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1 Introduction

The goal of local class field theory is to classify abelian Galois extensions of a local field K.
Several definitions of local fields are in use. In this thesis, local fields, which will be defined
explicitly in Section 2, are fields that are complete with respect to a discrete valuation and
have a finite residue field. A prototypical first example is Qp, the completion of Q with
respect to the absolute value |a

b
|p := p−e, where e is the unique integer such that a

b
= pe c

d

and p does not divide the product cd.
Why study the abelian extensions of local fields? Initially, this area of study was mo-

tivated by questions about number fields. When K is a number field, its fractional ideals
form a free abelian group generated by the prime ideals, and thus the quotient of this group
modulo its principal ideals, called the class group CK , is abelian. There exists a canonical
everywhere unramified extension L/K such that the primes that split in L are precisely the
principal ideals in K and such that Gal(L/K) ' CK , so the study of class groups leads
naturally to the study of abelian extensions of K.

In some sense, number fields can be studied by investigating their behavior near a fixed
prime ideal p. Let K be a number field with ring of integers A. The ideal p is maximal in
A because the quotient A/p is a finite integral domain and hence a field. The inverse limit

Ap = lim←− A/pn

defines a complete local ring containing A with a unique maximal ideal given by the kernel
of the map Ap → A/p. The field of fractions Kp of Ap is a local field, which contains K as

1



a dense subfield. If the finite field A/p has characteristic p, then Kp is a finite extension of
Qp. This construction can be repeated for all global fields, which include algebraic function
fields over a finite field as well as number fields, relating the study of local and global fields.

At first, results in local class field theory were derived as a consequence of the global case,
but it was soon discovered that local class theory can be constructed independently and in
fact provides tools that can be used to prove global theorems. Motivated by an analogy with
the theory of complex multiplication on elliptic curves, Lubin and Tate showed how formal
groups over local fields can be used to deduce several foundational theorems of local class
field theory, beginning by explicitly describing the maximal abelian extension Kab of a local
field K. Their 1965 paper [4] provides a particularly elegant and approachable foundation
for the subject by introducing formal power series that in some sense define a group law
without a group, which will be used to provide a set of elements that are adjoined to K
to produce certain abelian extensions with a natural module structure. Milne provides a
concise, detailed account on the connection to multiplication on elliptic curves (see [6, pg
36-37]), though this is best read after one is familiar with the applications of the Lubin-Tate
formal groups defined in Section 4.

More specifically, it is often useful to decompose extensions of local fields into what
is called their ramified and unramified parts. When K is a local field and O its ring of
integers, the ring O contains a unique maximal ideal m that is also its only prime ideal.
In an unramified extension, this ideal remains prime, so unramified extensions occur in
bijection with extensions of the residue field k = O/m. It follows that these extensions can
be constructed canonically and that a maximal unramified extension Kur ⊂ Kab exists. The
Galois group Gal(Kur/K) is isomorphic to Ẑ, the inverse limit of the cyclic groups Z/nZ for
all positive n. Unramified extensions are discussed in greater detail in Section 2.2.

By contrast, a maximal totally ramified extension, i.e., an extension in which the prime
ideal m of K ramifies as much as possible, does not exist canonically because the composite
of two totally ramified extensions is not always totally ramified. One of the first applications
of Lubin-Tate formal groups is to construct a maximal totally ramified abelian extension
Kπ ⊂ Kab corresponding to each prime element π ∈ Kab. In Section 6.1, we will prove that
Kab = Kπ · Kur; hence, this construction provides the desired decomposition of Kab into
unramified and totally ramified parts.

