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ABSTRACT. The authors prove that a proper monomial holomorphic mapping from the two-ball to 

the N-ball has degree at most 2N - 3, and that this result is sharp. The authors first show that certain 

group-invariant polynomials (related to Lucas polynomials) achieve the bound. To establish the bound the 

authors introduce a graph-theoretic approach that requires determining the number of  sinks in a directed 

graph associated with the quotient polynomial. The proof also relies on a result of  the first author that 

expresses all proper polynomial holomorphic mappings between balls in terms of  tensor products. 

1. Introduction 

The purpose of this article is to demonstrate a sharp relationship between the degree of a 
polynomial p (satisfying a certain natural condition described below) and the number of distinct 
monomials in p. This result implies a special case of a conjecture concerning proper holomorphic 
mappings between balls in complex Euclidean spaces of different dimensions. 

After stating the main result, we continue the introduction by describing the connection 
between this result and the more general situation. 

Theorem 1.1. Suppose that p is a polynomial in two real variables (x, y) such that 

1) p(x, y) = 1 on the set x q- y = 1, and 

2) each coefficient o f  p is nonnegative. 

Let N be the number o f  distinct monomials in p, and let d be the degree o f  p. Then d < 2N - 3 
and this result is sharp. (That is, for each N > 2, there is a polynomial satisfying 1) and 2) whose 
degree is 2N - 3. 

Corollary 1.2. Suppose that f is a proper holomorphic monomial mapping from the unit ball 
in two complex dimensions to the unit ball in N complex dimensions. Then the degree o f  f does 
not exceed 2N - 3, and this result is sharp. 
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In Section 2 we give a (non-obvious) family of  polynomials for which d = 2N - 3. These 
polynomials appear in [3]; they yield group-invariant proper mappings between balls. A one- 
variable version of  these polynomials goes back to Lucas; see [8] for properties of  Lucas polyno- 
mials in one variable. In Section 3 we use graph-theoretic techniques to show that d < 2N - 3. 
The methods of  Section 3 apply more generally, but we do not discuss such generalizations in this 
article. Two comments justify the article in its current form where n = 2 and f is a monomial. 
First, the graph-theoretic approach from Section 3 yields considerably sharper information than 
has yet been obtained by using CR vector fields or Chern-Moser invariants. Second, there is 
an abundance of  monomial examples; for N > 4 there are already infinitely many inequiva- 
lent examples, and as N increases to infinity the dimension of  the parameter space of  monomial 
examples is unbounded. 

We now make the connection to proper holomorphic mappings between balls. Let C n denote 
complex Euclidean space of  dimension n, and let I lzlf 2 = ~ I zjl 2 denote the Euclidean norm of 
z. The unit ball Bn is defined to be the set o f z  for which Ilzll < 1. 

Let f : C n ~ C N be a (holomorphic) polynomial mapping. Then f is a proper mapping 
from Bn to BN if and only if IIf(z)ll  < 1 for [Izll < 1 and 

IIf(z)ll  2 = 1 (1.1) 

whenever Ilzll 2 = 1. It is natural to seek all such examples; more generally one wants to 
find all rational proper mappings between balls. In this article we restrict our consideration to 
polynomials. 

Let now f : Bn '-+ BN be a polynomial mapping that satisfies (1.1) and whose component 
functions are monomials. We write, using multi-index notation, 

f (z) = ( . . . .  c,~z ~ . . . .  ) . 

Then (1.1) simplifies to the condition 

Z Ic'~12lz[2~ = 1 (1.2) 
Ot 

on I lzll 2 = 1. It is natural to write xj  for ]zj 12, and we therefore obtain a polynomial F satisfying 

F(x )  = Z Ic'~12x'~ = 1 (1.3) 
Cl 

on the hyperplane ~ xj  = 1. Note that the coefficients of  F are nonnegative. Conversely, given a 
nonconstant polynomial F in n real variables, with nonnegative coefficients, and satisfying (1.3), 
there is a corresponding proper mapping f .  

