of inner horns (see [DS11, A.1]) or via a slick,
but non-constructive, argument that proves the result as stated but doesn’t tell us whether
the maps (∂∆m → ∆m)×̂(Λn

k → ∆n) are cellular inner anodyne (relative cell complexes
built from the inner horn inclusions). �

Remark. By easy formalities involving two-variable adjunctions and lifting properties
there are actually three equivalent statements here, i.e., Proposition 2.3 is equivalent to
either of the following two statements:

6With apologies to Mike, I have to change notation. I’ll write ∆n for his ∆[n] and write Λn
k for his Vk[n].

7The name, propagandized by Dominic Verity, is inspired by Leibniz’ formula for the boundary of a product
of polygons.
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• the pullback-hom of a cofibration with an inner fibration is an inner fibration
• the pullback-hom of an inner anodyne map with an inner fibration is a trivial

fibration.

In particular, the pullback-hom of ∅ → A and X → ∗ is XA → ∗, proving that XA is a
quasi-category if X is. We have another immediate corollary.

Corollary 2.4. If X is an∞-category, then X∆n
→ XΛn

k is a trivial fibration.

In particular, the fiber over any point is a contractible Kan complex. This says that the
spaces of fillers to a given horn is a contractible Kan complex. This is the common form
taken by a homotopical uniqueness statement in ∞-category theory and is what is meant
by saying something is “well defined up to a contractible space of choices.”

Equivalences between quasi-categories. By an observation of Joyal, the cofibrations and
fibrant objects completely determine a model structure, supposing one exists. As it turns
out, again by work of Joyal, the monomorphisms and quasi-categories give rise to a model
structure on simplicial sets whose weak equivalences, called simply equivalences when
between quasi-categories, are a good notion.

Theorem 2.5 (Joyal). The cofibrations and fibrant objects completely determine a model
structure.

The following argument parallels his proof of this theorem in our particular case of
interest. Supposing there is such a model structure for quasi-categories, the weak equiv-
alences must be characterized representably as maps f : A → B that induce bijections on
hom-sets in the homotopy category when homming into any quasi-category X. Because
all objects are cofibrant, we can characterize the hom-sets in the homotopy category of the
hypothesized model structure by use of a good cylinder object.

To that end write J for the nerve of the free-standing isomorphism.8 Observe that J → ∗
and hence any projection A × J → A, as its pullback, is a trivial fibration. Consequently,

A t A // // A × J ∼ // // A

defines a very good cylinder object. Using this, by a theorem of Quillen the hom-set from
A to X in the homotopy category is isomorphic to the set [A, X]J defined to be the quotient
of hom(A, X) by the relation generated9 by f ∼ g if there exists a diagram

(2.6)

A
f

""EEEEEEEEE

j0
��

A × J // X

A

j1

OO

g

<<yyyyyyyyy

!

∗

f

  AAAAAAA

j0
��
J // XA

∗

j1

OO

g

>>}}}}}}}}

So we declare a map f : A→ B of simplicial sets to be an weak equivalence if and only
if it induces a bijection [B, X]J → [A, X]J for all quasi-categories X. We follow Lurie and
call these maps categorical equivalences10 or simply equivalences if the source and target

8This is a simplicial model for S∞ = B(Z/2,Z/2, ∗), the total space of the classifying space K(Z/2, 1) =

BZ/2 = RP∞.
9Indeed, the “generated” here is unnecessary because X, and hence XA, is a quasi-category; any f and g in

the same equivalence class admit such diagrams, as we shall prove momentarily.
10Joyal calls these “weak categorical equivalences.”
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are quasi-categories because no ambiguity is possible in that case. A good exercise for the
reader is to show that inner anodyne maps and trivial fibrations are weak equivalences
using this definition.

Theorem 2.7 (Joyal). There is a left proper cofibrantly generated model structure on sim-
plicial sets whose cofibrations are the monomorphisms and whose fibrant objects are the
quasi-categories.

Fibrations between fibrant objects, which we shall call isofibrations are characterized
by the right lifting property against the inner horn inclusions and the map ∗ → J, which
is the nerve of the functor whose right lifting property chracterizes the isofibrations in Cat
(hence the name). Note that the trivial fibrations are the same in Joyal’s and in Quillen’s
model structures. Some closing remarks:

• ho a N is a Quillen adjunction with the folk model structure on Cat.
• As a corollary, both adjoint functors preserve equivalences. A functor between

categories is an equivalence if and only if its nerve is an equivalence.
• Categorical equivalences are weak homotopy equivalences.

Quasi-categories as (∞, 1)-categories. A quick inductive definition of an (∞, 1)-category
is that it’s something (weakly) enriched over (∞, 0)-categories, i.e., ∞-groupoids, i.e., ho-
motopy types.

Aside (the homotopy category of spaces as a base for enrichment). Because I like knowing
why these types of things are true, permit me a digression on why it makes sense to enrich
over the homotopy category of spaces. Everyone knows that simplicial sets is a closed
symmetric monoidal category and has a compatible model structure which makes it a sim-
plicial model category. This is Quillen equivalent to a simplicial model structure on your
favorite convenient category of spaces, e.g., k-spaces or compactly generated spaces. The
Quillen equivalence descends to an equivalence between the homotopy categories, which
we’ll call the homotopy category of spaces and denote byH .

Using this simplicial model structure, there is a uniform way to construct point-set
level and total derived functors of left and right Quillen functors, bifunctors, etc: Just
precompose with cofibrant replacement or fibrant replacement, as appropriate. The fact
that the model structure is closed monoidal implies that the cartesian product and internal
hom are amenable to such deformations, so have derived functors constructed in this way.

We’d like to say that the total derived functors of the closed symmetric monoidal struc-
ture on sSet define a closed symmetric monoidal structure on H . To prove this we need
to show that we can also derived the natural isomorphisms expressing coherence of the
derived monoidal product, existence of the derived adjunction, and so forth. Now com-
posing derived functors is somewhat non-trivial but in this case the axioms that establish
that sSet is a monoidal model category (plus Ken Brown’s lemma) say things like the hom-
space from a cofibrant object to a fibrant object is again fibrant which imply that everything
works out. (See [Rie13, Chapter 10] for more details.)

Furthermore, the localization functor sSet → H is lax monoidal which means any
simplicial enrichment descends to anH-enrichment.

Our goal is define hoX as an H-category so the underlying category — whose arrows
are homotopy classes of maps ∗ → hoX(a, b), i.e., whose hom-sets can be computed by
applying π0 to the hom-spaces — is hoX.

The first, to my mind most obvious construction, makes use of the quasi-category X∆1

of paths in X; vertices are 1-simplices in X, and n-simplices are cylinders ∆n × ∆1 → X.
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One candidate mapping space between two fixed vertices x, y ∈ X is the pullback

HomX(x, y)

��

//
y

X∆1

��
∗

(x,y)
// X × X � X∂∆1

By the combinatorics encoded above by Proposition 2.3, HomX(x, y) is a quasi-category.
An n-simplex is HomX(x, y) is a map ∆n × ∆1 → X such that the image of ∆n × {0} is
degenerate at x and and the image of ∆n × {1} is degenerate at y. In particular, 1-simplices
look like

(2.8) x
f //
∼

∼ ��======== y

x g
// y

from which we see that π0HomX(x, y) is the hom-set from x to y in hX.
A less symmetric but more efficient construction is also possible. Let HomR

X(x, y) be the
simplicial set whose 0-simplices are 1-simplices in X from x to y, whose 1-simplices are
2-simplices of the form

x
��>>>>

x

����
���� // y

and whose n-simplices are (n + 1)-simplices whose last vertex is y and whose (n + 1)th face
is degenerate at x. Dually, HomL

X(x, y) is the simplicial set whose n-simplices are (n + 1)-
simplices in X whose first vertex is x and whose d0-face is degenerate at y. Once again,
note that π0HomL

X(x, y) = π0HomR
X(x, y) = hX(x, y).

Remark. The spaces HomL
X(x, y) and HomR

X(x, y) are dual in the sense that HomL
X(x, y) =

(HomR
Xop (y, x))op. The annoying fact, from the perspective of homotopy (co)limits, that a

simplicial set is not isomorphic to its opposite, in which the conventions on ordering of
vertices in a simplex are reversed, is technically convenient here.

In fact all three of these candidate hom-spaces are good models: they’re all Kan com-
plexes (the explanation for which we’ll postpone for now) and they’re all equivalent. To
explain the equivalence, let us think geometrically about the difference.11 Each simplicial
set has the same zero simplices. An n-simplex in HomL

X(x, y) or HomR
X(x, y) is an (n + 1)-

simplex in X one of whose faces is degenerate. Thus the relevant shapes are given by the
quotients

∆n

d0

��

//

p

∆0

��

∆n

dn+1

��

//

p

∆0

��
∆n+1 // Cn

L ∆n+1 // Cn
R

This simplicial set has two vertices and has a non-degenerate k-simplex for each non-
degenerate k-simplex of ∆n whose image surjects onto ∆1.

11This proof is due to Daniel Dugger and David Spivak with some modifications by Verity.
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Similarly, the shape of an n-simplex in HomX(x, y) is given by

∆n × ∂∆1

��

//

p

∂∆1 � ∗ t ∗

��
∆n × ∆1 // Cn

cyl

We have canonical maps
Cn

L
//

  BBBBBBBB
Cn

cyl

��

Cn
R

~~||||||||
oo

∆1

where the horizontal maps are induced by the inclusions of ∆n+1 ⇒ ∆n ×∆1 as the first and
last shuffles respectively.12

These constructions define three cosimplicial objects C•L,C
•
cyl,C

•
R taking values in the

category of simplicial sets and maps preserving two chosen basepoints. Write sSet∗,∗ for
this slice category ∂∆1/sSet. The simplicial set X with chosen vertices x, y becomes an ob-
ject of sSet∗,∗. The three hom-spaces introduced above are defined from these cosimplicial
objects and the hom-sets of sSet∗,∗ by the equalities

HomL
X(x, y) = sSet∗,∗(C•L, X)

HomX(x, y) = sSet∗,∗(C•cyl, X)

HomR
X(x, y) = sSet∗,∗(C•R, X).

The natural maps HomL
X(x, y) ← HomX(x, y) → HomR

X(x, y) come from the maps be-
tween the cosimplicial objects. We would like to show that these are equivalences. Morally,
this follows because C•L, C•cyl, and C•R are cofibrant resolutions of ∆1 in the Joyal model
structure. Let us give just a few more details.

Remark. The category sSet∗,∗, defined as a slice category, inherits a model structure from
the quasi-categorical model structure on sSet: A map of twice-based simplicial sets is a
cofibration, fibration, or weak equivalence just when the underlying map of simplicial sets
is one. Fibrant objects are quasi-categories with chosen basepoints. An object is cofibrant
if and only if its two chosen basepoints are distinct.

Lemma 2.9. C•R, C•L, C•cyl are Reedy cofibrant.

Proof. There’s a simple criterion (“unaugmentable” in [BK72]) that detects when a cosim-
plicial object is Reedy cofibrant, and if you know it, it’s easy to check that it’s true here. �

The geometrical heart of the argument is in the proof of the following result.

Lemma 2.10. The canonical maps C•L → C•cyl ← C•R are pointwise categorical equiva-
lences.

Proof. Those with patience for combinatorics can check that Cn
L → ∆1, Cn

cyl → ∆1, and
Cn

R → ∆1 by showing that sections are (cellular) inner-anodyne maps [DS11]. �

12Recall simplices in ∆n×∆m correspond bijectively to totally ordered collections of vertices (i, j) with i ∈ [n]
and j ∈ [m]. Simplices of maximal dimension are called shuffles. The first shuffle is the unique one containing the
vertices (0, 0), . . . , (n, 0), . . . (n,m). The last is the unique one containing the vertices (0, 1), . . . , (0,m), . . . , (n,m).
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We might think about these cosimplicial spaces as “weights” whose weighted limits
define our three candidate mapping spaces. To use this information to obtain our desired
conclusion, the starting point is that one can define simplicial mapping spaces for sSet∗,∗ so
that when X is a quasi-category hom(−, X) : sSetop

∗,∗ → sSet is a right Quillen functor. By
Ken Brown’s lemma, it follows that this functor preserves equivalences between objects
with distinct basepoints. The proof is completed by some Reedy category theory.

Consider a cosimplicial object C• : � → sSet∗,∗. Latching and matching objects can be
defined to be certain (dual) weighted colimits and limits from which it is clear that

Mnhom(C•, X) � hom(LnC•, X).

If C• is Reedy cofibrant, the maps LnC• → Cn are cofibrations and hence

hom(C•, X)→ hom(LnC•, X) � Mnhom(C•, X)

are fibrations because hom(−, X) is right Quillen. This says that hom(C•, X) is Reedy
fibrant. Applying this result to the cosimplicial objects C•L,C

•
cyl,C

•
R we see that we have

pointwise weak equivalences between Reedy fibrant objects

hom(C•L, X)← hom(C•cyl, X)→ hom(C•R, X)

in the category of bisimplicial sets.
Remembering only the vertices of each simplicial set in the simplicial objects — a

process which might be called “taking vertices pointwise” — we are left with the diagram
of simplicial sets HomL

X(x, y)← HomX(x, y)→ HomR
X(x, y) that is actually of interest. The

proof that these maps are weak equivalences is completed by the following lemma.

Lemma 2.11. Suppose f : X → Y is a weak equivalence between Reedy fibrant bisim-
plicial sets. Then the associated map of simplicial sets X•,0 → Y•,0 obtained by taking
vertices pointwise is a weak equivalence.

Proof. By Ken Brown’s lemma, it suffices to prove that if f : X → Y is a Reedy trivial
fibration of bisimplicial sets then the associated map X•,0 → Y•,0 is a weak equivalence.
Indeed, this map is a trivial fibration of simplicial sets. Because f is a Reedy trivial fibra-
tion, each relative matching map Xn → Yn ×MnY MnX is a trivial fibration of simplicial sets,
and in particular, the map on vertices Xn,0 → (Yn ×MnY MnX)0 = Yn,0 ×(MnY)0 (MnX)0 is a
surjection in Set. But this says exactly that any lifting problem

∂∆n

��

// X•,0

��
∆n // Y•,0

has a solution. �

Thus, we have proven:

Theorem 2.12. The natural maps HomL
X(x, y) ← HomX(x, y) → HomR(x, y) are equiva-

lences of quasi-categories.

Using retractions to the maps Cn
L → Cn

cyl ← Cn
R, which can be defined as quotients of

the appropriate projections ∆n ← ∆n×∆1 → ∆n, there are also equivalences HomL
X(x, y)→

HomX(x, y) ← HomR
X(x, y). We’ll see shortly that any equivalence X → Y of quasi-

categories has an inverse equivalence Y → X.
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Q (for the audience). Reedy category theory is good for this sort of thing and for proving
simplified formulas for homotopy limits and colimits. What else?

Because equivalences between quasi-categories are homotopy equivalences, the objects
HomL

X(x, y), HomX(x, y), and HomR
X(x, y) define weakly equivalent simplicial sets whose

set of path components is the hom-set hoX(x, y). We would like to conclude that the homo-
topy category hoX is thereby enriched over the homotopy category of spaces — however,
there is no natural composition law definable in sSet using any of these mapping spaces.
These considerations motivate the introduction of a fourth candidate mapping space, which
is weak homotopically equivalent (but not categorically equivalent) to these models, and
associates to each simplicial set a simplicially enriched category.

Homotopy coherent diagrams. The point is there is an adjunction C : sSet � sCat : N
between simplicial sets and simplicial categories. It is a Quillen equivalence with respect
to the Joyal and Bergner model structures. In particular, if C is a locally Kan simplicial
category then NC is a quasi-category. This is important source of quasi-categories in prac-
tice; for instance, the quasi-category associated to a simplicial model category is defined
by applying N to the subcategory of fibrant-cofibrant objects. On the other side, if X is
a quasi-category then the hom-spaces of CX, while not fibrant,13 do have the same weak
homotopy type as the mapping spaces introduced above. So we can use CX to define hoX.
In particular hoX = (π0)∗CX. A consequence of this Quillen equivalence, or really rather
an ingredient in the proof, is that X → Y is a categorical equivalence (of simplicial sets
even) if and only if CX → CY is a DK-equivalence.