Additionally, Lubin-Tate formal groups can be used to construct an injective homo-
morphism φ : K× → Gal(Kab/K) called the Artin map, named after a similar map first
constructed in the global case by Emil Artin. The Artin map gives an isomorphism between
the subgroup Gal(Kab/Kur) and O×, the integral units of K. Combining this information,
we get the following field diagram:

Kab

Kπ

bZ zzzzzzzz

O× EEEEEEEE Kur

O×
EEEEEEEEE

bZxxxxxxxxx

K
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In particular, Gal(Kab/K) ' Ẑ × O×. By choosing a prime element of K, we obtain an

isomorphism K× ' Z × O×. As K×/O× ' Z is dense in Ẑ and φ maps π to an element

that generates this subgroup of Gal(Kur/K) ' Ẑ, the image φ(K×) is dense in Gal(Kab/K).
The Artin map satisfies further functorial properties as well. For example, this map factors
through quotients of the norm groups N(L×) of finite abelian extensions L/K to yield
isomorphisms K×/N(L×)

∼→ Gal(L/K).
With the Langlands program, work is now being done on non-abelian class field theory,

although this is beyond the scope of this thesis.
In Section 2, we will formally introduce local fields and their extensions and prove some

preliminary results. In Section 3, we will discuss formal group laws in general, and in
Section 4, we will define Lubin-Tate formal groups. In Section 5, we will state a theorem
characterizing the Artin map and begin its proof by constructing homomorphisms to the
Galois groups of large abelian extensions of K. In Section 6, we will show that the abelian
extensions that we have constructed are in fact the maximal abelian extension Kab, prove
that the Artin map factors through quotients of finite norm groups, and conclude with a
summary of these results. In Section 7, we provide an application of these results to the
problem of counting abelian extensions with certain Galois groups.

The results in Sections 3, 4, and 5 have become fairly standard and were written in
consultation with Milne [6], Iwasawa [3], Serre in [1], and the original Lubin Tate [4]. Milne
[6] and Serre [1] both give cohomological proofs of the existence of the Artin map, and
this result is assumed in Lubin Tate [4]. I will not assume that the local Artin map exists
and will instead prove this in Section 6. Consequently, for this section as well as for the
characterization of the norm groups of totally ramified extensions in Section 5, I will follow
Iwasawa [3] instead. Section 7 represents my own work, in frequent consultation with Frank
Calegari.

In my work on this project, I am indebted to many people. First and foremost, I would
like to thank my thesis adviser Frank Calegari for help on all levels of this project, and
particularly for suggesting many exercises that have helped improve the depth of my under-
standing of this material. John Tate has also been very generous with his time, allowing me
to discuss these topics with him, both in person and over e-mail. Greg Valiant read a draft
and provided many helpful comments. I am also indebted to Dick Gross, who first suggested
that I study Lubin-Tate formal groups, read a draft of this paper, and has been a mentor to
me for the past several years. Finally, I would like to thank the Harvard Math Department
for challenging me and for making these past four years quite enjoyable.

2 Preliminaries

Let K be a field. A discrete valuation on K is a function v : K× → R such that
(a) v is a group homomorphism, i.e., v(xy) = v(x) + v(y) for all x, y ∈ K;
(b) the image of v is a discrete subgroup of R;
(c) v(x+ y) ≥ min(v(x), v(y))

with the convention that v(0) = ∞. A discrete valuation defines a topology on K with
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respect to the metric |x− y| = c−v(x−y) for any constant c > 1. The choice of c is unimpor-
tant, because the resulting topologies are equivalent. The map | · | : K → R≥0 is called a
multiplicative valuation (to contrast with the additive discrete valuation defined above) and
the restriction to K× gives a multiplicative homomorphism K× → R×+. By property (c),
|x+ y| ≤ max(|x|, |y|) for all x, y ∈ K; such valuations | · | are said to be non-archimedian.

The ring of integers or valuation ring O of K is the set of elements with non-negative
valuation. More generally, the valuation ring is the set {x ∈ K : |x| ≤ 1}, a definition that
applies to fields where only a multiplicative and not a discrete valuation is defined. The ring
O has a unique maximal ideal m = {x ∈ O : v(x) > 0} = {x ∈ O : |x| < 1} because all
elements x ∈ O with valuation 0 are units, i.e., m = O − O×. Hence, O is a local ring.
When v is normalized so that its image is equal to Z, an element π ∈ K such that v(π) = 1
is called an uniformizer or equivalently a prime element. For a fixed uniformizer π, every
a ∈ K can be expressed uniquely in the form a = uπn where u ∈ O× and n = v(a) ∈ Z.
It follows that O is a discrete valuation ring and its non-trivial ideals have the form πnO,
n ∈ Z+. The quotient k = O/m is called the residue field of K.