When n = 2, it is convenient to write Izl 12 = x and Iz212 = y. We obtain a polynomial F 
in two variables; the coefficients of  F are nonnegative and F satisfies 

F(x ,  y) = Z ICabl2Xayb = 1 (1.4) 

o n x + y = l .  

Thus Theorem 1.1 yields Corollary 1.2, and a proper monomial mapping from B2 to BN 
has degree at most 2N - 3. When N = 2 as well, we see that the degree is at most 1. This 
conclusion has been known since the 1970's. Pinchuk [9] proved that a proper holomorphic 
self-mapping of  a strongly pseudoconvex domain is necessarily an automorphism. For the ball 
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this result was proved earlier by Alexander [1]; the automorphisms of the ball are linear fractional 
transformations, and hence are rational functions of degree 1. When N = 3, the result is also 
known; Faran [6] found all the rational proper mappings from B2 to B3, and all are of degree 
at most 3. The first author [3] listed the monomial mappings from B2 to B4, and found that the 
maximum degree was 5. (One monomial example was inadvertently omitted from that list, but 
it is of degree 3.) For N = 5 Wono [10] found a complicated ad hoc method to show that the 
degree of a proper monomial mapping is at most 7. There are heuristic reasons to believe that the 
monomial case is the most complicated, and hence one is tempted to conjecture that a rational 
proper mapping from B2 to BN has degree at most 2N - 3. 

The polynomials giving the sharp bound are group-invariant, and were discovered by the first 
author in [3]. See also [4] and [5] for more information on group-invariant mappings. Perhaps 
one could somehow use the group-invariance to obtain a simpler proof, but we have been unable 
to do so. The coefficients arising in these polynomials have many interesting properties, and also 
arose in the Physics thesis (Section 2.9) of the second author [7]. 

The situation for n > 3 is different. The first author has conjectured in that case that the 
degree of a rational proper mapping between balls cannot exceed nU~_-i 1 . We do not consider n >_ 3 
here. 

In general, the unit sphere is a model for strongly pseudoconvex CR geometry; therefore 
sharp results for the sphere are likely to extend to the case of strongly pseudoconvex hypersur- 
faces. Hence the result in this article may indicate how to apply combinatorial considerations to 
CR geometry. 

2. Po lynomials  for which d - 2 N  - 3 

First we will exhibit a family of polynomials for which the inequality in Theorem 1.1 is 
sharp. We define these polynomials by a recurrence formula, although explicit formulas for them 
are available and appear in [2] and [4]. 

Put g0(x, y) = x and gl(x,  y) : x 3 + 3xy. Put 

gn+2(x, y) = (x 2 + 2y) gn+l(X, Y) - y2gn(x,  Y ) .  (2.1) 

Now define pn(x,  y) by 

pn(x,  y) = gn(x, y)  + y2n+l . (2.2) 

Observe that p0(x, y) = x + y and that p l (x ,  y) = x 3 + 3xy + y3. It is easy to check that 
P0 and pl have the value one on the line given by x + y = 1. We prove by induction that the 
same holds for each Pn. Less obvious is that the coefficients of each p~ are positive integers. We 
collect the properties of Pn in the following result: 

Proposi t ion 2.1. The polynomials pn(X, y) defined by (2.2) satisfy the following properties: 

1) The degree d o f  pn is 2n + 1. 

2) p n ( x , y ) =  l o n x + y =  1. 

3) Each non-zero coefficient o f  Pn is a positive integer. 

4) The number N o f  nonzero monomials in Pn is n + 2. Thus d = 2N - 3. 
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Proof. Most of  this information is proved by induction on n, using as the basis step the explicit 
formulas for P0 and Pl.  Statement 1) follows easily by this approach, and is left to the reader. 