As an expository note, Lurie’s entire approach to the proof of the model structure on
quasi-categories is designed to facilitate the proof that this adjunction is a Quillen equiva-
lence, which should serve as some indication of its importance [Lur09, Chapter 2].

A lot of you know a lot about this (and some subset of you have heard me talk about
this before) so I’m not going to say too much except to remind you how this adjunction is
defined. The reason I want to do this is that it connects back to the story about homotopy
coherence mentioned by Mike last time that motivated the development of (∞, 1)-category
theory and quasi-categories in particular. In particular, the replacement of the indexing
category I of a diagram by a simplicial category Ĩ• that was used to set up the obstruction
theory for lifting diagrams in the homotopy category is an instance of cofibrant replace-
ment in this model structure. Even more precisely, the map Ĩ• → I is isomorphic to the
component of the counit of the adjunction C a N at the discrete simplicial category I.

There are two isomorphic descriptions of this cofibrant replacement. One, as I just
claimed is CNI.14 But since we haven’t defined these things yet, I’ll give the other, which
is the construction of Dwyer-Kan. There is a comonad F on Cat which replaces a cate-
gory by the category freely generated by its underlying reflexive directed graph (forgetting
composites but remembering identities). Note that I and FI have the same objects. Non-
identity morphisms in FI are strings of composable non-identity morphisms. The counit
FI → I composes the arrows in each string. The cosimplicial object in Cat that defines
the simplicial category serving as the cofibrant replacement of I is the comonad resolution
(augmented by this FI → I). The n-th category is Fn+1I. Its objects are the same as
the objects of I and its morphisms are strings of composable arrows enclosed in exactly

13Even though the hom-spaces of CX aren’t fibrant, they are, in some weird sense, close. More precisely, for
any simplicial set X, the hom-spaces of CX are 3-coskeletal, which implies that any horn of dimension 5 or higher
will have a unique filler. But it is easy in toy examples to find low dimensional horns that cannot be filled.

14The nerve and the homotopy coherent nerve coincide for discrete simplicial categories.
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n pairs of parentheses (each indicating a layer of formal composition). The degeneracy
maps “double up on parentheses” while the face maps remove parentheses, which should
be thought of as a form of composition (because it is).

Now the adjunction C : sSet � sCat : N, like any adjunction so that the domain of
the left adjoint is simplicial sets, is given by some “geometric realization–total singular
complex”-type construction (or, if you will, “left Kan extension–nerve”) with respect to
some cosimplicial object � → sCat. This simplicial object is defined by taking the finite
ordinal categories [n] to their cofibrant replacements defined in this way. For example, let’s
compute the cofibrant replacement of [2] = 3, which is the category whose non-identity
morphisms we might label as:

·
f //

j

;;

`

BB·
g //

k

;;·
h // ·

Let us describe the hom-space from the initial object to the terminal one. The vertices of
this simplicial set are the paths of edges `, k f , h j, hg f . The 1-simplices are once parenthe-
sized strings of composable morphisms which are non-degenerate when there is more than
one arrow inside some pair of parentheses. There are five such with boundary 0-simplices
illustrated below

(2.13) `
(k f ) //

(h j)

��

(hg f )
AAA

  AAAAAAAA ((hg)( f ))

((h)(g f ))

k f

(hg)( f )

��
h j

(h)(g f )
// hg f

There are only two non-degenerate 2-simplices whose boundaries are depicted above.
Hence the hom-space is ∆1 × ∆1.15

Those who are familiar with the classical literature on homotopy coherent diagrams
will recognize a lot of these ideas. In the language of Cordier-Porter, Vogt, and others, a
diagram of shape CNI is exactly a homotopy coherent diagram of shape I. In the context
of quasi-category theory, Jacob defines a homotopy coherent diagram in a quasi-category
X to be any map NI → X. (This makes sense geometrically if you think about the higher
simplices of the nerve.) Note if X is one of these quasi-categories which arises as NC for
some locally Kan simplicial category C (and indeed all quasi-categories are equivalent to
some such thing), then by adjunction NI → NC is exactly CNI → C, i.e., a homotopy
coherent diagram in the quasi-category is a homotopy coherent diagram in the associated
simplicial category (which is another model for the (∞, 1)-category).

Isomorphisms in quasi-categories. What I’m proposing here is not standard terminology
but was suggested to me recently by Dominic Verity in the context of a paper we’re writing.
I thought I’d use it today to gauge reactions from the audience.

We say a 1-simplex in a quasi-category is an isomorphism if and only if it represents
an isomorphism in hoX. By remarks made above, for any isomorphism f : x → y we can

15Those of you who have heard me talk about this sort of thing before will know that this isn’t my favorite
way to think about these hom-spaces: It’s the “necklace” characterization of Dugger-Spivak.
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choose an inverse isomorphism g : y→ x together with 2-simplices

y
g

��========

=

x
f

��========

=

x

f
@@��������

x y

g
@@��������

y

A key combinatorial lemma, due to Joyal, says that quasi-categories admit “special
outer horn fillers,” that is, any horn Λn

0 → X can be filled provided that its initial edge is
an isomorphism and dually any Λn

n → X whose final edge is an isomorphism has a filler
[Joy02]. Conversely (and this part is obvious) these extension properties characterize the
isomorphisms. There is also this immediate corollary:

Corollary 2.14 (Joyal). X is a Kan complex if and only if X is a quasi-category and hoX
is a groupoid.

Another corollary is that the three models for mapping spaces mentioned above are
Kan complexes. The spaces HomL

X(x, y) and HomR
X(x, y) are defined as pullbacks of right

fibrations, which implies that all of their edges are isomorphisms. We’ve shown these
are equivalent to HomX(x, y) which implies that their homotopy categories are equivalent
which implies that hoHomX(x, y) is a groupoid which implies that HomX(x, y) is also a Kan
complex.

Also:

Lemma 2.15 (Joyal). f : ∆1 → X is an isomorphism if and only if there exists an extension
to J = N(• � •).

Proof. We make use of the following observation: an n-simplex in the nerve of a category
is degenerate if and only if one of the edges along its spine is an identity. In particular,
there are only two non-degenerate simplices in each dimension in J and furthermore, if σ
is a non-degenerate n-simplex, only its 0th and nth faces are non-degenerate.

The map f lands in ιX; it therefore suffices to show that ∆1 → J is anodyne. In fact, we
will give a cellular decomposition of this inclusion, building J by attaching a sequence of
outer horns. Abusing terminology, we will call the non-degenerate 1-simplex f . The first
attaching map Λ2

2 → ∆1 has 0th face f and 1st face an identity. Call the 1-simplex obtained
by pushing out

Λ2
2

//

�� p

∆1

��
∆2 // ·

g. This also defines the non-degenerate 2-simplex whose spine is f g. Next we use the Λ3
3

horn whose boundary is depicted

·

g

��

>>>>>>>>

>>>>>>>>

·

f
??�������� f //

>>>>>>>>

>>>>>>>> ·

·

f

??��������

to obtain the non-degenerate 2-simplex with spine g f and the non-degenerate 3-simplex
with spine f g f . Next attach a Λ4

4 horn and so on. �
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We say that two objects in a quasi-category are isomorphic if and only if there is an
isomorphism between them. (Exercise: check that this is an equivalence relation.) For
instance, suppose f : X → Y is an equivalence between quasi-categories. In particular, it
induces isomorphisms

[Y, X]J
f ∗
−→ [X, X]J [Y,Y]J

f ∗
−→ [X,Y]J .

Considering the first of these, we conclude that the identity on X is isomorphic in the quasi-
category XX to a vertex in the image of f . By Lemma 2.15, this isomorphism is represented
by a map as displayed on the left

(2.16) X
1

""EEEEEEEEE

��
X × J // X

X

OO

f
// Y

g

OO

Y
1

""EEEEEEEEE

��
Y × J // Y

Y

OO

g
// X

f

OO

Post-composing the equivalence with f we see that f and f g f are isomorphic in YX . From
the second bijection, it follows that f g is isomorphic to the identity on Y via a map as
displayed on the right above.

Some more facts whose proofs are now easy exercises:
• qCat has a full coreflective subcategory Kan. The coreflector takes a quasi-

category to its maximal sub Kan complex spanning the isomorphisms.
• Any equivalence restricts to an equivalence between maximal sub Kan com-

plexes.
• Conversely, any weak homotopy equivalence between maximal sub Kan com-

plexes extends to a simplicial homotopy equivalence. The representing 1-simplex
is an isomorphism in the hom Kan complex and hence this simplicial homotopy
equivalence is a categorical equivalence (which is a priori stronger).

There are some other facts about isomorphisms that I want to mention though these are
harder to prove. The proofs I know make use of the marked model structure, which again
many of you know about, and in any case I don’t want to get into.

Theorem 2.17 (pointwise natural isomorphisms are isomorphisms). Suppose given a nat-
ural transformation, i.e., a diagram ∆1 → XA. If this is a pointwise isomorphism (for each
a ∈ A) then it’s an isomorphism in XA.

This is a really awesome result, which follows essentially from the cartesian closure of
the marked model structure.

Theorem 2.18 (inverting diagrams). Suppose K is any simplicial set and you have a di-
agram K → X in a quasi-category whose edges are taken to isomorphisms. Then this
diagram admits an extension to the groupoidification K̃.16

Any simplicial set is a colimit indexed over its category of simplicies of the Yoneda
embedding. The groupoidification is formed by replacing the Yoneda embedding here by
the nerves of the groupoidifications of the ordinal categories.

16Gijs Heuts points out (again) that there is a simpler model categorical proof of this.
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Quasi-categories and Rezk spaces. Actually what I want to talk about is an analog of
the Segal condition and of the completeness condition. We’re going to approach this via
weighted limits and now seems as good a time as any since I’ve just secretly brought up
weighted colimits. I learned about all of this from Dominic Verity, though it’s likely that
related ideas have appeared elsewhere.17

LetM be a combinatorial model category (so I can perform left Bousfield localization).
You might be familiar with Dugger’s procedure to replace this by a Quillen equivalent
simplicial model category (which is how we’d get at the quasi-category that has the same
homotopy theory). But I want to do something else.

Given a diagram, for us �op → M, a weighted limit is something that represents not
just cones over the diagram but cones of some arbitrary shape. This is really important for
enriched category theory but actually at the moment I don’t need the enriched notion of
a weighted limit, just the set-based one will do. So what I mean by cones of an arbitrary
shape is that at each object of the diagram I can choose how many legs of the cone point
toward it and then I can specify what sort of commutativity relations are satisfied by these
legs and the maps in the diagram. This is all done by means of a functor W : �op → Set
called the weight. The cardinality of the image of [n] in the weight tells us how many legs
should be above the object in the image of [n] in the diagram. The maps then say which
things compose with which maps in the diagram to which things.

Note of course that in this case the weight is just a simplicial set. Assuming M is
complete, as is the case here, weighted limits always exist and can be computed as the
functor cotensor product of the diagram with the weight.

Example 2.19. By the Yoneda lemma, the limit of X : �op → M weighted by ∆n is just
the object Xn.

Example 2.20. By inspection, the limit of X : �op → M weighted by ∂∆n is the n-th
matching object MnX, in other words, the object of boundary data associated to a hypo-
thetical (but possibly non-existent) n-simplex in X.

Some general facts about weighted limits make this second example less surprising.
The first observation is that weighted limits are contravariant in the weight. For instance,
the matching map Xn → MnX is the map between weighted limits induced by the canonical
inclusion ∂∆n → ∆n. The second, and really the main thing, immediate from the defining
universal property that I didn’t state, is that weighted limits are cocontinuous in the weight.
The simplicial set ∂∆n is built by gluing a collection of (n−1)-simplices together along the
(n − 2)-simplices that serve as their pairwise intersections. So the weighted limits is then
the limit of the corresponding diagram of objects Xn−1 and Xn−2, which is exactly the usual
definition of the matching object. In practice, this means it’s easy to define “made-to-order”
weights whose weighted limits are whatever you want. The fact that the weight ∂∆n has
the “shape” of the thing you’re trying to describe in the weighted limit is no coinicidence.

Let me write limW X for these weighted limits. Other common notation (which I secretly
prefer) is {W, F}.

Definition 2.21. LetM be a model category. Say X ∈ M�op
is

• Reedy fibrant if lim∆n
X → lim∂∆n

X is a fibration for all n
• a Segal space if it is Reedy fibrant and if lim∆n

X → limΛn
k X is a trivial fibration

for all 0 < k < n, or equivalently, if lim∆n
X → lim∆1∨···∨∆1

X is a trivial fibration
for all n

17Another disclaimer: My memory of his proof is imperfect, so any errors in the following are mine.
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• a Rezk space if it is a Segal space and if limJ X → lim∆0
X is a trivial fibration.

Notes: The first definition is isomorphic to the standard one. The second reduces to the
standard one for M = sSet. Note these maps are automatically fibrations if X is Reedy
fibrant because of standard lifting arguments involving adjunctions and the fact that the
maps between weights are cofibrations. Here the ∆1∨· · ·∨∆1 is meant to be the spine of the
n-simplex, built by gluing together n 1-simplices along their source and target vertices. By
cocontinuity, the corresponding weighted limit of X is exactly the usual X1×X0 × · · ·×X0 X1.

Finally, for completeness, note by the example above that lim∆0
X = X0. In the context

of quasi-categories or Kan complexes, this limJ X is a good candidate for the thing called
Xequiv before; it’s the object of 1-simplices that are equivalences (isomorphisms). Since we
already know that this map is a fibration, by the 2-of-3 property we could deduce that it’s
a weak equivalence iff this is true of the monomorphism lim∆0

X → limJ X, which is how
the completeness condition (or univalence axiom) is usually stated.

The reason we’ve stated this in this form is that our goal is to prove the following
theorem:

Theorem 2.22 (Verity). IfM is combinatorial and left proper, then the left Bousfield lo-
calization of the Reedy model structure on M�op

at the pushout products of generating
cofibrations inM with the generating trivial cofibrations in sSet gives what we might call
the model structure for Rezk objects. These are exactly the fibrant objects. The result
is a tensored, cotensored, and enriched simplicial category that is enriched as a model
category over Joyal’s model structure for quasi-categories.

Let’s call the axioms analogous to “SM7” with respect to the Joyal model structure
“JM7,” where we number them so that the only difference is between SM7(iii) and JM7(iii).
For any model category the standard simplicial tensor, cotensor, and enrichment onM�op

satisfies the common 2/3rds of SM7 and JM7 [Dug01, 4.4-5]. When we localize we change
the trivial cofibrations inM�op

so we have to re-prove SM7(ii), but we have the following
simplification:

Lemma 2.23. Let K be a tensored, cotensored, and simplicially enriched and a model
category.

(i) Given JM7(i), if cotensoring with any simplicial set preserves fibrations between
fibrant objects then JM7(ii) holds.

(ii) If K is left proper, given JM7(i) and JM7(ii), then if for any trivial cofibration
K → L in Joyal’s model structure on simplicial sets and any fibrant object Z ∈ K
the map ZL → ZK is a weak equivalence, then JM7(iii) holds.

Proof. The proofs of [Dug01, 3.2] for SM7 apply mutatis-mutandis to JM7. �

We use some observations of Hirschhorn, which can be found somewhere in his book.
Firstly, ifM is left proper, then so is the Reedy model structure onM�op

so we can apply
Lemma 2.23. If M is combinatorial, then the Reedy model structure on M�op

is again
so we can localize. By another observation of Hirschhorn, any (Reedy) fibration in the
original model structure between fibrant objects in the localized model structure is still a
fibration. So to recheck JM7(ii), by Lemma 2.23, we need only check that cotensoring with
any simplicial set preserves the new fibrant objects (preservation of the old fibrations being
obvious): This follows because taking products with simplicial sets preserve Joyal trivial
cofibrations, the Joyal model structure being monoidal with all objects cofibrant. Then
JM7(iii) will follow immediately by construction of the localization and Lemma 2.23.
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It remains to show that the fibrant objects in the localized model structure are exactly
the Rezk objects. It’s clear that fibrant objects are complete Segal objects so it remains to
show the converse. This is a bit subtle because we have to relate the two variable adjunction
define weighted limits to the simplicial model structure but it can be done. The point is,
by Reedy fibrancy, the desired lifting thing in simplicial sets is an isofibration between
fibrant objects so lifting against an arbitrary trivial cofibration reduces to lifting against the
specific ones mentioned above.