A field, which is complete with respect to the topology defined by a discrete valuation v
and such that its residue field k is finite, is called a local field. A good first example is Qp, the
completion of Q with respect to the p-adic metric, a local field with ring of integers Zp. The
ring Zp can be thought of as the set of power series

∑∞
i=0 aip

i with coefficients ai ∈ Z and
p chosen as a natural uniformizer. Partial sums of these series form a sequence of rational
integers that converge in the p-adic topology to an element of Zp. If the coefficients are
restricted to a lift of the residue field k ' Z/p, then these power series uniquely correspond
to elements of Zp. Similarly, elements of Qp uniquely correspond to Laurent series

∑∞
i=−n aip

i

with ai ∈ {0, 1, . . . , p− 1}.
If the prime p is replaced with an indeterminate variable T , the resulting field is still

local. In fact, these examples completely characterize our definition of a local field, as seen
in the following Theorem (for proof, see Serre [7, pg 33-40]).

Theorem 2.1. Let K be a local field.
(a) If K has characteristic 0, then K is isomorphic to a finite extension of Qp

for some prime p.
(b) If K has characteristic p, then K is isomorphic to k((T )), the field of Laurent series

over a finite field k of characteristic p.

Throughout this thesis, let the residue field k be a field of order q and characteristic p.

2.1 Hensel’s Lemma and Teichmüller Representatives

One key tool in studying the algebra of local fields is Hensel’s Lemma, which gives a criterion
for when a polynomial has roots near a particular element of a local field K. There are many
versions of this result. This formulation and proof are taken from Cassels Fröhlich [1].

Lemma 2.2 (Hensel’s Lemma). Let K be a local field and let f(X) ∈ O[X]. Let α0 ∈ O be

4



such that |f(α0)| < |f ′(α0)|2. Then there exists α ∈ O such that f(α) = 0 and

|α− α0| ≤
∣∣∣∣ f(α0)

f ′(α0)

∣∣∣∣ .
Proof. We will define a Cauchy sequence α0, α1, α2, . . . of approximate roots of f(X) that
converges to a root α by an iterative procedure similar to Newton’s method. Define a
sequence of functions fi(X) ∈ O[X] by the algebraic identity

f(X + Y ) = f(X) + f1(X)Y + f2(X)Y 2 + · · ·

over two independent variables. So f1(X) = f ′(X). Define β0 by the equation

f(α0) + β0f1(α0) = 0.

Because fi(α0) ∈ O, |fi(α0)| ≤ 1, which means that

|f(α0 + β0)| ≤ max
i≥2
|fi(α0)βi0| ≤ max

i≥2
|β0|j ≤

|f(α0)|2

|f1(α0)|2
< |f(α0)|.

Similarly, by expanding the polynomial f1(X + Y ), |f1(α0 + β0) − f1(α0)| < |f1(α0)|. Let
α1 = α0 + β0. It follows from these equations that

(a) |f(α1)| ≤ |f(α0)|2

|f1(α0)|2
, (b) |f1(α1)| = |f1(α0)|, (c) |α1 − α0| ≤

|f(α0)|
|f1(α0)|

.

By hypothesis, |f(α0)| < |f1(α0)|2, so (a) implies that |f(α1)| < |f(α0)|, i.e., v(f(α1)) >
v(f(α0)). By repeating this process, we can construct a sequence α0, α1, α2, . . ., where each
pair αn, αn+1 also satisfies (a), (b), and (c). Because v is discrete, v(f(αn+1)) > v(f(αn))
implies that f(αn) approaches 0 as n gets large. Combining this fact with (b) and (c), we
see that the sequence α0, α1, α2, . . . is Cauchy. Consequently, because K is complete, there
exists α = limn→∞ αn in K, which has the desired properties. In fact, α is unique, because
each iteration of this procedure essentially computes α mod mn for increasing n.