We prove statement 2), using the special cases P0 and Pl as the basis step. Assume then that 
statement 2) holds for n and n + 1. We verify it for n + 2: 

Pn+2(X, y) = gn+2(x, y) + y2n+5 = (x 2 • 2y)  gn+l(X, y) - y2gn(X, y) y2n+5 + 

: (x 2 + 2 y ) ( q n + l ( X ,  y ) -  y2n+3) _ y2 (qn(x, y ) -  y2n+l) -k- y2n+5 . (2.3) 

Now set x = 1 - y and substitute in (2.3). Using the inductive hypothesis we obtain, after some 
simplification, 

P n + 2 ( l _ y , y ) = ( ( l _ y ) 2 + 2 y ) ( l _  y2n+3)_y2+y2n+3• 

= (1 + y2] _ y2n+3 _ y2n+5 _ y2 + y2n+3 + y2n+5 = 
K 

1. \ / 

Statement 3) is difficult. First of all note, using induction and the recurrence relation, that 
the coefficients of  gn (and hence of Pn) are integers. The hard part is to show that the nonzero 
coefficients are positive. It suffices to show this statement for gn. We have the second order 
recurrence relation 

gn+2 = (X2 + 2 y )  gn+l - y2 gn 

and the initial conditions go = x and gl (x) = x 3 + 3xy. Using the standard method for solving 
second order recurrences, we obtain the characteristic roots 

x 2 + 2y • x v / ~  + 4y 
Z =  

2 

Therefore we may write 

gn c x~ + 2Y +z  x2~T~ + d 
n 

for appropriate expressions c and d, determined by the initial conditions. We omit the detailed 
computations and state the result: 

gn (x, y) 

2 n _ ~ x2 x + ~  x 2 + 2 y + _ ~  +x  +2y ~ . (2.4) 
2 2 

It is not obvious at first glance that (2.4) defines a polynomial; it must of  course define a 
polynomial, because go and gl are polynomials and the recurrence relation has polynomial coef- 
ficients. On the other hand, expanding (2.4) results in the cancellation of all terms involving odd 

powers of  v / ~  + 4y and all the other terms have positive coefficients. Therefore the coefficients 
of  gn are nonnegative, we already know they are integers, so we have proved 3). 

Finally we prove 4). The proof uses the group-invariance of the polynomials Pn. Let co be 
a primitive 2n + 1-st root of  unity. From (2.4) it is evident that polynomial Pn has the following 
invariance property: 

pn (cox, co2y) = pn(x, y) . 
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It follows easily from this that the only monomials arising in p must also be invariant under this 
substitution. Since Pn is of  degree 2n + 1, the only possible monomials that can arise are yen+l 
and x2n+l-2by b for 0 < b < n. Assuming that 2) holds, it is proved in [3] and [21 that these 
n + 2 monomials all have positive coefficients; therefore there are n + 2 terms in Pn. See p. 175 
of  [2] for several formulas for these coefficients. [ ]  

Example 2.2. For the reader's convenience we list the first few of  these polynomials. 

po(x, y) = x + y 

pt(x ,  y) = x 3 + 3xy + y3 

p2(x, y) = x 5 + 5x3y + 5xy 2 + y5 

p3(x, y) = x 7 + 7xSy + 14x3y 2 + 7xy 3 + y7 

p4(x, y) = x 9 + 9x7y n t- 27x5y 2 + 30x3y 3 + 9xy 4 + y9.  

R e mark  2.3. The proof used the invariance of Pn under the substitution (x, y) --~ (wx, co2y) 
where O) 2 n + l  • 1. In fact these polynomials were discovered by seeking proper polynomial 
mappings invariant under various representations of cyclic groups. See [4] and [5]. 

3. Proof of Theorem 1.1 

The proof here combines an idea about labeled Newton diagrams with two facts, proved in 
much more generality in [2]. These facts are special cases of general statements about proper 
polynomial mappings between balls. Here we state and prove them only in the simple case needed 
in this article. 

Notation. We let 79 denote the collection of  polynomials in two variables satisfying 1) and 2) 
of Theorem 1.1. We also sometimes write s for x + y. 

Lemma 3.1. I f  p c 79 is homogeneous of  degree d, then p(x, y) = (x + y)d = S d. 

Proof. Since p c 7 9, we have p(x, y) = 1 on the line x + y = 1. Therefore p(x, y) = 1 = 
(x + y)a on this line. By homogeneity, the equality p(x, y) = (x + y)a holds everywhere: [ ]  

Let p bea  polynomial. We can write p = y~ p j, where pj denotes the sum of the monomials 
of  degree j in p. Thus pj is homogeneous of  degree j ;  the resulting formula is called the expansion 
of p into homogeneous parts. 