Remark. Rezk’s model structure for complete Segal spaces (which we’ve chosen to call
Rezk spaces) starts with the Quillen’s simplicial model structure on sSet and then does the
localization of Theorem 2.22 — but using a different tensor-cotensor-enrichment structure
for bisimplicial sets. The difference between the tensors is that both are defined by restric-
tion the cartesian product to some embedding of sSet into sSet�

op
but in one the category

of simplicial sets is embedded as constant simplicial objects (Rezk) and in the other as
discrete simplicial objects (Verity). If I am understanding this correctly, the conclusion is
that the model structure on bisimplicial sets for Rezk objects is enriched in one direction
over Quillen’s model structure and in the other direction of Joyal’s model structure.

Basic category theory of quasi-categories. I should say something about how to do cat-
egory theory with quasi-categories. Here I’m going to reflect my own personal bias and
present things somewhat non-traditionally. This approach is joint work with Verity. I hope
our papers will appear soon. All of our definitions of adjunctions, limits, and colimits and
so on are the same as those of Joyal/Lurie but we think our approach makes it easier to
generalize the proofs from standard category theory to the quasi-categorical context.

If I had to say something general about our strategy it would be that we come as far
as possible through enriched category theory, which has the advantage of being already
developed and not that hard to use. The philosophy of category theory is that important
definitions can be encoded by conditions on maps, i.e., via universal properties, i.e., repre-
sentably. So now you just have to write these definitions only referring to the hom-spaces
(here) between two fixed objects and you’ve proven a theorem in enriched category theory.

So basically what we do is construct preferred models of things as weighted limits in
simplicial sets. There’s a general result, quite easy to prove, that says if the weights have a
certain form (projectively cofibrant; i.e., built cellularly from representables) then if your
diagram is of quasi-categories then the resulting weighted limit is again a quasi-category.
Then we translate these simplicially enriched universal properties into (weak) 2-categorical
universal properties and do the usual formal category theory.

This is a big story. I guess what I want to do now is tell a part of it I haven’t yet
talked about locally, which is to explain how to get the spaces to define universal properties
representably and tell you some things that are true about them.

The definitions of adjunctions and limits and colimits make use of notion of a slice

category so let’s start by introducing the quasi-categorical analog. Given B
f
−→ A

g
←− C

form
g ↓ f

��

//
y

A∆1

��
B ×C

f×g
// A × A

It’s a quasi-category with projections C
e0
←− g ↓ f

e1
−→ B for evaluation at one or other end of

the path. Furthermore, there’s a canonical representative natural transformation ge0 ⇒ f e1
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which I want to represent like this:

g ↓ f

e1

��

e0 //

⇓α

C

g

��
B

f
// A

When I draw it in this way I’m actually thinking about just the homotopy class of the path
in the homotopy category of the quasi-category Ag↓ f . These things are exactly 2-cells in
the (strict) 2-category of quasi-categories which is obtained by taking homotopy classes
of natural transformations and then forgetting all the higher dimensional cells in the hom-
spaces between quasi-categories. It turns out this is a good place to make these definitions.

The point is that these comma quasi-categories are weak comma objects, meaning they
satisfy a weak universal property. Given any simplicial set X and 2-cell

X

d1

��

d0 //

⇓β

C

g

��
B

f
// A

there exists some X → g ↓ f so that β factors along this map through α. Now these vertices
in g ↓ f X aren’t unique but any two such are isomorphic (i.e., there’s an isomorphism
between them).

Note that this weak universal property is enough to determine the quasi-category g ↓ f
up to equivalence. In the special case of this construction that will be relevant to the
construction of limits and colimits, about more which in a moment, those of you who are
more familiar with Lurie’s “slicey” or “decalagey” description will be happy to know that
those quasi-categories are equivalent to this one, which is the “fat slice” in that case and so
satisfy the same universal property. But for definiteness, let us stick with this.

When g or f is an identity, we like to replace it with the name of the object. So for
instance, given f : B � A : u we could form f ↓ A and B ↓ u. Again these come with
isofibrations to A × B.

Definition 2.24. f a u is an adjunction of quasi-categories if and only if there is an
equivalence f ↓ A � B ↓ u over A × B.

Note, because the pullbacks defining these quasi-categories are homotopy pullbacks,
we can pull back this equivalence over vertices and get an equivalence HomA( f b, a) '
HomB(b, ua) between mapping spaces for any a ∈ A and b ∈ B.

Note also the right Quillen functor (−)X preserves everything we’re talking about so we
can see that adjunctions induce adjunctions between diagram categories. The same is true
for precomposition though I’d prove this in a different way.

Using the equivalence and the universal property, the identity 2-cell at u can be used to
define the counit, and the identity at f gives the unit, which in turn induce (possibly new)
equivalences between the slice quasi-categories. There’s a little bit of work here, but the
point is we can do it all at once in more generality than I’ve just described the result.

Example 2.25. Take A = ∆0 so that f is the unique map and write t for u. What this says it
that we have an equivalence A ↓ t � A over A. This A ↓ t, by essentially the same geometry
mentioned above but with the domain freed up is equivalent to A/t whose n-simplices are
arbitrary n+1-simplices with last vertex t. Now the 2-of-3 property says that the projection
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A/t → A is a trivial fibration which says that it lifts against any sphere inclusion which says
any sphere (bumping up dimensions) in A with last vertex t has a filler. This is to say that
t ∈ A is a terminal object. So we’ve shown that terminal objects are characterized by
adjunction, just like in general category theory.

I’d like to say a bit about how general limits and colimits work. We begin with a general
definition.

Definition 2.26. In a 2-category, an absolute right lifting diagram consists of the data

(2.27)

⇓λ

C

g

��
B

f
//

`

??�������
A

with the following universal property: given any 2-cell χ there exists a unique factorization
as displayed below.

X

b
��

c //

⇓χ

C

g

��
B

f
// A

=

X

b
��

c //
∃!⇓

⇓λ

C

g

��
B

�̀�

??�����

f
// A

Example 2.28. The counit of an adjunction f a u defines an absolute right lifting diagram

⇓ε

B

f
��

A

u
??��������

idA

// A

and, conversely, this data defines an adjunction.

Interpreting (2.27) in qCat2 permits us to form comma objects C ↓ ` and g ↓ f with
canonical cones as displayed.

C ↓ `

d1

��

d0 //
⇓γ

C g ↓ f

e1

��

e0 //

⇓α

C

g

��
=

g ↓ f

e1

��

e0 //
∃!⇓

⇓λ

C

g

��
B

`

==zzzzzzzzz
B

f
// A B

z̀zz

==zzzzz

f
// A

Pasting the canonical cone under C ↓ ` onto λ defines a map C ↓ ` → g ↓ f . The universal
property of the absolute right lifting diagram applied to α defines a 2-cell under g ↓ f and
over `, displayed on the right above, which induces a map g ↓ f → C ↓ `.

The following proposition makes two assertions. Firstly, the universal property of the
absolute right lifting (`, λ) implies these maps are equivalences. The second assertion is
that if the map C ↓ ` → g ↓ f , definable without ascribing any universal property to λ, is
an equivalence, then (`, λ) defines an absolute right lifting diagram.

Theorem 2.29. The data of (2.27) defines an absolute right lifting in qCat2 if and only if
the induced maps form an equivalence C ↓ ` ' g ↓ f . Conversely, any equivalence induces
2-cells as displayed above which can be used to define maps between comma objects which
are again an equivalence.
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Definition 2.30. A limit of a diagram d : X → A is an absolute right lifting diagram

(2.31)

⇓λ

A

const
��

∆0

`

>>||||||||

d
// AX

and conversely, or equivalently, it’s an equivalence A ↓ ` � const ↓ d over A.

Note the thing on the left-hand side has an obvious terminal object, namely the identity
at `, which passes across to a terminal object in the quasi-category of cones, which is the
Lurie definition (in the equivalent “slicey” version).

A key advantage of this 2-categorical definition of (co)limits in any quasi-category is
that it permits us to use standard 2-categorical arguments to give easy proofs of the ex-
pected categorical theorems.

Proposition 2.32. Right adjoints preserve limits.

Let’s briefly recall the classical categorical proof. Given a diagram X
d
−→ A and a right

adjoint A
u
−→ B to some functor f , a cone with summit b over ud transposes to a cone

with summit f u over d, which factors uniquely through the limit cone. This factorization
transpose back across the adjunction to show that the image of the limit cone under u
defines a limit over ud.

Proof. Given an absolute right lifting diagram (2.31), an adjunction of quasi-categories
f a u, and hence an adjunction f X a uX , we must show that

⇓λ

A

c
��

u // B

c
��

∆0

`

>>||||||||

d
// AX

uX
// BX

is an absolute right lifting diagram. Given a cone

X

��

b //

⇓χ

B

��
∆0

d
// AX

uX
// BX

we first transpose across the adjunction, by composing with f and the counit.

X

��

b //

⇓χ

B

��

f // A

��
∆0

d
// AX

⇓εX

uX
// BX f X

// AX

=

X
∃!⇓ζ

⇓λ��

b // B
f // A

��
∆0

`

77nnnnnnnnnnnnnn
d

// AX
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Applying the universal property of the limit cone λ produces a factorization ζ, which may
then be transposed back across the adjunction by composing with u and the counit.

X
∃!⇓ζ

⇓λ��

b // B
⇓η

f // A

��

u
// B

��
∆0

`

77nnnnnnnnnnnnnn
d

// AX
uX
// BX

=

X

��

b //

⇓χ

B

��

⇓η

f
// A

��

u
// B

��
∆0

d
// AX

⇓εX

uX
// BX f X

// AX
uX
// BX

=

X

��

b //

⇓χ

B

��

B

��
∆0

d
// AX

⇓εX

uX
// BX f X //

⇓ηX

AX
uX
// BX

=

X

��

b //

⇓χ

B

��
∆0

d
// AX

uX
// BX

Here the second equality is immediate from the definition of ηX and the third is by the
triangle identity defining the adjunction f X a uX . The pasted composite of ζ and η is the
desired factorization of χ through λ. The proof that this factorization is unique is left to the
reader. It again parallels the classical argument: the essential point is that the transposes
are unique. �

Fibrational perspective. To the best of my understand, the real innovation of the Lurie
approach to quasi-category theory, extending the Joyal one, is his use of what might be
called the “fibrational perspective,” which involves a quasi-categorical generalization of
the so-called “Grothendieck construction.” This is a big story that I hope someone will talk
about in more detail. Here let me just pave the way with some very elementary observations
about the use of fibrations in model category theory and in quasi-category theory.

The following result implies that right derived functors of right Quillen functors can be
constructed by precomposing with fibrant replacement.

Lemma 2.33 (Ken Brown’s lemma). Any functor that preserves trivial fibrations between
fibrant objects preserves weak equivalences between fibrant objects.

Proof. In any model category, given any map f : X → Y between fibrant objects, it is
possible to construct a fibrant object Z, fibrations

Z

p�����������

q �� ��???????

X

j
44

f
// Y

and a section j to p that factors f as q j. When f is a weak equivalence, these maps are all
weak equivalences, and the conclusion follows from the hypothesis by a straightforward
application of the 2-of-3 property. �

Another way to think about fibrations is that they allow one to “avoid making choices.”
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Construction 2.34 (composition in a quasi-category). We have a pushout in simplicial
sets:18

∆0

p

d0

��

d1
// ∆1

��
∆1 // Λ2

1

Homing into a quasi-category X, by adjunction, turns this pushout into a pullback

XΛ2
1

x������� �� ��???

X∆1

s
�������� t

�� ��???? X∆1

s
�������� t

�� ��????

X X X

all of whose maps are fibrations. We’ve relabeled the maps induced by d1, d0 : [0] ⇒ [1]
as the source and target projections respectively. We think of XΛ2

1 as the quasi-category of
composable arrows in X and the composite fibrations displayed as the various projections
to the source, middle object, target, first factor, and last factor.

Now the combinatorics discussed above implies that the Segal map X∆2 ∼ // // XΛ2
1 is a

trivial fibration. In particular, there exists a non-canonically defined section which can be
used to construct a composition map XΛ2

1
◦
−→ X∆1

compatible with the source and target
projections.

X∆2

∼}}}}{{{{{{{{
d1

!! !!CCCCCCCC

XΛ2
1

44

�
{

n

s
����

t (( ((QQQQQQQQQQQQQQQQ X∆1

mmmmmmm

svvvvmmmmmmmm t
����

X X
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3. Models of (∞, 1)-categories: a bestiary (Clark Barwick)

The unification problem for higher homotopy theory is to build something so that

0-cells = homotopy theories of (∞, 1)-categories
1-cells = equivalences of such
2-cells = natural transformations
3-cells = invertible modifications
4-cells = invertible 4-morphisms

18This example shows that quasi-categories are not closed under colimits.
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and so on. Here is the state of the art:

(3.1) CatT // CatS

��

w
w

w
w

w
___ RelCat

��

��88888888888888888

%%JJJJJJJJJJ

CatA∞

G
G

G
G

G
CSS

�� $$JJJJJJJJJJ sSet+

��
Seg f Segc

oo // sSetJoyaloo

ddJJJJJJJJJJ

Solid arrows are right Quillen equivalences; dashed arrows are equivalences of homotopy
theories. A consequence of the result of Toën, generalized by the Barwick–Schommer-
Pries theorem, is there are (essentially) no 2-cells in this diagram.

In the above we’ve written CatT for topologically enriched categories and CatS for
simplicially enriched categories. Both19 have appropriate model structures.

Theorem 3.2 (Bergner after Dwyer, Kan, Hirschhorn). CatS admits a model structure
in which the weak equivalences are the DK-equivalences and the fibrant objects are the
locally Kan simplical categories.

RelCat is the category of relative categories, i.e., categories C equipped with a subcat-
egory wC ⊂ C of weak equivalences.

Theorem 3.3 (Kan). There is a model structure on RelCat.

Let us describe a weak equivalence (C,wC) → (D,wD). There is a simplicial cate-
gory LH(C,wC) attached to a relative category with the same objects and with hom-spaces
MapLHC(x, y) defined to be some “hammock localization” colimit. A map of relative cat-
egories is a weak equivalence just when the associated simplicial functor, after applying
LH , is a DK-equivalence.

These three, i.e., the top line of (3.1), are all strict models of (∞, 1)-categories. So why
weaken? For one thing, none of these have a suitable internal hom; more precisely, none of
these model structures are cartesian. For another thing, Mother Nature generates homotopy
coherent diagrams, not necessarily strict diagrams (e.g. to understand delooping machines
a la Jon Beck, Peter May, and Graeme Segal). Among the first to study this systematically
were Boardman and Vogt.

Here sSetJoyal is meant to denote the Joyal model structure on simplicial sets; CSS is
the category of complete Segal spaces, with a model structure due to Rezk. There is a
nerve functor N : RelCat→ CSS (that is not the right Quillen functor of (3.1)) given by a
doctored version of a construction of Rezk. Define N(C,wC) : �op → sSet by

[m] 7→ NwC[m],

the “classifying nerve.” The right-hand side is meant to be the ordinary nerve of the sub-
category of pointwise weak equivalences between sequences of m composable arrows in
C.

For X ∈ CSS, we think of X0 as being the moduli space of objects and X1 as being the
moduli space of morphisms. For X = N(C,wC) we have X0 = NwC and X1 = NwArrC.
Usually N(C,wC) is not a fibrant object in CSS. However, by a lemma of Rezk N(C, isoC)
is fibrant. (The hard part of the proof is Reedy fibrancy.)

19With point-set topological subtleties in the former case.
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Proposition 3.4 (Barwick-Kan). If (C,wC) is a full sub relative category of a model cate-
gory, then a Reedy fibrant replacement of Ex2N(C,wC) is a complete Segal space.