It is worth illustrating how Hensel’s Lemma may be applied. One example that highlights
the analogy with Newton’s method in R is finding a square root α of 2 in Q7, i.e., a root of
the polynomial f(X) = X2 − 2. Take α0 = 3 because f(3) ≡ 0 mod 7, so v(f(α0)) = 1 and
v(f ′(α0)) = 0. Hence, v(f(α0)) > 2v(f ′(α0)), so |f(α0)| < |f ′(α0)|2 and the hypothesis of
Hensel’s Lemma are satisfied. The equation f(α0) + β0f1(α0) = 0 gives β0 = −7/6, which
is the 7-adic integer 7 + 72 + 73 + · · · (for a leisurely introduction to p-adic arithmetic, see
Gouvêa [2]). So α1 = α0 + β0 = 3 + 7 + 72 + 73 + · · · which indicates that α ≡ 10 mod 72.
The next iteration of this process shows that α ≡ 108 mod 73. Continuing in this manner,
this process very slowly constructs α ∈ Q7 such that α2 = 2.

Another useful construction is the Teichmüller representative, which provides an inverse
of sorts to the map O× → k× by associating each α ∈ k× with a (q − 1)-st root of unity a
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in O×. The Teichmüller representatives are in bijection with the residue field and have the
same multiplicative structure. Given any lift a ∈ O× of α ∈ k×, define

a := lim
n→∞

aq
n

.

Because the residue field has q elements, aq ≡ a (mod m) for each a ∈ O by an analogue of
Fermat’s Little Theorem. Furthermore, if a ≡ b (mod mn), then aq ≡ bq (mod mn+1). So
the sequence, aq

n
is clearly Cauchy, and hence completeness of local fields implies that its

limit is in O×. The limit a clearly satisfies Xq−X, and so is in bijection with an element of
k×, because a, and hence a, is non-zero. Of course, additively, elements of O× behave quite
differently from elements of k×, but multiplicatively the bijection between a and its image
in the residue field is a homomorphism.

Alternatively, Hensel’s Lemma can be used to prove the existence of Teichmüller repre-
sentatives. Because the multiplicative group of the residue field k is cyclic of order q − 1,
the polynomial f(X) = Xq−1 − 1 splits modulo m into q − 1 distinct linear factors. For any
a ∈ O with valuation 0, a 6= 0 mod m, so aq−1 − 1 ≡ 0 mod m. However, the derivative
(q − 1)aq−2 6= 0 mod m because both terms on the left hand side are units. In particular,
v(f(a)) ≥ 1 > 0 = 2v(f ′(a)), i.e., |f(a)| < |f ′(a)|2. By Hensel’s Lemma, there exists a
(q − 1)-st root of unity α such that α − a ∈ m, and because we can choose a to be in each
of the q − 1 distinct residue classes, there must q − 1 distinct roots in K. In identifying a
representative for a particular element of O×, however, the construction via exponentiation
is preferred to the more complicated construction given in the proof of Hensel’s Lemma.

One important application of Teichmüller representatives is in the proof of the following
lemma.

Lemma 2.3. Let K be a local field with integers O, maximal ideal m, and residue field k.
Then O× ∼→ k× × (1 + m).

Proof. By the construction given above, the map a 7→ a from a ∈ O× to its Teichmüller rep-
resentative in O× is a multiplicative homomorphism. By construction, the set of Teichmüller
representatives is isomorphic to k×, and so a

∼7→ a mod m, which we consider as an element
of k×. Because a = limn→∞ a

qn , a ≡ a mod m, so in particular, a/a ∈ 1 + m. Hence, the
map a→ a mod m× (a/a + m) gives a homomorphism from O× to k× × (1 + m), which is
easily seen to be an isomorphism.