Lemma 3.2. Suppose that p c 7 9 has degree d. Let p = ~ p j denote the expansion of  p into 
homogeneous parts. Then 

d 

Z p j s d - J  = E p j ( x ,  y ) ( x  + y)d- j  = (X q- y)a = s d " 

j = 0  

(3.t) 

Proof. The polynomial on the far left-hand side in (3.1) has the value i on the I ines  = 1, 
because it agrees with p there. It is also homogeneous; by Lemma 3.1 it must be s a. [] 

For later purposes we provide an intuitive explanation of Lemma 3.2. Starting with h = s d 
one constructs p by a finite number of  operations of  the following form: replace the expression 
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Cab(xa+ly b q- xay b+l) by CabXay b, and keep the other terms the same. This operation is a 
special case of the undoing of a tensor product operation discussed in [2]. The notion of undoing 
determines a partial ordering on 79; we say that p is an ancestor of pl, or that p1 is a descendant of 
p, if we can reach p~ from p by finitely many such operations. For a fixed degree d, the mapping 
h = s d is maximal, and by Lemma 3.4 is the initial ancestor of each element of 79 of degree d. 

The polynomial p given by x 3 + 3xy + y3 is obtained by undoing (x + y)3 once. It is easy 
to prove that p cannot be obtained by starting with 1 and replacing factors of 1 with x + y. Thus 
p is not an ancestor of 1. 

Def in i t ion  3.3. For p e 79, we define its quotient qp by 

qp(X, y ) (x  + y -- 1) ---- p(x ,  y) -- 1 . (3.2) 

It is elementary to see that qp is a polynomial. When h(x,  y) = (x + y)d, one sees easily that 

qh(x, y) = 1 + (x + y) + . . .  q- (x + y)d-1 . 

The main idea in this proof is to compare qp with qh. There is an algebraic part and a 
graph-theoretic part of this relationship. Recall that p j  denotes the sum of the monomials of 
degree j in p. For each (a, b) we let aab (P) denote the coefficient of x a yb in qp. First we note 
the following elementary result. 

L e m m a  3.4. Suppose p E 7 9 is o f  degreed,  and h (x, y) = (x + y)d. Then 

qh=qp+EP,| sml. 
j=0 \ m=0 ] 

(3.3) 

It follows, for each (a, b), that 

Qab(P) ~ Qab(h). (3.4) 

Proof .  From (3.1) we obtain 

d 
h(x,  y) - 1 = (x + y)d _ 1 = p (x ,  y) -- 1 -- ~ _ , p j ( x ,  y) (1 -- (x + y ) d - j )  

I 

j=O 
(3.5) 

Dividing both sides of (3.5) by x + y - 1 yields the formula 

~--~d- 1 "x (1 (x y ) d - j )  j=o P Jr , Y) - q- 
qh(X, y) = qp(X, y)  -- 

(x + y  - 1) 

Ed-1 "x (1 (x y ) d - j )  j=O P Jr , Y) - + 
= qp(X, y) q- (3.6) 

(1 - (x q- y ) )  

Formula (3.6) and the formula for the finite sum of a geometric series yield (3.3). Since each 
term in the sum in (3.3) has a positive coefficient, inequality (3.4) follows. [ ]  

We next turn to the graph-theoretic aspect, which enables us to see geometrically how qp 
determines p. Given p ~ 79, we determine from qp a labeled Newton diagram, written G(p) ,  in 
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the following fashion. Let (a, b) be a lattice point with a and b nonnegative. We assign P to it 
when Qab(P) > 0; we assign N to it when Qab(P) < 0, and we assign 0 to it when Qab(P) = O. 

We call (a', b t) an immediate predecessor of (a, b) if a' and b' are nonnegative and either 
(a, b) = (a' -4- 1, b I) or (a, b) = (a', b' -4- 1). 

Def in i t ion  3.5. A lattice point (a, b) in G(p)  is called a sink if either $1) or $2) holds: 

S1) Qab(P) < 0 but Q(a-1)b(P) >- 0 and Qa(b-l)(P) >-- O. 