This Ex2N is the right Quillen equivalence from relative categories to complete Segal
spaces.20

Aside. This Ex2 has a close relationship with the Thomason model structure on Cat, which
comes with a right Quillen equivalence Ex2N : Cat→ sSet.

Theorem 3.5 (Joyal-Tierney). There are two Quillen equivalences connecting complete
Segal spaces and quasi-categories. One of them whose right Quillen functor is CSS →
sSetJoyal defined by X 7→ ([m] 7→ Hom(∆0, Xm)).

The proof has to do with two different Reedy model structures on bisimplicial sets, one
where the enrichment is in the Quillen model structure and another where the enrichment
is in the Joyal model structure.

We also have Ex2N : RelCat → sSet+ where, using sd2 a Ex2, we have to explain how
to mark the edges in sd2∆n so as to define n-simplices to be sd2∆n → (NC,wC).

1

��55555555

∼

��								

��
01

##HHHH 12
∼{{vvvv

012

0

DD								
//

55kkkkkkkkkk 02
∼
OO

2

∼

ZZ55555555

∼
oo

∼
iiSSSSSSSSSS

Note in this sd2 the two subdivisions are not the same. For the second one, you turn
around all the arrows. The point is that in the picture we’ve drawn, the outer triangle is
equivalent to the triangle spanned by 0, 01, 012. When we apply sd2 all of the edges of this
non-inverted triangle are “pushed inside” the picture.

Seg denotes the category of Segal categories. An early account, with a lot of ideas that
are picked up later but developed “out of whole cloth,” is Simpson’s “Flexible sheaves.”

Objects in the model category are simplicial spaces X : �op → sSet so that X0 is discrete.

Theorem 3.6 (Dwyer, Kan, Stover, Tamsamani, Simpson). This category has a model
structure Segc whose cofibrations are monomorphisms, weak equivalences are DK-equiv-
alences (in a suitable sense).

The fibrant objects are the Segal categories (simplicial spaces with X0 discrete and sat-
isfying the Segal condition) that are additionally Reedy fibrant. (This last observation,
precisely characterizing the fibrant objects, is due to Bergner.)

Why does this model categories weakly enriched in spaces? Given a, b ∈ X0 define

X(a, b)

��

//
y

X1

��
{(a, b)} // X0 × X0

20Note, we don’t know what the fibrant objects are on RelCat. But the ones that arise as subcategories of
model categories are well behaved: More precisely what you want is the 2-of-6 property and the three arrow
calculus.
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to be the mapping spaces. Given a0, . . . , an ∈ X0 similarly define

X(a0, . . . , an)

��

//
y

Xn

��
{(a0, . . . , an)} // Xn+1

0

The zig-zag

X1 ×X0 X1
∼
←− X2 → X1

pulls back to define

X(a, b) × X(b, c)
∼
←− X(a, b, c)→ X(a, c).

Using this we can define a homotopy category of X to be the category with objects X0 and
hom-sets π0X(a, b). Now the DK-equivalences for Segal categories are defined in exactly
the way you would expect.

There is a variant model structure Seg f due to Bergner designed to facilitate the com-
parison of (3.1). They have the same weak equivalences; the analogy is like between the
projective and injective model structure.

sSet+ is the category of marked simplicial sets (X,E) where X0 ⊂ E ⊂ X1 and maps
have to preserve the marked edges.

Theorem 3.7 (Street, Verity?). sSet+ admits a simplicial model structure whose cofi-
brations are monomorphisms and whose fibrant objects are (X,E) where X is as quasi-
category and E is the set of isomorphisms. Equivalences between fibrant objects are equiv-
alences in the Joyal model structure.

Remark. This isn’t a complete list. For instance there are things you can do with the
Thomason model structure on Cat.

Naturally arising examples.
• Model categories most naturally sit as relative categories.
• Cobordism categories (a la Galatius, Madsen), after a Reedy fibrant replacement,

are complete Segal spaces.
• Homotopy coherent diagrams are quasi-categories (the original Boardman-Vogt

example).
• Quillen’s Q-construction is naturally a quasi-category (by work of Clark). Given

an exact category A, Quillen’s Q-construction lets you build QA with the same
objects and where maps are equivalence classes of spans, where the one map is
an admissible epimorphism and the other is an admissible monomorphism. But
if you don’t worry about whether composition is strictly defined, you can cut the
“equivalence classes.” Define a simplicial set instead and it will turn out to be a
quasi-category. Now this thing ends up being the nerve of Quillen’s QA, but this
perspective allows you to generalize (dropping the conditions on the spans).

• Spaces give you A∞-categories (its path space).

Closing remarks. As a final remark, the commutativity of the diagram (3.1), particularly
using the dotted arrows, is not obvious. The result of Toën will be that these are all “orien-
tation preserving” functors, commuting up to natural equivalence.

28/2
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4. Toën’s axiomatization of the homotopy theory of (∞, 1)-categories (Gijs Heuts)

Goal 4.1. To find axioms a model categoryM should satisfy in order to be a homotopy
theory of (∞, 1)-categories that is

• satisfied by complete Segal spaces
• and so that the axioms characterizeM up to equivalence.

A secondary goal should be to compute the automorphism space of such anM.

Firstly, what about∞-groupoids?

Fact 4.2. The homotopy theory of∞-groupoids is freely generated under homotopy colim-
its by ∗

Aside. A generators-and-relations approach to (∞, 1)-category theory naturally leads to
complete Segal spaces. Starting with �, the free homotopy theory under homotopy colimits
gives sSet�

op
. What sort of relations should be imposed? Two relations

∆1 ∨ · · · ∨ ∆1 ∼
−→ ∆n J

∼
−→ ∆0.

This gives you complete Segal spaces (once you have Reedy fibrancy).

A final warm-up: How to characterize Set?

Giraud’s axioms. What is a topos? It is a category C satisfying four axioms.
(i) C is (locally) presentable.

(ii) “Colimits are universal,” i.e., colimits commute with pullbacks.
(iii) Coproducts are disjoint:

∅

��

//
y

Y

��
X // X

∐
Y

(iv) Equivalence relations are effective.
We should explain axiom (iv). An equivalence relation on X is R� X × X so that, for

any Y , C(Y,R) → C(Y, X) × C(Y, X) is an equivalence relation on the set C(Y, X). Given an
equivalence relation, form the coequalizer

R // // X // X/R

The equivalence relation is effective if

R

��

//
y

X

��
X // X/R

is a pullback.
On Set, which is of course a topos, all equivalence relations are effective.

Example 4.3. An open cover
∐

i Ui → X gives an effective equivalence relation∐
I, j Ui, j

// //
∐

i Ui.

As this example suggests, the last axiom is crucial for the link to geometry.
Adding a fifth axiom:
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(v) ∅ → ∗ is not an isomorphisms and ∗ is a generator (meaning C(∗, X)→ C(∗,Y) is
an isomorphism implies that X → Y is an isomorphism).

then the only C satisfying (i)-(v) is Set.

Model topoi/∞-topoi. Work on these ideals in the homotopical context has been done by
Rezk, Toën, Vezzosi, Lurie and others.

Definition 4.4. A quasi-category (or model category) C is an∞-topos if it satisfies
(i) C is presentable (combinatorial).

(ii) Homotopy colimits are universal.
(iii) Homotopy coproducts are disjoint.
(iv) Segal groupoid objects are effective.

Definition 4.5. A Segal groupoid object is a simplicial object X in C satisfying
(i) the Segal condition:

Xn
∼
−→ X1 ×

h
X0
· · · ×h

X0
X1

is a weak equivalence for all n ≥ 2.
(ii) groupoid axiom:

d0 × d1 : X2
∼
−→ X1 ×X0 X1

is a weak equivalence. (This implies that “every morphism has a right inverse.”)

When we write |X| we mean a homotopy invariant geometric realization. (So if X is not
Reedy fibrant, first perform a Reedy fibrant replacement.)

Definition 4.6. A Segal groupoid X is effective if

X1

��

//
y

X0

��
X0 // |X|

is a homotopy pullback. Equivalently, the natural map from X to its Čech nerve

X
∼
−→ Ň(X0 → |X|)

should be an equivalence, where

Ň(X0 → |X|)n := X0 ×|X| · · · ×|X| X0,

where X0 appears in the iterated homotopy pullback n + 1 times.

Example 4.7. G a group in simplicial sets. Then you can form BGn = Gn and get |BG| =
BG. This Segal groupoid object is effective

G

��

//
y

∗

��
∗ // BG

i.e., ΩBG ' G.

As before, we can add a fifth axiom:
(v) ∅ → ∗ is not an equivalence and ∗ is a generator, i.e., f : X → Y is and equivalence

if and only if MapC(∗, X)→ MapC(∗,Y) is a homotopy equivalence.



THURSDAY SEMINAR: HIGHER CATEGORY THEORY 31

Claim 4.8. Any C satisfying (i)-(v) is equivalent to the category of spaces.

Our goal is now to try and generalize these axioms to get axioms that uniquely charac-
terize the category of (∞, 1)-categories.

Toward Toën’s axioms. Note some of this can be done a bit more smoothly with ∞-
categories in place of model categories, but we’ll follow Toën’s approach.

Definition 4.9. A model categoryM is weakly cartesian closed if

hocolimi∈I(xi ×
h y) ∼ // (hocolimi∈I xi) ×h y

Proposition 4.10 (Dugger). IfM is combinatorial and weakly cartesian closed, thenM
is Quillen equivalent to a combinatorial, simplicial, cartesian closed model category in
which all objects are cofibrant.

Henceforth, we’ll assume we’re in this good setting (combinatorial, simplicial, cartesian
closed) because it makes it easier to phrase the axioms. But it’s important not to restrict to
this setting only because interesting model categories (e.g. Bergner’s simplicial categories)
frequently fail to satisfy these hypotheses.

Definition 4.11. A weak cocategory is a cosimplicial object C : �→M so that

C1
∐
C0

C1
∐
C0

· · ·
∐
C0

C1 ∼
−→ Cn.

With such a thing we can define geometric realization, which we’ll call C-geometric
realization. Given X ∈ M�op

, define

|X|C :=
∫ �op

Cn × Xn,

where we should either assume that C is Reedy cofibrant or take the homotopy invariant
coend (which amounts to taking a Reedy cofibrant replacement of C). This construction
satisfies a universal property

MapM(|X|C ,Y) ' MapM�op (X,RHomM(C,Y)).

Definition 4.12. C is an interval if

• C(0)
∼
−→ ∗

• |J|C
∼
−→ ∗.

To make sense of this, note we have a natural functor Set →M given by E 7→
∐

E ∗.
21

This gives a functor sSet → M�op
, which is how we understand J (the nerve of the free-

standing isomorphism) as a simplicial object inM.
We can also define the Čech nerve: Given p : X → Y , define the homotopy pullback

X ×C
Y X

��

//
y

RHom(C(1),Y)

��
X × X // Y × Y

21You might want some cofibrancy hypotheses on ∗ in general, but here we’re cartesian closed so everything’s
fine.
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This would be the ordinary path space if we had used an ordinary interval. We then define
ŇC(p)n := X ×C

Y · · · ×
C
Y X. We have homotopy pullbacks

ŇC(p)n

��

//
y

RHom(C(n),Y)

��
RHom(C(0), X)n+1 // Y × RHom(C(0),Y)n+1

Note if you have a simplicial object X, there is a natural map

X → ŇC(X0 → |X|C)

analogous to the situation before.

Definition 4.13. A simplicial object X ∈ M�op
is a weak category if

Xn
∼
−→ X1 ×

h
X0
· · · ×h

X0
X1.

An object X ∈ M is 0-local if MapM(∗, X)
∼
−→ MapM(C(1), X).

Morally the 0-local objects are the ∞-groupoids. At the moment this seems a bit weird
because the notion of category was defined for simplicial objects and the definition of local
was defined for objects, but we’ll see in a moment how this makes sense.

Axioms 4.14. Now we state the axioms, given a model categoryM and C : �→M, which
in practice is already given.22

(A1) For every fibrant, 0-local object X ∈ M,M/X is combinatorial, weakly Cartesian
closed. (“Hocolims are universal”—but only over 0-local objects.)

(A2) Given {Xi}i∈I , X =
∐h

i Xi, then Xi ×X X j = ∅ if i , j. Also, for any Z,
∐

i∈I(Z ×X

Xi) ' Z.
(A3) C is an interval.
(A4) For X ∈ M�op

a weak category so that X0 and X1 are 0-local, then

X
∼
−→ ŇC(X0 → |X|C).

(The idea is that the interval C is somehow keeping track of direction, which it
wasn’t for groupoids.)

(A5) For X as in (A4) and a map ∗ → |X|C , then

|X ×RHomM (C, |X|C) ∗ |
∼
−→ ∗

where the ∗ on the left-hand side is a constant simplicial object.
(A6) A map f : X → Y is a weak equivalence if and only if MapM(∗, X)

∼
−→ MapM(∗,Y)

and MapM(C(1), X)
∼
−→ MapM(C(1),Y)

(A7) C is full and faithful, i.e.,

Hom�([n], [m])
∼
−→ MapM(C(n),C(m)).

(A1)-(A3) should be thought of as Giraud axioms (i)-(iii). (A4) and (A5) are analogs
of Giraud’s (iv). Axiom (A6) says that the point and the interval are generators. (A7) is a
non-degeneracy condition.

Claim 4.15. Complete Segal spaces satisfies (A1)-(A7).

22But note when you compute the moduli space, this cosimplicial object C is not treated as part of the
structure.
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Think of bisimplicial sets as simplicial spaces, then the first coordinate is the diagram
coordinate and the second coordinate is the space coordinate.

Define C(n) to be the copy of ∆n ∈ sSet�
op

so that Hom(C(n), X) = Xn. So C(n)
is the image of ∆n under the “discrete space functor” Set�

op
→ sSet�

op
. 0-local means

homotopically constant in the first variable (in the simplicial direction, aka the categorical
direction, aka the direction of the Joyal model structure). Some of the axioms become
tautological and others line up with the key results of Rezk’s paper.

Uniqueness. More interesting is the fact that these axioms characterize a model category
uniquely, and this is of course the reason for writing them down.

Theorem 4.16 (Toën). If (M,C) satisfies (A1)-(A7), thenM is Quillen equivalent to com-
plete Segal spaces.23

Let’s sketch the proof. We can simplify, assuming thatM is combinatorial, simplicial,
and that C is Reedy cofibrant. This allows us to build an adjunction between M and
simplicial spaces. Using C, there is an adjunction

sSet�
op

L //
⊥ M
S
oo

defined by S (X)n = MapM(C(n), X) and L(X) =
∫ �op

C(n)⊗Xn. When C is Reedy cofibrant,
then L a S is a Quillen adjunction with respect to the Reedy model structure on bisimplicial
sets. We have L(J) ' |J|C and, writing F for the cosimplicial object introduced above for
simplicial spaces (as is Rezk’s notation),

L(F(1)
∐
F(0)

· · ·
∐
F(0)

F(1)→ F(n))

is equivalent to
C(1)

∐
C(0)

· · ·
∐
C(0

C(1)
∼
−→ C(0)

So by the universal property of Bousfield localization we get a Quillen adjunction between
complete Segal spaces andM.

Note that RS is conservative, i.e., reflects weak equivalences, by (A6). Now we use a
standard trick: if RS is conservative, and the unit 1

∼
−→ RS ◦ L is a weak equivalence, then

L a S is a Quillen equivalence.
So we want to prove 1

∼
−→ RS ◦ L.

Proposition 4.17. The left Bousfield localization ofM with respect to C(1)→ ∗ is a model
topos, in fact equivalent to the topos of spaces.

This follows from two lemmas.

Lemma 4.18. If X ∈ M�op
is a Segal groupoid, then |X|C ' |X|.

Lemma 4.19. For every Segal groupoid X so that X0 and X1 are 0-local, then |X|C is
0-local.

The proof of this second lemma uses the axiom (A5).