$2) Qab(p) ---- 0 but Q(a-1)b(P) > 0 and Qa~b-1)(P) >_ 0 and at least one of these is strictly 
positive. 

In other words, a lattice point m = (a, b) is a sink if either S 1') or $2') holds: 

S 1') m has the label N, and its immediate predecessors have the labels P or 0. 

$2') m has the label 0, its immediate predecessors have the labels P or 0, and at least one of 
these is a P. 

We sketch all possible pictures of sinks, using the P, N, 0 notation. Each picture shows only 
that part of the Newton diagram near the sink, which is located at the top right. The sinks in (3.7) 
satisfy S1), while those in (3.8) satisfy $2). 

P P 0 ) (3.7) 

P 0 0 0 , )  ( 0  
, ) ( 0 )  ~38, 

There is a similar definition of source, where all the signs in the definition of sink are reversed. 
We picture one source that is relevant in this problem. 

0 P 
0 ) '  (3.9) 

We show how these pictures work for two elements of 7'. 

E x a m p l e 3 . 6 .  Let p (x ,  y) = x § x y  § y 2. Then qp(x,  y) = 1-by. Therefore G(p) hasstrictly 
positive coefficients at (0, 0) and at (0, 1), and vanishing coefficients at (1, 0), (2, 0), (1, 1), and 
(0, 2). There is one source at (0, 0), and there are three sinks, at (0, 2), (1, 1), and (1, 0). Notice 
that the point (2, 0) satisfies neither S1) nor $2). 

E x a m p l e 3 . 7 .  Let p (x ,  y) = x3 + 3xy + y 3. Thuspis thesimplestcasefromSect ion2where 
d = 2N - 3. Here qp(x,  y) = 1 -4- x -4- y -4- x 2 - x y  -4- y2. We assign N to (1, 1), and P to 
the other lattice points (a, b) with a + b < 2. We obtain a sink satisfying S1) at (1, 1) and sinks 
satisfying $2) at (3, 0) and (0, 3). We illustrate the diagram by the following picture, where we 
have put the sinks in bold: 

(~ 1 P 0 
P N 0 
P P P 0 

(3.10) 
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Proposition 3.8. Let p E 7 ~, and let G(p) denote its labeled diagram. 

1) I f  G(p) has a sink at (a, b), then the coefficient o f  xay b in p must be positive. 

2) The number of  terms in p is at least as large as the number of  sinks. 

3) Then G(p) has a unique source, which is located at (0, 0). 

Proof. 1). Suppose S1) holds. The negative coefficient at (a, b) get multiplied by - 1  and 
hence contributes positively in determining the coefficient )~ of xay b in p. The nonnegative 
coefficients of  the immediate predecessors contribute nonnegatively to )~. Thus )~ > 0. 

Suppose $2) holds. The zero coefficient at (a, b) does not contribute to the coefficient )~ of  
xay b in p; if either immediate predecessor is positive, and both are nonnegative, then )~ > 0. 

In either case a sink at (a, b) forces a positive coefficient o f x a y  b in p. 

2) follows from 1). 

3) The source at (0, 0) is necessary to account for the - 1 in p - 1. Any other source would 
force p to have a negative coefficient, contradicting the definition of  7 ~. This statement follows 
from the same argument used to prove 1), with all signs switched. [ ]  

Let h(x + y) = (x + y)a. The diagram G(h) is easy to describe. All lattice points (a, b) 
with a + b < d have positive coefficients. There is one source, at the origin. There are d + 1 
sinks, at the lattice points (a, b) with a + b = d. Each of  these sinks is of  type $2). The main 
idea in this part of  the article is to relate G(p) to G(h). 

Since qp is of  degree d - 1, all points (a, b) with a § b = d are assigned 0. In many 
examples G(p) has many additional zeroes. We define the boundary of G(p) to be the collection 
of  d + 1 points (a, b) such that 

B1) (a',  b ~) is assigned 0 whenever a ~ > a and b ~ > b. 

B2) In each row and column we choose the minimal (a, b) satisfying B 1). 

We give an example, where we have written the boundary in bold. 0 j 
P 0 
P 0 0 . (3.11) 
P P 0 0 
P P 0 0 0 

For later convenience we consider those lattice points with negative coefficients in G(p). 
Recall that the degree of  p is d. We say that a lattice point with nonpositive coefficient is connected 
to the boundary if there is a collection of  lattice points Lj  for j = 0, 1 . . . . .  k such that 

1) L0 = (a, b), and if Lk = (d ,  b~), then a ~ + b ~ = d - 1. 

2) Qp(Lj )  <_ 0 for 0 _< j < k - 1. 

3) Lj+I = Lj  + (1, 0) or Lj+I = Lj  q- (0, 1) for each j .  

We say that a lattice point with nonpositive coefficient is separated from the boundary if it is 
not connected to the boundary. This concept is not strictly needed for the proof; it is useful for the 
following reason: although the procedure of Lemma 3.2 can create sinks, it cannot create sinks 
separated from the boundary. The simplest example of  a sink separated from the boundary is a 
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lattice point (a, b) with negative coefficient, but where the coefficients of (a § 1, b) and (a, b + 1) 
are both positive. The relevant part of the picture here is: 

P 
( N  P ) " (3.12) 

The diagrams G(h) and G(p) are related via a propagation of sinks. The next observation 
follows immediately from Lemma 3.4. 

O b s e r v a t i o n .  For p 6 79 the diagram G(p) is obtained from G(h) by changing some of the 
P ' s  to N ' s  or O's.  

We remarked above that the procedure of  Lemma 3.2 will not create sinks separated from 
the boundary; using this remark one could express the proof of  Proposition 3.11 below slightly 
differently. This remark bears also on the following warning. 

W a r n i n g .  By changing some P ' s  in G(h) to N ' s  for example, we generally end up with (the 
diagram of) a polynomial with some negative coefficients. The observation asserts only that, for 
p 6 79, we obtain G(p) in this way. 

L e m m a  3.9. Suppose that p ~ 79 and p has degree d. Then there are A, B with 0 < A, B < 
d - 1 such that (a, O) is assigned P for 0 < a < A and assigned 0 for A < a < d, and (0, b) is 
assigned P forO < b < B and assignedO for B < a < d. In particularG(p) has two sinks on 
the axes. 

P r o o f  Observe first that (0, 0) is assigned P because Qoo(p) = 1. Next we claim that no 
(a, 0) can be assigned N. If  this were true, then the point (a + 1,0) with maximal such a would 
be a source, contradicting Proposition 3.8. 

Next we claim that, if (a, 0) is assigned 0, then the point (a I, 0) must also be assigned 0 for 
each a I with a I > a. Again, if this were false, then we would have a source at the point where 
the first P after a 0 was assigned. Thus there is an A such that Qao(p) > 0 for 0 < a < A, but 
Qao(p) = 0 for a > A. 

By symmetry the analogous statements hold for points (0, b). The points (A + 1,0) and 
(0, B + 1) are sinks in G(p).  [] 

L e m m a  3.10. Suppose that p E 79 and p has degree d. Then G (p) has at least two sinks on 
the diagonal a + b = d. 

Proof. Since qp has degree d - 1, and the coefficients of  p are positive, there is at least one 
point (a, b) such that a + b = d - 1 and Qab > 0. The points (a + 1, b) and (a, b + 1) are then 
necessarily sinks in G(p). [] 

Proposition 3.11. For p ~ 7 9, the labeled Newton diagram G(p) has at least2 + [ - ~ ]  sinks. 

P r o o f  First we sketch the idea of the proof. The diagram G(h) has d + 1 sinks. We obtain 
G(p) from G(h) by changing finitely many coefficients from P to N or to 0. Those operations 
from Lemma 3.4 that change a coefficient in q from positive to positive do not change the diagram. 
As we flip coefficients, the sinks originally in G(h) propagate. There are three possibilities. 

1) A sink at (a, b) in G(h) moves eventually to a sink (e, f )  in G(p) with e < a and f < b. 
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2) A pair of  sinks in G(h) coalesces somewhere into one or zero sinks. 