Sketch proof of proposition. (A1), (A2) ⇒ Giraud’s (i)-(iii). (A4), (A5) ⇒ Giraud’s (iv).
Finally, (A6), (A7)⇒ ∅ , ∗ and ∗ generates. �

23The equivalence will turn out to be compatible with C by construction.
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Using the proposition, we get an equivalence

Ho(CSS)0−local ' Ho(M)0−local.

Cleverly exploiting (A4) and this equivalence, you can “build up” every complete Segal
space and check that

X
∼
−→ RS ◦ L(X).

What is Aut(CSS)? From now on, because it’s easier, write CSS for the associated quasi-
category (the homotopy coherent nerve of the simplicial category on the fibrant-cofibrant
objects in the model category). Define Aut(CSS) ↪→ ι(CSSCSS) to be the subspace of
self-equivalences in the maximal sub Kan complex.

Aut(�/CSS) //

��

y
Aut(CSS)

��
∗

C
// CSS�

Proposition 4.20. Aut(�/CSS) ' ∗

So if we fix a cosimplicial object, we have no automorphisms.

Proposition 4.21. Every automorphism of CSS preserves �.

Proof. An automorphism F necessarily preserves the terminal object. F also preserves the
gaunt categories (categories in which every morphism is an identity), precisely because
these correspond to 0-truncated objects. There is a characterization of these that is invariant
under automorphism. It follows then that ∆1 (the discrete simplicial space) is preserved:
∆1 is characterized (for instance) by the existence of two distinct maps ∗ ⇒ ∆1, the fact
that ∆1 , ∗

∐
∗, and the only sub objects of ∆1 are ∅, ∗, ∗

∐
∗, ∆1. It follows from

[n] ' [1]
∐

[0] · · ·
∐

[0][1] that F fixes �. �

Proposition 4.22. Aut(CSS) ' Z/2.

Proof. There is only one automorphism of �: it suffices to show that there is only one
automorphism of

[0]
//
// [1]oo

Furthermore Aut(�) � Z/2. Now we have

∗ ' Aut(�/CSS)→ Aut(CSS)→ Aut(�) = Z/2

that is surjective on π0. This implies that Aut(CSS) ' Aut(�). �

7/3

5. From n-fold Segal spaces to n-fold quasi-categories (Jeremy Hahn)

Before talking about (∞, n)-categories I’d better remind you about strict n-categories, at
least in the case n = 2.

Definition 5.1. A (strict) 2-category is a category enriched in categories.

There is a graphical calculus for working in such things (pasting diagrams).

Definition 5.2. A (strict) double category is a category internal to categories: a category
of objects X0, a category of arrows X1 then maps U : X0 → X1; T, S : X1 → X0; and
◦ : X1 ×X0 X1 → X1 satisfying axioms.
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Again, there is a graphical calculus. Arrows in X0 are vertical arrows. Objects in X1
are horizontal arrows. Morphisms in X1 are squares. You can compose squares (just like
you could compose 2-morphisms in a 2-category) in two directions, and there’s a middle
four interchange. This structure is symmetric; there’s no axiomatic difference between the
horizontal and vertical arrows.

Example 5.3. Every 2-category is a double category with no non-identity vertical arrows.

Example 5.4. Objects are model categories, horizontal morphisms are right Qullen arrows,
vertical arrows are left Quillen functors, and squares are arbitrary natural transformations
pointing down and to the left [Shu11].

Example 5.5. An object is a not-necessarily commutative ring. A horizontal arrow A→ B
is an (A, B)-bimodule, a vertical arrow is a ring homomorphism. Squares are bimodule
maps.

Example 5.6. There is a double category nCob where an object is an (n − 1)-manifold
without boundary, a horizontal morphism is a cobordism, and a vertical morphisms is a
diffeomorphism.

Definition 5.7. A strict n-category is a category object in category objects in . . . in cate-
gories satisfying a further “globularity condition.”

In the quasi-categorical context, this idea was first formalized by Barwick and it leads to
the notion of an n-fold Segal space. Here is the idea: Suppose one already has a homotopy
theory of n-fold homotopy theories M. An (n + 1)-fold homotopy theory is a simplicial
object X• ∈ Fun(�op,M) satisfying the Segal conditions

Xm = X1 ×
h
X0

X1 ×
h
X0
· · · ×h

X0
X1.

Starting withM the Kan complexes you get a Segal space. The completeness condition
can be seen as one part of a globularity condition. So this gives you a complete Segal
space. If we iterate this process you get a notion of an n-fold complete Segal space as a
model for an (∞, n)-category.

Let’s make this a bit more precisely. What category should an n-fold complete Segal
space live in? Kan complexes live in simplicial sets. Complete Segal spaces live in bisim-
plicial sets. So an n-fold complete Segal space is a contravariant functor whose domain
is �n and whose codomain is simplicial sets thought of with the Quillen model structure.
We’ll call objects of this category �×n-spaces. In Barwick’s PhD thesis, he constructs a
model structure on �n-spaces whose fibrant objects are complete n-fold Segal spaces.

Model structure for n-fold complete Segal spaces. You can read about this is Barwick’s
thesis, in Lurie’s Goodwillie paper, and also in [BSP12]. The starting point is the Reedy
model structure on �×n-spaces. The Barwick model structure is a left Bousfield localization
at three classes

• Segal�×n

• Glob�×n

• Comp�×n

The first localization gives you some sort of n-fold category. Localization at the second
two classes together is what enforces the globularity condition.

It turns out it actually suffices to localize at maps between discrete functors, i.e., we can
define all of these classes in �×n-Set.
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Definition 5.8. Define � : (�-Set)×(�×n−1-Set)→ �×n-Set, cocontinuous in each variable,
to be the external product of the representables

∆m1�∆m2,...,mn = ∆m1,...,mn .

Definition 5.9 (Segal maps). Segal� is the set of spine inclusions into ∆m for m ≥ 0. Then
Segal�×n = {Segal��∆m2,...,mn } ∪ {∆m1� Segal�×n−1 }.

Definition 5.10 (completeness maps). Comp� = {∗ → J}. Then Comp�×n = {Comp��∆0}∪

{∆m1� Comp�×n−1 }.

Definition 5.11 (globularity maps). Given m1, . . . ,mn define

m̂i =

0 if ∃ j < i s.t. m j = 0
mi otherwise.

Then Glob�×n = {∆m̂1,...,m̂n → ∆m1,...,mn }.

Set-based models of (∞, n)-categories. We’re going to define the notion of an n-fold
quasi-category as a �×n-set. The first step is to define the notion of inner horns. Quasi-
categories have lifts for the Segal maps (spine inclusions). This leads to the notion of an
inner horn. Note that the Segal maps introduced above are maps of �×n-sets so we could
start by asking if there’s a model structure whose fibrant objects are the things that lift
against this.

Definition 5.12. The class S of inner anodyne maps of �×n-sets
• consists of monomorphisms,
• is closed under pushouts and transfinite compositions,
• contains the n-fold Segal maps,
• is spider saturated or transsaturated.

Spider saturated means that given monomorphisms A → B → C with A → B and A → C
in S then B→ C is too.24

Now a question is whether there is some set T containing the n-fold Segal maps Segal�×n

that is large enough so that its weak saturation is the inner anodyne maps?

Definition 5.13. Define
∆−,−,··· ,− : (�-Set)×n → �×n-Set

to be cocontinuous in each variable so that

∆∆m1 ,...,∆mn
= ∆m1,...,mn .

Definition 5.14. Write �( f1, . . . , fn) for the Leibniz tensor with respect to ∆−,−,··· ,−. If the
fi : xi → yi are monomorphisms of simplicial sets, then

�( f1, . . . , fn) = ∆y1,x2,...,xn ∪ ∆x1,y2,x3,...,xn ∪ · · · ∪ ∆x1,...,xn−1,yn → ∆y1,...,yn .

Definition 5.15. A generalized inner horn inclusion is a map of the form

�(∂∆m1 → ∆m1 , · · · ,Λmk
i → ∆mk , · · · , ∂∆mn → ∆mn )

which we will denote by Λ
m1,...,mn
k,i where 1 ≤ k ≤ n and 0 < i < mk.

For example �(Λ2
1 → ∆2, ∂∆1 → ∆1) is the thing that looks like the inclusion of a

“trough” into a solid triangular prism.

24Joyal calls this the “right cancellation property.”
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Definition 5.16. An n-fold quasi-category is an n-fold simplicial set with lifts against the
generalized inner horn inclusions.

The inner anodyne maps satisfy certain stability properties. Given two monomorphisms
f1 : x1 → y1 and g : x2 → y2 in �×n-sets define the pushout product f ×̂g using the product
on �×n-Set.
Proposition 5.17.

• �(a1, . . . , an)×̂ � (b1, . . . , bn) = �(a1×̂b1, . . . , an×̂bn)
• cell(�(S 1, . . . , S n)) ⊃ �(cell(S 1), . . . , cell(S n))

(∞, n)-categories. You can reverse the direction of the Glob maps. Since we’re no longer
talking about Bousfield localization but instead we’re talking about lifting properties we
want to turn these around and define Glob�×n = {∆m1,...,mn → ∆m̂1,...,m̂n }. Lifting against this
says that there are no non-identity vertical arrows and other higher dimensional globularity
conditions.

Definition 5.18. An (∞, n)-category is an n-fold quasi-category with lifts against all the
maps in Glob�×n .

With respect to globular n-fold quasi-categories the lifting properties against the gener-
alized inner horn inclusions are related to whiskering.

Completeness. Our notion of (∞, n)-category includes Segal�×n and Glob�×n . What hap-
pened to Comp�×n ? Note for n = 1 one you have lifts against the Segal maps you’re already
done (have a quasi-category). You don’t need completeness (or globularity).

To explain what’s going on, how would you say that a parallel pair of arrows f , g : a⇒ b
are equivalent? There is a categorical equivalence consisting of 2-cells f ⇒ g and g⇒ f
together with some condition relating their composites to the identities. In a quasi-category,
there’s also a homotopical equivalence given by gluing a 2-simplex (with other edge
degenerate) in between f and g.

Does either sort of equivalence imply the other? Given a homotopical equivalence you
can use the identity 2-arrow on f to define the domain of one of these generalized inner
horn inclusions

b

a

f
77

g

HH

f
((

f

66⇓id b

id

OO

Because there is a filler in an (∞, 2)-category we see that a homotopical equivalence implies
a categorical equivalence.

But this implication isn’t reversible. Imagine the strict 2-category on the picture

(5.19) •
$$
::⇓⇑ •

where the 2-cells are inverses. The two 1-cells in the nerve of this thing will not be homo-
topically equivalent.

The intuition is that when the homotopical equivalences are the same as the categorical
equivalences then the (∞, n)-category in question is complete. Note that nerves of strict
n-categories are not complete (unless it’s a gaunt n-category, in which case there are no
categorical equivalences).

Remark. Something similar happens into complete Segal spaces. You need a nerve that
takes the isomorphisms into account. Otherwise you don’t get a complete Segal space.
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Special outer horns. Another way to think about completeness uses special outer horns.
In a quasi-category you can’t expect to find a lift

·
↪→

·

��>>>>
∼

·

@@���� // · ·

@@���� // ·

unless this first diagonal arrow is an isomorphism. We’ll make use of similar intuition in
higher dimensions.

Definition 5.20. A special outer horn is a map of the form

�(∂∆m1 → ∆m1 , . . . , ∂∆mk → ∆mk , ∗ → J, ∅ → ∗, · · · , ∅ → ∗)

There are more things that you want to call special outer horns but this is a minimal col-
lection so that if you’re an (∞, n)-category and you lift against these then you lift against
those things too. (∞, n)-categories that lift against all special outer horns are called com-
plete (∞, n)-categories.

Homotopy theory of (∞, n)-categories.

Remark. Note we haven’t yet presented a homotopy theory of (∞, n)-categories because
we haven’t discussed what it means for two such to be equivalence.

Theorem 5.21 (Hahn). There is a cartesian closed model structure on globular �×n-sets
in which the cofibrations are the monomorphisms; fibrant objects are complete, globu-
lar, n-fold quasi-categories; an weak equivalences between (∞, n)-categories are the fully
faithful and essentially surjective functors.

Cartesian closure says that the internal hom Hom(X,Y) is the right thing (for instance,
invariant under equivalence in both variables) so long as the target Y is complete. For
intuition, there is some map to (5.19) from its completion that should be there but isn’t.

Remark. Globular �×n-sets form a presheaf category on something that looks very similar
to but isn’t quite Θn. You could also put a model structure on Θn-sets but the horns aren’t
quite as easy to express.

This model structure is analogous to Tamsamani’s except instead of iterating with the
Quillen model structure on simplicial sets you iterate with the Joyal model structure. This
model structure satisfies the unicity axiom of Barwick–Schommer-Pries. There are ex-
plicit Quillen equivalences with other models. This model is also very similar to Θn-sets.
Furthermore, it’s a complete Segal space iteration of a model that satisfies the axioms for
(∞, 1). All of these are good settings to prove the unicity axioms.

What happens when n→ ∞? There is a model structure on �×ω-sets given by localizing
some Cisinski minimal model structure. There are two different philosophies about what a
weak equivalence between ω-categories should be. One philosophy is that any ω-category
with adjoints should be contractible. (Note that an (∞, n)-category with adjoints is con-
tractible.) The basic question is whether a tower consisting of a pair of 1-cells pointing in
opposite directions, 2-cells comparing their composites with the identities, 3-cells compar-
ing these composites with identities, and so on has to eventually stop at identities in order
to be called an equivalence or not.

Here a map of ω-categories is a weak equivalence if
(i) it is so in the model structure

(ii) it is fully faithful
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(iii) it is essentially k-surjective for all k ≥ 0.

Remark. Given a fibration X → Y between (∞, n)-categories, not necessarily complete.
Then if the map is k-surjective for all k then it is a weak equivalence. Really the claim
is that it’s an acyclic fibration, so we’re asked to prove that it lifts against all cofibrations.
The idea is you can start by filling an inner horn part of the boundary in X. This filler isn’t
necessarily compatible in Y with the preexisting filler but these things combine to form an
inner horn with a homotopy or something and so if you can lift the homotopy to X then
you can solve the lifting problem. The details, using the fact that X → Y is a fibration, are
a bit complicated.

21/3

6. Conspectus of complicial sets (Dominic Verity)

Historical context. John Roberts defined complicial sets in the 1970s but without the
context that appears today. In the 1980s, Ross Street put all this on firmer footing. More
precisely, Ross defined a nerve functor from strict ω-categories to simplicial sets

N : ω-Cat→ sSet.

The nerve is the right adjoint to an adjunction characterized by a cosimplicial object
O• : � → ω-Cat. The cosimplicial object is what Ross calls the orientals functor O•.
On objects define

[0] 7→ •

[1] 7→ • → •

[2] 7→ •
  @@

• //
??~~ ⇑

•

[3] 7→ • //
⇑
•

��@@@
⇒→

• //

''OOOOOOO •

��@@@⇑

•

??~~~ //

77ooooooo
⇑

• •

??~~~ //
⇑

•

The orientation convention is “odd 7→ even”: all the odd numbered codimension 1 faces are
in the domain and all the even numbered codimension 1 faces are in the codomain. This
determines the top level and everything in lower dimensions is defined compatibly with
previous faces. The structure of the four simplex has to do with the MacLane pentagon.

From the combinatorial structure of a simplex you can build a parity complex. Ross
defines what it means for structures like this to be loop free, defines freeness, and then
presents these orientals as free structures on certain gadgets.

Via the ordinary nerve N : Cat→ sSet categories sit as a full subcategory of simplicial
sets. Quasi-category theory gets a lot of mileage out of this. Unfortunately, the corre-
sponding nerve functor N : ω-Cat → sSet is not fully faithful. The geometry of the cells
is well encoded by the corresponding simplicial set but the composition structure is not
encoded, precisely because you can’t tell the difference between a picture in which the cell
is a genuine non-trivial cell or a picture on which it is an identity. There are some aspects
of the composition that you can recover but not everything.