3) A sink in G(h) eventually disappears. 

The idea is to show that, when 2) or 3) occurs, away from the boundary, in passing from p to 
p*, then there is an ancestor pl of  p such that G(p ~) has the same number of  sinks as G(p*). We 
will therefore be able to ignore these situations in seeking the minimal number of  sinks. Hence 
the minimal number of  sinks will arise when maximal coalescence takes place on the diagonal 
a § b = d - 1. We will see that two sinks must remain for points (a, b) with a § b = d. When 
d is odd the other d - 1 boundary sinks coalesce in pairs; the minimum number of  sinks will be 
2 § ~ . i .  When d is even three sinks remain and the other d - 2 sinks coalesce in pairs. These 
statements combine to yield the desired statement. 

We now fill in the details. First we study the coefficients along the axes. By Lemma 3.9 we 
obtain precisely two sinks on the axes. These have the pictures 

(P P 0) 

On the diagonal where a + b = d we assign 0 to each point. We consider the diagonal 
where a + b = d - 1. Consider Qab(P) for a + b = d - 1 and a, b > 0. If  Qab(P) < O, 
then Q(a-1)(b+l)(P) and Q(a+l)(b-1)(P) are positive. This conclusion follows by contradiction; 
if such a coefficient were not positive, then a source would exist at (a, b § 1) or (a § 1, b). 

We noted the situation on the axes. It follows that if (a, b) is a sink of  type S1) in G(p), then 
a > 0 and b > 0. Thus sinks cannot propagate to the edges of the diagram unless the coefficient 
there is zero. This situation occurs in Example 3.6. 

We first consider coalescense. When a § b = d - 1 such coalescense takes place; we may 
reverse the signs at alternate (a, b) beginning at (d - 2, 1) and ending no later than (1, d - 2). 
This procedure removes ~_i sinks when d is odd, and removes - ~  sinks when d is even. In 
either case we use the ceiling function to express the number of  remaining sinks as 

We claim that (3.13) gives a lower bound for the number of  sinks in G(p). The idea is that 
sinks can disappear or coalesce in the interior only when they have been unnecessarily created in 
an earlier step of  the propagation; hence the minimum number possible is given by (3.13). 

We next consider several cases of  coalescence. The others are handled in the same manner. 
First we suppose p e 7:' and G(p) has sinks of  type S1) at (a + 1, b) and (a, b + 1). Suppose 
additionally that these sinks coalesce into one sink at (a, b) with a + b < d - 1 when we form p~ 
by flipping the sign of  the coefficient at (a, b). We consider the behavior of  G (p) near (a, b) under 
this assumption. The coefficients a(a+l)(b+l), Qa(b+l), and Q(a+l)b must all be negative. The 
coefficients Q(a-1)(b+l), Q(a-1)b, Qab, Qa(b-1), and Q(a+l)(b-1) are necessarily nonnegative. 
We provide a picture for this situation, where (a, b) is at the center of the picture. There are 
similar pictures with the same N ' s  and where some of  the P ' s  are O's. There are also similar 
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pictures in case one or both of  the sinks is of  type $2). The proofs are essentially the same. 

P P N . 
P P 

(3.14) 

We obtain an ancestor p* of  p by flipping the coefficients at both (a + 1, b) and (a, b + 1). 
Then (a § 1, b § 1) must be a sink in G(p*). Here is a picture of  this situation, where x denotes 
an unknown coefficient: /x / P P N 

P P P x " 
P P 

(3.15) 

If  there is not a sink at (a + 1, b) nor one at (a, b + 1), then G(p*) and G(p') have the same 
number of  sinks. In this case an ancestor of p has the same number of  sinks in its diagram as p/ 
does, so the coalescence is irrelevant. 

On the other hand, suppose flipping the coefficients at both (a + 1, b) and (a, b + 1) back 
to P results in a sink at either (a + 2, b) or (a, b + 2), that is, at least one x is an N or 0, and its 
unspecified initial predecessor is nonnegative. If  both are N or 0, then flip one of  them back to P. 
Otherwise one is an N or a 0. In either case we have an ancestor with consecutive sinks on the 
same diagonal. Thus we have the same situation where coalescense occurs one diagonal further 
to the northeast. We may apply the same reasoning to this ancestor until we reach the diagonal 
given by a + b = d - 1. We conclude that interior coalescence of  sinks occurs only when some 
ancestor had already the same number of sinks as there were after the coalescence. 

We handle a second type of  coalescence. Suppose that we have a picture (along the axis) 
such as 

( N  0 0 0 / 
P P P 0 0 ' 

where the sinks are in bold. Replacing the P farthest to the east by a 0 results in 

t P P 0 0 0 ' 

and the two sinks have coalesced into one. As in the above proof concerning interior coalescense, 
consider the ancestor 

( N O , O )  
P P P P 0 " 

We have the same situation where coalescence can occur, but one diagonal to the northeast. Hence 
by iteration we can make sure that coalescence of  this type occurs at the boundary. 

Next we handle the possible coalescense of two sinks into none, and the closely related 
disappearance of  a sink. Suppose that a sink of  type S1) at (a, b) disappears somewhere in the 
interior when we flip the coefficient at (a, b - 1) or (a - 1, b) from P to N. Then necessarily 
the coefficient at (a, b - 2) or (a - 2, b) must be negative. We give a sample illustration, where 
x denotes an unknown coefficient. (The other cases are similar). 

P N x 
P P x 
P N P (3.16) 

P 
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In this situation flipping the P in the second row from the top creates 

P N x 
P N x 
P N P (3.17) 

P 

and the top sink has disappeared. In case each x had been an N, there would have been another 
sink at the far fight of the second row from the top of  (3.16), and passing to (3.17) would amount 
to the coalescense of  two sinks into zero sinks. 

Notice in all cases however that the bottom sink in (3.16) is separated from the boundary; 
therefore flipping the N to P there creates an ancestor p '  whose diagram has one fewer sink. In 
case both x ' s  are N, and there is another sink, the rest of  the picture falls back into the case of 
coalescence of  two sinks into one sink we treated above. In case this other sink is not there, the 
sink moved southward, but the number of  sinks is unchanged. 

In all cases there is an ancestor of  p with the same number of  sinks as we would have after 
the double coalescense or disappearance. 

We conclude that the number of  sinks in G(p) cannot be smaller than the number of  sinks 
obtained from G(h) by coalescing sinks only along the diagonal given by a + b = d - 2. We 
have noted earlier that we cannot remove the two sinks along the axes. We must also have two 
sinks on the diagonal a § b = d. We minimize in the case when the sinks on the axis are also 
on the diagonal. After this we minimize the number of  sinks by coalescing the other d - 1 pairs 
when d is odd, or d - 2 pairs when d is even. This shows that the number of  sinks in G(p) is at 
least the number in (3.12). [ ]  

Propositions 3.8 and 3.11 yield Theorem 1.1. Suppose p has N terms and is of degree d. 
Then N is at least the number of  sinks in G(p), so N _> 2 + - ~ ,  or 2N - 3 > d. 

The reader will find it instructive to study G(p) for p as in the next example. This polynomial 
has the maximum possible degree, namely seven, given that it has five terms, yet it is not one of 
the examples from Section 2. It can be shown that there are infinitely many odd positive integers 
2N - 3 for which there are distinct polynomials in P with N terms and of  degree 2N - 3. 

Example3 .12 .  Let p(x, y) = xV + yV + V (xSy + xyS + xy). Then G(p) has sinks at (7, 0), 
(5, 1), (1, 1), (1,5),  and (0, 7). The diagram can be found from the function qp, which satisfies 
the following formula: 

3 y2 x 3 ~ 1 2 qp(x, y) = l + x + y + x 2 - ~xy + + - x 2 y -  ~xy + y3 

1 1 3 § X 4 § ~x3y -- x2y 2 § ~xy  + y4 

+ x 5 + ~  x 4 y -  1-x32 y 2 - ~ x 2 y 3 §  x y 4 + y 5  

§ x 6 _ xSy + x4y2 _ x3y3 § x2y4 _ xy5 § y6.  (3.18) 

[l] 
[2] 
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