John Roberts had only a vague sense of what ω-categories were and didn’t have the
nerve functor. Nonetheless he was able to describe the correct composition structure on
simplicial sets to define complicial (=composition + simplicial) sets. The kind of extra
structure he introduced on simplicial sets is called variously a stratification, thinness, or
hollowness.
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Formally, a stratification (X, tX), where tX ⊂ X is just a subset (not a simplicial subset)
of the simplicial set containing all the degeneracies. By convention tX doesn’t contain any
zero simplices. Roberts also asks that the thin 1-simplices are precisely the degenerate 1-
simplices. There is a geometric idea behind this: if you assume a 1-simplex is thin, you’ve
really crushed the • → • down to a point •. But if you assume that a 2-simplex is thin, you
haven’t crushed entirely down to a • → •.25

There’s a canonical stratification on the image of the nerve which defines thin simplices
to be things whose top dimensional cells are identities so now we have an adjunction

ω-Cat
N
//⊥ sSett

oo

writing sSett for the category of stratified simplicial sets (simplicial sets with a thinness
structure). Note we can use thinness to recover composites of 1-cells in the image: g f = h
if there is some thin 2-simplex with boundary

• g
  @@

•

f ??~~
h
//

=

•

It’s a bit harder to see that this works in higher dimensions.
Ross conjectured that this nerve functor is fully faithful and some axioms introduced by

Roberts, the complicial sets, characterize its image.

Theorem 6.1 (Verity). The nerve defines an equivalence of categories between ω-Cat and
the full subcategory of complicial sets in sSett.

A Λ3,1-horn of
• //
⇑
•

��@@@
⇒→

• //

''OOOOOOO •

��@@@⇑

•

??~~~ //

77ooooooo
⇑

• •

??~~~ //
⇑

•

is missing the top dimensional simplex and the face opposite the vertex 1

• //
⇑
•

��@@@ • //

''OOOOOOO •

��@@@⇑

•

??~~~ //

77ooooooo
• •

??~~~ //
⇑

•

The sort of question we’re asking is under what conditions in the nerve of a strict ω-
category would you be able to find a 2-cell to fill the missing part so that the left-hand and
right-hand composites agree. The only information we’re recording is the identities, so
you can deduce the condition: if the 3rd face is a thin simplex, then there is a unique filler
for the missing 1st face so that the resulting 3-simplex is thin.

So the lifting condition is that if you’re given a horn Λ3,1 → NC so that the 3rd face
is thin, there is a unique extension to a thin 3-simplex. This sort of thing is precisely a
lifting property against a particular map of stratified simplicial sets with underlying map
Λ3,1 → ∆3 of simplicial sets.

Making this precise in general has to do with certain cocycle conditions introduced by
Ross in his paper [Str87]. We won’t talk about that because we actually can get by with a
bit less.

Definition 6.2. Let ∆n:k (formerly ∆k[n]) denote the k-admissible n-simplex, which has ∆n

as its underlying simplicial set. Declare α : [r]→ [n] to be thin if and only if {k − 1, k, k +

1} ∩ [n] ⊂ imα.

25Marked simplicial sets would be an example were it not for this last condition, and indeed it will disappear
when we start talking about weak things.
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Remark (Mike). If you draw the three vertices k−1, k, k+1 on a line (as opposed to spanning
a triangle) then the thin faces are precisely the things that span a smaller dimension than
you’d expect.

Note we only have three non-thin codimension 1 faces. The two omitting k−1 and k +1
are interpreted as having composite the face omitting k. Write Λn:k ⊂ ∆n:k for the k-horn
with the same thin structure.

Lemma 6.3 (Street). You have unique extensions

Λn:k //

��

NC

∆n:k

∃!

==z
z

z
z

There are a couple extra variants which have to do with composing thin simplices: if
you compose two thin (n − 1)-simplices the composite should again be thin. This can be
encoded by lifting against some maps ∆n:k+ → ∆n:k∗. Note any extensions

∆n:k+ //

��

NC

∆n:k∗

∃!

<<y
y

y
y

are automatically thin.

Definition 6.4 (Roberts). A complicial set is a stratified simplicial set X satisfying the
unique extension condition against these maps.

What’s really remarkable is that he made this definition in the 1970s without reference
to any of the nerve or ω-category stuff.

Weak things. Of course now we’re more interested in weak variants of ω-categories. How
do we weaken? Firstly, drop the condition that the only thin 1-simplices are degenerate
because we now think of thin things as being equivalences and not just identities. When
we’re thinking about thin things as equivalences, of course it’s ridiculous to ask for unique
extensions. Henceforth, by “complicial set” we mean weak complicial sets which will be
a model for (∞,∞)-categories: at every level we have cells that might not be equivalences.
The things we know definitely behave like equivalences are the things we marked as thin.26

To get anywhere we have to talk about the Gray tensor product. Given a pair of 2-
categories C,D, we can form a 2-category [C,D]p of strict functors F : C → D, pseudo
natural transformations, and modifications. The usual product of 2-categories isn’t adjoint
to this 2-category but there is a tensor product so that we have a two-variable 2-adjunction

B→ [C,D]p B ⊗ C→ D.
The tensor product is named after its inventor John Gray.

It’s not too complicated to write down but it takes a bit of time. Instead we’ll describe
examples:

(• → •) ⊗ (• → •) =

•

��

// •

��
• // •

�

26Note however there might be more equivalences; this will have to do with saturation later.



42 NOTES BY EMILY RIEHL

There’s also a version of the Gray tensor product ⊗` for the 2-category replacing pseudo
natural transformations by lax natural transformations. As you’d expect:

(• → •) ⊗` (• → •) =

•

��

// •

��
• // •

⇑

What these Gray tensor products encode are all sorts of geometric facts about cubes. These
are both nice 2-monoidal products, though only ⊗ is symmetric. There are nice rela-
tions between Gray tensor products and braid groups: the 3rd Reidermeister move is a
2-categorists presentation of the geometry of the cube.

The Gray tensor product can extend to higher dimensions. Without worrying too much
about orientation, the lax tensor product of a 1-cell with a 2-cell looks like a cylinder with
2-cells at either end and two square faces, each with 2-cells sitting inside them, and then a
3-cell sitting between the two possible composites of the end 2-cells with the 2-cells in the
side squares. Crans showed in the early 90s that this idea can be extended to define a Gray
tensor product on ω-categories.

In the stratified context the analog of the Gray tensor product is the thing that allows us
to build arbitrary products and arbitrary cylinders from the simplices. I’m going to try and
explain ∆n ⊗ ∆m. This product will preserve colimits in each variable so this defines the
entire thing. By a leap of faith assume that on underlying simplicial sets ∆n ⊗∆m is just the
usual cartesian product. (There is a strong intuition for this based on the relation between
the Gray tensor product on ω-categories and the ordinary product.) The question is how to
define the thin simplices.

Draw ∆n × ∆m as the nerve of the ordered set [n] × [m] so you get some kind of grid
where [n] goes across and [m] goes up:

• // • // • // • // • // • // •

•

OO

// •

OO

// •

OO

// •

OO

// •

OO

// •

OO

// •

OO

•

OO

// •

OO

// •

OO

// •

OO

// •

OO

// •

OO

// •

OO

•

OO

// •

OO

// •

OO

// •

OO

// •

OO

// •

OO

// •

OO

•

OO

// •

OO

// •

OO

// •

OO

// •

OO

// •

OO

// •

OO

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

•

OO

Note that a dimension of a cell in the product is the sum of the dimensions of the two
components. The stuff in here of dimension n + m are called shuffles. Remember you’re
thinking of simplices as oriented from odd to even. Here things are facing in a bunch
of oblate directions so they aren’t really composable (unless say you’re in a complex).
We want to make everything thin so that there’s just one thing that’s a genuine n + m-
dimensional oriented cell. One choice is to pick the shuffle that goes along the bottom and
then up the right-hand edge and make all the other shuffles thin.

This explains what to do with the shuffles but what about the lower simplices. Make
anything thin that at some point goes directly up and then directly to the right. The reason
is that these simplices correspond to composites of other stuff—these are called mediator
simplices. Note all of the thin shuffles are themselves mediator simplices.

To fully characterize this tensor product we also need to consider products of thin sim-
plices. Write ∆n] for the n-simplex with top dimensional face thin. In ∆n] ⊗ ∆m you also
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need anything that projects down onto the thin face ∆n] to also be thin. Extending by
colimits we have

sSett × sSett
⊗ // sSett

and furthermore this product is closed on both sides. The right adjoints correspond to ei-
ther lax natural transformations or oplax natural transformations − ⊗ X a laxr(X,−) and
X ⊗− a laxl(X,−). The only problem is that these products are monoidal: the associativity
isomorphism of underlying simplicial sets doesn’t preserve thinness. Unfortunately, fixing
the associativity breaks the closed structure at least on all of sSett. Eventually the solu-
tion is to cut down to a subcategory on which these things coincide. Counterexamples to
associativity are pretty simple to find: consider ∆1 × ∆1 × ∆1.

This other tensor product ⊗′ has to do with subdivision. For example, consider the
diagonal 5-simplex in ∆5 × ∆5.

• // • // • // • // • // •

•

OO

// •

OO

// •

OO

// •

OO

// •

OO

//

??~
~
•

OO

•

OO

// •

OO

// •

OO

// •

OO

//

??~
~
•

OO

// •

OO

•

OO

// •

OO

// •

OO

//

??~
~
•

OO

// •

OO

// •

OO

•

OO

// •

OO

//

??~
~
•

OO

// •

OO

// •

OO

// •

OO

•

??~
~ //

OO

• //

OO

• //

OO

• //

OO

• //

OO

•

OO

The idea is this should be thought of as the composite of the six 5-simplices spanning the
six boxes containing the top-left vertex and then having diagonally opposite vertex on this
line.

On a 3-simplex this subdivision goes like this. Take a plane parallel to the 123-face and
slice halfway between 0 and this face. Then do the same thing for the 012-face and the
vertex 3. Now to partition between 1 and 2 take the pair of edges 01 and 23 and slice along
the plane parallel to the one determined by these two edges that lies halfway between 0
and 1. The result after this slicing is two 3-simplices including the vertices 0 and 3 and
two triangular prisms containing 1 or 2 as one of the vertices.

This leads to another definition of the thinness structure on the product ∆n × ∆m, which
says that something is thin if and only if its a composite in this sense of special shuffles all
of which are thin.

We have an inclusion X ⊗ Y → X ⊗′ Y and this is a composite of pushouts of things
which say that if something is a composite of all thin things its again thin. So on the
subcategory where you have extensions of this form (along the ∆n:k+ → ∆n:k∗) then these
two tensor products (⊗, the closed one, and ⊗′, the associative one) coincide. This is true
on the subcategory of precomplicial sets.

28/3

7. Conspectus of complicial sets continued (Dominic Verity)

Today we’re going to introduce complicial sets of simplex bordisms.

Simplex bordisms. You could imagine a 2-dimesional manifold with boundary thought
of as a bordism embedded in a 3-simplex with boundary embedded in its boundary. The
boundary components are allowed to intersect with the 1-skeleton of the 3-simplex. Its
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faces will then have embedded 1-manifolds whose boundary lies on the boundary of the 1-
simplex. This is essentially the same thing as a stratified manifold with boundary, except
that is structured around the combinatorics of the cube, while this is structured around the
combinatorics of the simplex.

Let’s make this precise. I’m going to elide mention of piecewise linear everywhere.
We’ll define a simplex bordism to be a functor M : � f /[n] → Mane. Given a monomor-

phism α : [r] → [n], you get a manifold Mα. Associated to a morphism [s]
δ
−→ [r] from αδ

to α you get an embedding Mαδ → Mα. We impose some axioms:

(i) For each δi : [r − 1] → [r] and the associated Mαδi
→ Mα, either Mαδi

is empty
or it is a codimension-1 subspace landing in the boundary ∂Mα.

(ii) For all x ∈ M (also the image of id[n]), there is a unique α so that x ∈ int(Mα).
Note the dimension of M could be arbitrary; it doesn’t have to relate to n.

Let Cob denote the set of homeomorphism classes of simplex bordisms. It’s a graded
set by the [n]’s, a semi-simplicial set by precomposition, and can also be shown to be
a simplicial set by defining degeneracy operators appropriately. In fact, Cob is a Kan
complex: Write Hm(i1, . . . , ik) ⊂ ∆m for the subset generated by the faces listed. Note that
a map of simplicial sets X → Cob is exactly a functor el(X)→Mane. Write ∪k

i=1F for the
colimit of the diagram F : elHn(i1, . . . , ik)→Mane. Some inductive argument can then be
used to build the necessary manifolds that show horns have fillers: Take the union of all
the faces, then the product of this with the interval. Glue one end of this to the original
manifold sitting over the given horn and identify the other end with the manifold on the
new face. (As an aside, any semisimplicial Kan complex can be promoted to a simplicial
set, that’s still a Kan complex.)

Imagine a horn Λ2
1 with three points sitting on each edge. There are two fillers, one

of which has six points on the “composite” edge, and another of which has non. Both
2-simplices have a (non-connected) 1-manifold sitting over their interiors. Now these are
themselves cobordant, filling some 3-dimensional horn, but we’d like another way to dis-
tinguish them. We’ll use a stratification.

Stratification. We’ll use the same convention from Street’s orientals: orienting simplices
from their odd faces to their even faces. Given M : � f /[n] → Mane, write ∂−M for the
union of the odd faces and ∂+M for the union of the even faces. We have ∂M = ∂−M∪∂+M.
Declare M to be thin if and only if M collapses to ∂−M. In fact, in this case, M shells (like
collapse but we insist that at each step M remains a manifold, and not just a polytope) to
∂−M × I.

As it turns out the construction of canonical fillers used to prove that Cob is a Kan
complex also shows that it is a weak complicial set. An important part of this story is the
“boundary reorganization lemma” which says that you can permute the boundaries of thin
simplices (and overcome the reference to “odd” and “even” in the definition of the thinness
structure).

Stratified structures. Is the notion of stratification intrinsic to the simplicial set? I.e., is
there a unique stratification that makes a given simplicial set a complicial set. The answer
is definitely no.

For instance, in the example above, there are more general notions of thinness that we’d
prefer—say invertible cobordisms as opposed to just trivial cobordisms.

Theorem 7.1. Every weak complicial set is equivalent in the model structure to the ho-
motopy coherent nerve of something enriched over weak complicial sets. Furthermore,



THURSDAY SEMINAR: HIGHER CATEGORY THEORY 45

the homotopy coherent nerve of something enriched in weak complicial sets thin above
dimension n is thin above dimension n + 1.

The dimension shift allows for an inductive argument: given a complicial set, expand the
stratification by throwing in everything you think ought to be equivalences and that again
is a weak complicial set. (Proof: “ought to be equivalences” is a representable notion.)

Q. Is there a maximal stratification?

Let’s say a bit more about this. At dimension 1, it’s fairly straightforward: a 1-simplex
ought to be invertible if it extends to J, say, or has an inverse, or whatever. At dimension
2, given

•

��@@@

•

x ??~~~
y
// •

you might declare it to be invertible if there is

•

��@@@

•

y ??~~~
x
// •

so that certain horns you can build from these faces have fillers. In particular, this implies
that the unlabeled edges are also invertible. Calling this edge z, it turns out you can get,
from a filling argument, a 2-simplex

•
@@@

@@@

•

yx ??~~~
z
// •

that should be thought of as invertible.
Writing Cobt for the original weak complicial set and write Cobi for the saturation,

the thing in which everything that looks like an equivalence is an equivalence. By some
abstract nonsense this is again a weak complicial set. Furthermore, there is another model
structure whose fibrant objects are saturated weak complicial sets and this is fibrant re-
placement in that model structure. (In particular Cobt and Cobi are equivalent, which is
not true in the original model structure.) In this case, though not in general, the fibrant
replacement can be done without changing the underlying simplicial set.

Another example of a non-saturated thing is the (weak) complicial set that arises as the
nerve of a 2-category with identities marked. If we instead give it the stratification with
equivalences marked, we have a map of weak complicial sets from the former to the latter,
but it’s not an equivalence in the original model structure. It is though in the new model
structure. Thus, the model structure for ∞-categories is the one where the fibrant objects
are the saturated weak complicial sets, not the one that’s actually in the paper [Ver08b].

Q (Mike). Something about loop spaces and bordisms where you restrict to manifolds of
a fixed dimension.

There’s also Cobk which has the stratification that comes from being a Kan complex
(a Kan complex is a weak complicial set in which everything above dimension 0 is thin).
Interestingly, Cobi, the saturation of Cobt, is not Cobk, i.e., not everything is thin. How
do you prove this? Define another stratification Cobh where M is thin if ∂−M ↪→ M is
a homotopy equivalences (a simplicial h-cobordism). Again this is a weak complicial set.
By the Eilenberg-Mazur swindle it is stratified. It contains Cobt but is smaller than Cobk.
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There are lots of analogs of this sort of construction in other contexts. The only significant
bound on a sequence of such inclusions is if all simplices above a given dimension are thin.

Upshot: weak complicial sets with everything thin above dimension n are (∞, n)-categories.
Weak complicial sets with non-thin things at each level are (∞,∞)-categories and this dis-
cussion suggests that these are genuinely different things.

Homotopy coherent nerve. The homotopy coherent nerve is a functor N : Strat-Cat →
Strat. This is defined via a functor � → Strat-Cat with [n] 7→ On. Define On to be the
simplicial category whose objects are [n] and define O(i, j) � (∆1) j−i−1, so that this is the
simplicial object defining the ordinary homotopy coherent nerve. It remains only to give it
its stratification and for this we use the stratification of (∆1)⊗( j−i−1). There’s a bit of subtlety
between the tensor products of the enrichment and the associative one but you can reflect
back to where you need to go.

8. Models for the theory of (∞, 1)-operads (Gijs Heuts)

I could go on for hours about this. Today I’ll try and focus on the three most common
models. Convention: “operad” means symmetric and colored.

Fix a symmetric monoidal categoryV. An operad O inV consists of

• a set C of colors (objects)
• for every c1, . . . , cn, d ∈ C and object O(c1, . . . , cn; d) ∈ V, which we think of as

parametrizing operations with inputs c1, . . . , cn and output d
• I → O(c; c) for all c, where I is the monoidal unit
• Σn-actions O(c1, . . . , cn; d)→ O(cσ(1), . . . , cσ(n); d) for each σ ∈ Σn

• composition maps

O(d1, . . . , dn; e) ⊗ O(~ci
1; d1) ⊗ · · · ⊗ O(~c j

n; dn)→ O(c1
1, . . . , c

mn
n ; e)

satisfying axioms. If C = {c} then O(c, . . . , c; c) =: O(n) if there are n-copies. Note we
allow nullary operations; i.e., the list of inputs can be empty. Operads in this sense are also
called symmetric multi categories.

Example 8.1. If C is a category, we get an operad j!C in sets whose colors are the objects
of C. Define

j!C(c1, . . . , cn; d) =

C(c, d) n = 1
∅ else.

This is part of an adjunction

Cat
j! //
⊥ OpSet
j∗

oo

where j∗ discards all non-unary operations.

Example 8.2. If (D,⊗) is symmetric monoidal you get an operadD with colors the objets
ofD and with

D(c1, . . . , cn; d) := D(c1 ⊗ cn; d).

Today we’re only interested in operads taking values in sets or in simplicial sets. Write
sOp for the latter category.
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Theorem 8.3 (Cisinski-Moerdijk). sOp carries a model structure that extends the Bergner
model structure on simplicial categories. A weak equivalence is a map that’s a weak
homotopy equivalences on the mapping spaces and so that the map between the homotopy
categories of the simplicial categories of unary morphisms (applying j∗) are essentially
surjective.

Q. So simplicial operads gives one model for (∞, 1)-operads. Why do we want others?
• When working with qCat, CSS, or SegCat want models that are adapted to these.
• Cofibrancy is hard to achieve (non-examples: commutative operad, En operads).

Other models will have a larger class of cofibrant objects
• Tensor products: sOp carries a (symmetric) Boardman-Vogt tensor product P⊗BV

Q characterized by the property that AlgP⊗Q(C) ' AlgP(AlgQ(C)), but sOp is not
a monoidal model category.27

There will be a monoidal structure on the homotopy category that does what you want.

Example 8.4. Ass ⊗ Ass ' Com and E1 ⊗ E1 ' E2.

We’ll focus on two models:
• dendroidal sets (Moerdijk, Weiss, Cisinski)
• ∞-operads

Both are adapted to (marked) simplicial sets with the Joyal model structure.

Dendroidal sets. Write N : sCat→ sSet for the homotopy coherent nerve. We want

sCat

N
��

sOp
j∗oo

Nd

���
�
�

sSet dSet
i∗

oo_ _ _

i.e., we want a category that admits a “nerve of operads” functor.
We’ll enlarge � to 
, the category of trees.28 Objects are finite rooted trees (meaning

there’s a single edge—a “leaf”—sticking out the bottom) that do NOT have a planar struc-
ture (though the pictures do); this is important: if you impose planar structures you lose
the symmetries and get a model for non-symmetric operads.

Given a tree T , there is a free operad Ω(T ) in Set generated by T . Its colors are the edges
of the tree T . The operations are generated by the vertices (not counting the root). For each
vertex with inputs b, c, d and output edge a, there is an operation p ∈ Ω(T )(b, c, d; a) etc.
For an edge c which isn’t a leaf but has a single vertex sitting on top of it, you have
r ∈ Ω(T )(; c). Then freely generate an operad (composites, symmetries) on this data.
Note to define the generators you’ve chosen a planar structure but the resulting operad is
independent of this.

You could define a morphism S → T of trees to be a morphism Ω(S ) → Ω(T ) of
operads. There is also a completely combinatorial definition, which we will elucidate via
examples.

“Face inclusions” correspond to growing an edge or to appending a new tree onto part
of an existing tree at a vertex. “Degeneracies” can collapse unary operations but can’t do
any other quotienting. You also have automorphisms. If some vertex has n inputs then Σn

27The unit is the terminal category (the point), not the terminal operad (the commutative operad).
28Gijs: Should be called Ψ because ∆ looks like a triangle and Ψ looks like a tree.
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acts on this unlabeled set (even without labels; even without a planar representation) and
so you get these maps.

Let i : � ↪→ 
 denote the inclusion of [n] as the tree with n + 1 edges labeled [n] and n
vertices drawn so you only have unary operations.

Definition 8.5. dSet = Set

op

Denote the representables by 
[T ].
By left and right Kan extension you get

sSet
i! ++

i∗
33 dSeti∗oo

Note both i! and i∗ are fully faithful.
Write η = 
[|]. Observe that any operad mapping to an operad with only unary op-

erations must have only unary operations (must be a category). A similar observation
produces an isomorphism dSet/η � sSet that sits over dSet via the forgetful functor and
i!. (Aside i∗ is weird; i! is the important one.)

In 
, any morphism factors uniquely as a composite of degeneracies, followed by some
isomorphisms, followed by face maps. This gives 
 the structure of a generalized Reedy
category. In particular, this gives model structures.

Example 8.6. ∂
[T ] is the union of all faces, or the colimit over all proper (non-iso)
monos into T .

Example 8.7. ΛeT , where e is an inner edge of T (an edge that is not a root and not a leaf),
is the union of all faces except the face contracting e.

The assignment T 7→ Ω(T ) defines Nd : OpSet → dSet so that

Cat

N
��

OpSet
j∗oo

Nd

��
sSet dSeti∗oo

commutes. Like for categories, you can characterize the image of Nd by saying that these
dendroidal sets have unique fillers for inner horns.

Homotopy theory of dendroidal sets.

Definition 8.8. The class of normal monomorphisms is the weak saturation of the class
of boundary inclusions {∂
[T ]→ 
[T ]}.29

Lemma 8.9. A monomorphism f : X → Y of dendroidal sets is a normal monomorphism
if and only if for every three T , the automorphism group of T acts freely on the set Y(T ) −
X(T ).

A dendroidal set X is normal if ∅ → X is a normal monomorphism, i.e., if Aut(T ) acts
freely on X(T ) for each tree T . While it’s hard to make a simplicial operad cofibrant, it’s
easy to normalize a dendroidal set: fix a normalization E∞

∼
� ∗ (using say the small object

argument) then take X × E∞. Note that anything mapping to a cofibrant object is cofibrant
(anything mapping equivariantly to something with a free action itself has a free action).

29These are exactly the Reedy monomorphisms.
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Note Reedy category theory gives you a filtration of any dendroidal set as pushouts of
normal monomorphisms (where the “skeletal filtrations” have to do with the number of
vertices in the trees).

Definition 8.10. A map X → Y is an inner fibration if it has the right lifting property with
respect to all inner horn inclusions Λe[T ] ↪→ 
[T ].

We’ll call X a (dendroidal)∞-operad if X → ∗ is an inner fibration.

Theorem 8.11 (Cisinski-Moerdijk). Dendroidal sets has a left proper, combinatorial model
structure such that the cofibrations are the normal monomorphisms and the fibrant objects
are the∞-operads. The induced model structure on dSet/η is the Joyal model structure.

By an observation of Joyal, this completely characterizes the model structure. This
will also be monoidal (once we define the tensor product). Note by the observation about
cofibrants above, there is a Quillen equivalent model structure on dSet/E∞ with all objects
cofibrant.

Homotopy coherent nerve. We’ve already defined a nerve functor from operads in sets
to dendroidal sets. What’s interesting will be a homotopy coherent nerve from simplicial
operads. We’ll define this as the right adjoint to a left Kan extension of the thing you get by
“fattening up” the images of the functor T 7→ Ω(T ). This is done by the Boardman-Vogt
W construction, i.e., define

T 7→ W(Ω(T )) : 
→ sOp.

The operads Ω(T ) and W(Ω(T )) will have the same colors. The idea is you replace the
points in the spaces of operations by assigning a factor of ∆1 to any subtree that has the
given leaves and given root. So we get an adjunction

dSet
W! //
⊥ sOp

W∗
oo

This extends the left adjoint to the ordinary homotopy coherent nerve.

sCat
j! // sOp

sSet

C

OO

i!
// dSet

W!

OO

Taking right adjoints we get the desired commutative square above.

Theorem 8.12 (Cisinski-Moerdijk). W! a W∗ is a Quillen equivalence.

Tensor products. Define 
[S ] ⊗ 
[T ] := Nd(Ω(S ) ⊗BV Ω(T )). These are operads in sets
so this is just the ordinary nerve. Then extend by colimits in each variable. This product
extends the cartesian product of simplicial sets.

There is a combinatorial description of this in terms of “shuffles of trees.” In analogy
with the shuffles description of ∆1 × ∆1 (two 2-simplices glued along an edge) the tensor
of the tree with a single vertex, a single leaf, and a single root with itself can be described
follows: color the vertex of one tree black and the other white. Then their tensor product
is a quotient of the disjoint union of the two trees with two vertices (colored black on top
then white on bottom in one tree and oppositely in the other), one inner edge, one leaf, and
one root, quotiented by the relation that says if you contract the inner edges the result is
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the same (the half moon vertex with black on top and white on bottom is the same as the
other half moon).

The Boardman-Vogt tensor product says if you have trees p and q (maybe only true
if they have height 2), the tensor product is the quotient of the disjoint union of the tree
with p grafted onto each leaf of q and the tree with q grafted onto each leave of p by
the relation that says if you collapse all the inner edges the resulting things are the same.
More generally, this tensor product is a quotient of the disjoint union of shuffles by the
interchange relations. (Drew some pictures.)

Essential ingredients for the monoidal model structure:

Proposition 8.13. Λe[S ] ⊗ 
[T ] ∪ 
[S ] ⊗ ∂
[T ] ↪→ 
[S ] ⊗ 
[T ] is inner anodyne.

This tensor product can be used to define internal homs, which then pullback to define an
enrichment over simplicial sets. You can define weak equivalences to be things that, when
homing into a fibrant object, induce weak equivalences between the hom-quasi-categories.
Between fibrant objects there is a nicer description.

∞-operads (a la Lurie). Jacob’s goal is to define operads in the language of category
theory and then import it into quasi-categories. Let F be the category with objects the finite
sets 〈n〉 with n-elements and whose maps are partial maps (only partially defined; compose
where possible). There is an equivalence of categories between F and Fin∗ (finite based
sets) given by the functor that discards the basepoint.

Start with an operad O in sets and produce a functor O⊗ → F whose domain is the
May-Thomason category of operators. Objects of O⊗ are tuples of colors of O. A map
f : (c1, . . . , cm) → (d1, . . . , dn) is a map φ : 〈m〉 → 〈n〉 in F together with operations
(c j) j∈φ−1(i) → di of O for each i ∈ 〈n〉.

You can retrieve the operad O from this πO : O⊗ → F. To that end:

Definition 8.14. A map φ : 〈m〉 → 〈n〉 in F is inert if for all i ∈ 〈n〉, φ−1{i} is a singleton.
E.g., there are inert morphisms ρi : 〈n〉 → 〈1〉 that have {i} as domain of definition.

(i) Given an inert φ : 〈m〉 → 〈n〉 and an object (c1, . . . , cm), there is a canonical
“projection” map in O⊗

(c1, . . . , cm)→ (ci)i∈dom(φ)

that is πO-coCartesian.
(ii) Now let φ be any map in F and consider the hom-sets of O⊗ sitting over φ. Then

O⊗((c1, . . . , cm), (d1, . . . , dn))φ �
∏n

i=1 O⊗((c1, . . . , cm); di)ρi◦φ.
(iii) There are canonical isomorphisms of categories in the fibers over objects O⊗

〈m〉 �

(O⊗
〈1〉)
×m.

Definition 8.15. An∞-operad is a map of simplicial sets O⊗ → NF such that
(i) Given an inert φ : 〈m〉 → 〈n〉 in F and any C ∈ O⊗

〈m〉 there is a πO-coCartesian lift
of φ.

(ii) Can use the coCartesian lifts of the ρi to produce a map as in (ii) above which we
require to be a homotopy equivalence.

(iii) The map O⊗
〈m〉 → (O⊗

〈1〉)
×m is a categorical equivalence.

Advantages of this definition is that we can use quasi-category theory. Disadvantages is
there is a lot of redundancy in the definition.

Define POp = sSet+/NF to be the category of ∞-preoperads. Write NF\ for NF with
the inert edges marked. If π : O⊗ → NF is an ∞-operad, then an edge of O⊗ is said to be
inert if its π-coCartesian. Write O⊗,\ for O⊗ with the inerts marked.
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Theorem 8.16 (Lurie). POp carries a left proper, combinatorial, monoidal model struc-
ture so that the cofibrations are the monomorphisms and the fibrant objects are things of
the form O⊗,\.

Note because F is skeletal, it turns out the monoidal structure is only symmetric up to
weak equivalence.

Q. What about algebras? In all cases, they’re just defined to be morphisms of operads to
the operad introduced above for a symmetric monoidal category.

11/4

9. Unicity I (Clark Barwick)

Theorem 9.1 (unicity). Let Thy(∞,n) denote the simplicial set of quasi-categories C, such
that C is a model of the homotopy theory of (∞, n)-categories, with equivalences between
them. Then Thy(∞,n) ' B(Z/2)n.

A corollary of this theorem is that the (∞, n + 1)-category of (∞, n)-categories is speci-
fied up to a contractible choice. We have yet to say what a “model of the homotopy theory
of (∞, n)-categories” means. Before discussing the axioms, let’s consider our favorite ex-
ample.

Example 9.2. CSS ∈ Thy(∞,1) is constructed by freely generated a homotopy theory from
�: i.e., start with P(�) = Fun(�op,S) and then impose relations. Recall the Yoneda em-
bedding preserves few colimits, so we ask that

y[1] ∪y[0] y[1] ∪y[0] · · · ∪y[0] y[1]→ y[n]

is an equivalence. We have a 2-of-6 condition, asking that

y[3] ∪y[1]∪y[1] (y[0] ∪ y[0])→ y[0]

is an equivalence, where the two 1-simplex map the edges 02 and 13.
The upshot, expressed as a single universal property, is that colimit preserving functors

� ↪→ CSS → C give rise to FunL(CS S ,C) ↪→ Fun(�,C) which can be identified with the
full subcategory spanned by those h : � → C satisfying (by analogy) the two displayed
conditions.

This isn’t how the axiomatization is going to go. We’d hope that Aut(CSS) � Aut(�) �
Z/2. It is true that an automorphism of CSS is colimit preserving so is determined by its
restriction to �, but the image of � isn’t necessarily fixed by the automorphism.

For (∞, n), we have at least two variants: CSS(�n) and CSS(Θn). Similar remarks apply
to those cases.

Our first objective is to find a set of generators (in a sense made precise below) that are
characterized by an∞-categorical property so that it is invariant under taking equivalences.

C // C

G

⊂

//___ G

⊂

Example 9.3. S ∈ Thy(∞,0) is defined by P(∗). Of course the point, as a terminal object,
is preserved under equivalences. But another way to think about this example is to start
from finite sets and form P(FinSet). You get S by imposing the relation that y(S ∪ T ) '
y(S ) ∪ y(T ).
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Definition 9.4. An object X ∈ C is 0-truncated or simply truncated if for all Y ∈ C,
MapC(Y, X) is discrete.

Note this notion is preserved by equivalences, i.e., is “quasi-categorical.” The previous
example shows that the theory of (∞, 0)-categories is generated by its 0-truncated objects.
Discrete objects of CSS are ordinary categories with no non-trivial automorphisms (such
as ∆n for any n). Generalizing to higher dimensions, the role of the 0-truncated objects is
played by so-called gaunt categories.

Definition 9.5 (term due to CS-P). A (strict) n-category is gaunt if the only k-isomorphisms
are identities.

We have factorizations

�n //

##GGGGGGGGG CSS(�n) Θn

##GGGGGGGGG
// CSS(Θn)

Gauntn

99ssssssssss
Gauntn

99rrrrrrrrrr

Observation 9.6. For CSS(�n) and CSS(Θn), the truncated objects are the gaunt guys.
Equivalently, Fun(�n,Set)→ LS Fun(�n,Set) ' Gauntn and similarly for Θn.

For n = 2, the localization collapses the vertical 1-simplices in � × � to equivalences,
changing the squares into globes.

•

��

// •
��

// • //

��
•

��
•

��

// •
��

// • //

��
•

��
• // • // • // •

So the gaunt categories are the same for both �n and Θn.
Write Aut(C) ⊂ Fun(C,C) for the full subcategory spanned by the equivalences.

Proposition 9.7. Aut(Gauntn) ' (Z/2)n.

Corollary 9.8. If Gauntn strongly generatesC and if the truncated objects τ≤0C ' Gauntn,
then Aut(C) ' (Z/2)n.

Proof. We have inclusions

Aut(C)

��

// FunL(C,C)

��
Aut(Gauntn) // Fun(Gauntn,C)

which shows that something is fully faithful Essentially surjective then follows from re-
stricting C → C to Gauntn → Gauntn. �

Next objective is to get connectedness. It turns out this is kind of hard.
We’re looking for some localizationP(Gauntωn )→ LSP(Gauntωn ), where the ω denotes

a restriction to compact objects (covariant representables commuting with filtered colim-
its). The question is which homotopy colimits do not introduce new homotopy theory. The
problem is we don’t know how to characterize the S in this localization.

There’s a second part of this problem: we need to find a subcategory of Gauntn that
encapsulates the “good stuff” about (∞, n)-categories. To make this precise let’s think
about what we like about (∞, n)-categories.
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(i) If X,Y are (∞, n)-categories, then Fun(X,Y) ∈ Cat(∞,n).
(ii) In practice, we do more . . .

Definition 9.9. A distributor is a profunctor, i.e., B9 A is Aop × B→ Set.

Example 9.10. An adjunction is conveniently encoded as an isomorphism of represented
distributors A( f , 1) � B(1, u).

The category of distributors has an internal hom: given X : Aop × B→ Set and Y : Cop ×

D→ Set define [X,Y] : Fun(A,C)op × Fun(B,D)→ Set by (φ, ψ) 7→ Nat(X,Y ◦ (φ, ψ)).
We want to get the same feature on (∞, n)-categories. A correspondence is a functor

X → 2. From the (categorical) Grothendieck construction, B
F
−→ A can be encoded as a

correspondence (in two different ways).
Given a correspondence X → 2, define A = X0 and B = X1. There is a natural distributor

X : Aop × B → Set defined in the obvious way. This defines an equivalence of categories
between Dist and the subcategory of Cat/2 of two-sided conduche fibrations or something
like that, which then of course preserves limits, e.g., products. The product in Cat/2
(pullback over 2) has a right adjoint, and in particular preserves colimits

X ×2 (colim
α

Yα) � colim
α

(X ×2 Yα).

This has to do with an axiom from topos theory: colimits are universal, i.e., colimits are
preserved by base change. Note this isn’t true for all slice categories in Cat. But it’s okay
to replace 2 by 1 (in which case we just have ordinary objects).

Definition 9.11. Define Υn ⊂ Gauntn to be the smallest full subcategory that
• contains all the generic cells in each dimension C0 = •, C1 = • → •, C2 the

walking 2-cell, . . . , Cn the walking n-cell
• is closed under retracts
• is closed under − ×Ck −.

Q (Jeremy Hahn). What’s the motivation for the retract axiom? A. It’s something tech-
nical: we didn’t want to fiddle with the ambiguity of the idempotent completion in our
generators. (Sets of free generators of a homotopy theory can differ, but their idempotent
completions are all the same.)

For example, on account of the pullback diagram

∂Ck−1

��

//
y

Ck−1

��
Ck−1 // Ck

you have boundaries (at least if k ≤ n − 2). For n = 1, pullback over C0 means you have
products, say Cn

1. Now retract closure gives you the categories that are the objects of �.
Note this is big: Θn ⊂ Υn.

Now let’s return to the opening theorem.

Theorem 9.12 (unicity). Let Thy(∞,n) denote the simplicial set of (presentable) quasi-
categories C, with equivalences between them, such that there exists a fully faithful functor
f : Υn → τ≤0C → C so that

(i) f strongly generates C.
(ii) For any map X → Ck, the endofunctor X ×Ck − of C/Ck preserves colimits.

(iii) Fundamental pushouts are preserved:
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• f (ci) ∪ f (∂ci) f (ci)
∼
−→ f (∂ci+1) (including the degenerate case ∅

∼
−→ f (∅)).

• f (c j) ∪ f (ci) f (c j)
∼
−→ f (c j ∪ci c j) if i < j.

• f (ci+ j ∪ f (c j) f (c j+k) ∪ f (σi+1(c j−1×ck−1)) f (ci+k) ∪ f (ci) f (ci+ j)
∼
−→ f (ci+ j ×ci ci+k)

• ( f (σk[3]) ∪ f (σk[1])∪ f (σk[1]) ( f (σk[0]) ∪ f (σk[0)]) ' f (ck)
(iv) If (D, g) is a presentable quasi-category strongly generated by g : Υn → D satis-

fying these conditions, then there exists a localization

Υn

f
��

g //
�

D

C

F

>>}}}}}}}}

Then Thy(∞,n) ' B(Z/2)n.

The notation σ(c) is the gaunt n-category with two objects x, y and hom(x, y) = c.
The third axiom has to do with the 2-of-6 localization for CSS, without which you get

a model for the wrong homotopy theory (with weak equivalences just the isomorphisms).
In Gauntn we didn’t know which colimits should not produce any new homotopy theory,
but in Υn we do, which was the point of making the restriction.

Let’s outline the proof.
(i) Show that Thy(∞,n) is inhabited.

(ii) If C satisfies (1)-(4), then τ≤0 ' Gauntn.
(iii) Show that the usual suspects are indeed vertices of Thy(∞,n).

Q. How does this compare with Toen? A. His axioms were really built around the CSS
example. Here this is less the case. In particular, axiom (2) has no analog in the n = 1 case.

10. Unicity II (Clark Barcwick)

Recall Gauntn in the full subcategory of strict n-categories so that the only isomor-
phisms at any level are identities. Then Υn ⊂ Gauntn is the smallest full subcategory such
that

(i) Ck ∈ Υn,
(ii) Υn is closed under retracts.

(iii) Υn is closed under − ×Ck − (fiber products over cells).

Left overs.
(i) ∂Ck ∈ Υn only if 0 ≤ k ≤ n − 1.

(ii) Analyze what does Ci ×C j Ck look like, i.e., what is a decomposition as a colimit
of cells?

This second thing will help us motivate some of the “fundamental pushouts” introduced
last time. Consider

Ck

ψ

��
Ci φ

// C j

Two options for φ:
(i) φ = σ(Ci−1 → Cn−1)

(ii) Ci → C0 → C j.
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That is, either φ is a suspension of something that happens in lower dimensions, or it is
constant. Observe that suspension preserves fiber products (though not all limits), so we’re
good in that case. So consider

F ×Ci

��

//
y

F

��

//
y

Ck

ψ

��
Ci // C0 // C j

Again we have two cases: either F = or F = Cm, in which case Ci ×C j Ck = Ci × Cm. So
we’ve reduced to understanding products of cells.

Example 10.1. C1 ×C1 = (C1 ∪C0 C1) ∪C1 (C1 ∪C0 C1). Note these colimits are in Cat so,
e.g., each C1 ∪C0 C1 includes both the composable arrows and their composite.

Example 10.2. C2 ×C1 = (C1 ∪C0 C2) ∪C2 (C2 ∪C0 C1). Here the C2 we’re gluing along is
properly thought of as σ(C1 ×C0).

More generally

Ci ×Cm = (Ci ∪C0 Cm) ∪σ(Ci−1×Cm−1) (Cm ∪C0 Ci).

Review of the axioms. Given a presentable quasi-categoryC and a functor f : Υn → τ≤0C:
(c.1) strong generator: f strongly generates C, meaning C is a localization of a presheaf

category on Υn

(c.2) correspondences have internal homs: for all η : X → f (Ci),

− × f (Ci) X = η∗ : C/ f (Ci)→ C/X

preserves colimits
(c.3) fundamental pushouts:

(i) f (ci) ∪ f (∂ci) f (ci)
∼
−→ f (∂ci+1) (including ∅ ' f (∅)).

(ii) f (c j) ∪ f (ci) f (c j)
∼
−→ f (c j ∪ci c j) if i < j.

(iii) f (ci+ j ∪ f (c j) f (c j+k) ∪ f (σi+1(c j−1×ck−1)) f (ci+k) ∪ f (ci) f (ci+ j)
∼
−→ f (ci+ j ×ci ci+k)

(iv) ( f (σk[3]) ∪ f (σk[1])∪ f (σk[1]) ( f (σk[0]) ∪ f (σk[0)]) ' f (ck).
(c.4) versality: If you’ve got an (D, g) satisfying (c.1-3) then there exists a localization

C // D

Υn

f

__@@@@@@@@ g

>>}}}}}}}}

Goals.
(i) Produce an example

(ii) Show that τ≤0C ' Gauntn.
From the dense inclusion Υn ↪→ Gauntn we have a fully faithful functor ν : Gauntn →

SetΥ
op
n . Gauntn is local with respect to the maps (i)-(iv) above, taking f to be the Yoneda

embedding. E.g., consider

y(ci) ∪y(∂ci) y(ci)→ y(∂ci+1).

Then if H is gaunt, the map

hom(y(∂ci+1),H)→ hom(y(ci) ∪y(∂ci) y(ci),H)
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is a bijection. Note this condition for the last “2-of-6” map is encoding gauntness: it tells
us that any isomorphism is an identity. The localness with respect to the other three classes
is also true for any strict n-category.

Write S 0,0 for the union of (i), (ii), (iii), and (iv). Let S 0 then be the smallest class that
is closed under isomorphisms, under X ×Ci − for X ∈ Gauntn. Let S be the saturated class
generated by S 0.

Definition 10.3. Let Cat(∞,n) = S −1P(Υn), the localization at presheaves of spaces.

Observe
• this clearly satisfies (c.1) and (c.3)
• it also satisfies (c.2)
• (c.4) follows from the universal property of localizations.

This completes our first goal. For the second, nerves of gaunt n-categories are easily
seen to be local with respect to S 0. But X ∈ τ≤0Cat(∞,n) = S −1SetΥ

op
n . We want to find

compositions on X|GnG
op
n → Set, writingGn for the n-truncation of the category of globular

sets. From C j → C j ∪Ci C j we get

X(C j) ×X(Ci) X(C j) � X(C j ∪Ci C j)→ X(C j)

which gives X the structure of an n-category.

Corollary 10.4. Thy(∞,n) ' (BZ/2)n.

Now how do we find examples? We’ll see there’s a different way to check the axioms
in the case that your model comes packaged as generators and relations.

Checking the axioms. We’ll think about the examples CSS(�n) and CSS(Θn).
Observe that the generators are ordinary categories, not (∞, 1)-categories, that we’ll

commonly denote by R. Suppose the relations are given by a class T0 whose saturation
T0 = T . In addition, we’ll need a functor i : R → Υn, that need not be fully faithful. From
this data, we get a string of adjoints

P(R)

i!
⊥
**

i∗

⊥ 44 P(Υn)i∗oo

Theorem 10.5. Suppose
(r.1) i∗(S 0) ⊂ T
(r.2) i!(T0) ⊂ S
(r.3) for all r ∈ R, r → i∗i(r) ∈ T
(r.4) i hits all the cells

Then i∗ makes T−1P(R) ' Cat(∞,n).

The proof will depend upon a lemma. We have Cat(∞,n) = S −1P(Υn).

Lemma 10.6. Cells detect equivalences: if X → Y is a map and if Map(Ck, X)
∼
−→

Map(Ck,Y) for all k then X
∼
−→ Y.

Proof. We have
Gn = Υ(0)

n ⊂ Υ(1)
n ⊂ · · · ⊂ Υn

where Υ
(k)
n = {X ∈ Υn | X is the colimit of a diagram K. P

−→ Cat(∞,n) so that P(K) ⊂
Gaunt(k−1)

n }. What is meant here is that all the maps in the diagrams also have to be in the
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subcategories (this is why taking colimits of colimits gives us something new). So to start,
we’re only allowed basic maps between the cells because this is all that’s in Gn.

What we need to show is that Υn = ∪k≥0Υ
(k)
n =: U. By definition Υn is the smallest

subcategory containingGn and closed under retracts and −×Ck−. U is closed under retracts
because retracts are a particular kind of colimit.

Consider the assertion
(∗)k If X,Y ∈ Υ

(k)
n , then for all X → Ci, Y → Ci, X ×Ci Y ∈ Υ

(k+n+1)
n .

For k = 0 this is just true. Then (∗)k ⇒ (∗)k+1 follows from (c.2). �

This lemma wasn’t just a technicality. It’s really essential.

Proof of theorem. Right adjoints carry local objects to local objects, which means we’ll
consider functors

T−1P(R)

i! ..

i∗
11

S −1P(Υn) = Cat(∞,n)i∗oo

Now (r.3) implies that for each generator r ∈ R, r
∼
−→ i∗LS i!r ∈ T−1P(R) which implies that

id→ i∗LS i! is an equivalence.
Now consider id → i∗i∗. For all X we claim that Map(Ck, X)

∼
−→ Map(Ck, i∗i∗X) '

Map(irki∗i∗X), by (r.4), which is equivalent to Map(i∗(irk), i∗X). This is equivalent, by
(r.3), to Map(rk, i∗X) ' Map(i!rk, X) ' Map(irk, X) ' Map(ck, X). �

When we wrote this paper, we didn’t know that complete Segal spaces on �n and com-
plete Segal spaces on Θn were going to be equivalent. We used this result to prove it. Some
general observations.

(i) (r.1) is the hard one to check
(ii) This condition can be decomposed as

(r.1a) i∗(S 0,0) ⊂ T
(r.1b) for all U → V ∈ T , V → i∗Ck, and H → Ck ∈ Υn form

U′

��

//
y

V ′

��

//
y

i∗H

��
U // V // i∗Ck

and check that U′ → V ′ is in T .
(iii) (r.3) is obvious if i happens to be fully faithful (e.g. for Θn).
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