2.2 Extensions of Local Fields

An algebraic extension E/K is separable if the minimal polynomial of every α ∈ E does not
have any multiple roots. An algebraic extension is normal if every irreducible polynomial
over K with a root in E splits in E. When an extension is both normal and separable, for
each α ∈ E, the number of distinct automorphisms of K(α)/K equals the degree of this
extension, and E/K is said to be Galois. When a separable extension fails to be normal, it
can be embedded in its Galois closure by taking a splitting field. However, when an extension
fails to be separable, this presents a more serious problem, because there is no larger field
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in which an irreducible polynomial with multiple roots will yield the appropriate number
of distinct automorphisms. As a result, it is customary to assume separability from the
beginning; thus, requiring an extension E/K to be Galois simply amounts to replacing E
with its Galois closure if necessary.

When K has characteristic zero, then every algebraic extension is separable, and K is
what is called a perfect field. When K has characteristic p, K may not be perfect, so the
additional hypothesis that extensions of K are separable will be required. Fix a separable,
algebraic closure Ks of K, which is equal to the algebraic closure Kal in the case where K
is a perfect field. Throughout this thesis, “an extension of K” will mean “a subfield of Ks.”
In particular, all extensions will be assumed to be algebraic and separable.

Let L be a finite extension of a local field K of degree n. If σ1, . . . , σn denote the n
distinct embeddings of L into its Galois closure over K, then there exist homomorphisms
TrL/K : L→ K and NL/K : L× → K× defined by

TrL/K(α) =
n∑
i=1

σi(α), NL/K(α) =
n∏
i=1

σi(α)

called the trace map and norm map respectively. The norm map will prove particularly
important, and its image will be abbreviated by N(L×) whenever there can be no confusion
about the ground field K. This group will be characterized as a subgroup of K× by Theorem
6.9.

The valuations v and | · | can be extended uniquely to L by the formulas (see [5, pg
105-106]):

vL(α) =
1

n
v(NL/K(α)), |α|L = n

√
|NL/K(α)|.

In particular, field automorphisms preserve v and | · |. Note that if α ∈ K×, then NL/K(α) =
αn, so vL = v on K× and likewise for | · |L. It will most often be convenient to normalize v
so that v(π) = 1 for primes π ∈ K even though the image of vL may not be contained in Z.

Infinite extensions of local fields are not themselves local, yet a local ring and maximal
ideal can nonetheless be defined. If [E : K] is infinite, define OE =

⋃
OL and mE =

⋃
mL

where the unions are taken over all K ⊂ L ⊂ E such that L/K is finite. Because v and | · |
extend uniquely to each finite L/K, they also extend to E, although v may no longer be
discrete. As in the finite case, Os = {α ∈ Ks | |α| ≤ 1} and ms = {α ∈ Ks | |α| < 1}, giving
further justification to these names.

For any Galois extension E/K, which may or may not be infinite, define a topology on
Gal(E/K) where the sets

Gal(E/L), E ⊃ L ⊃ K, [L : K] <∞

form a fundamental system of neighborhoods of the identity. It follows that two elements of
Gal(E/K) are “close” if they agree on a large subfield of E that is finite over K. If E/K is
finite, then Gal(E/E) = {1} is open and the topology on Gal(E/K) is discrete. If E/K is
infinite, then this is not the case.
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It follows from this definition that Gal(E/K) is compact. To see this, consider the map
Gal(E/K)→

∏
Gal(L/K) where each component is the canonical projection map σ 7→ σ|L

and the product is taken over all L ⊂ E that are finite and Galois over K. Because E is
the union of finite Galois extensions, the map is injective. The topology described above is
induced on Gal(E/K) via this map by endowing each Gal(L/K) with the discrete topology
and the product with the product topology. Any closed subset of this product is compact, so
to show that Gal(E/K) is compact it suffices to show that its image in

∏
Gal(L/K) is closed.

For every point (. . . , σL, . . .) not in the image, there must be some components σL′ and σL′′
such that L′ ⊂ L′′ and σL′′|L′ 6= σL′ . Let U =

∏
L6=L′,L′′ Gal(L/K) × {σL′} × {σL′′}. Then

U is an open subset of
∏

Gal(L/K) that separates this point from the image of Gal(E/K).
So the image of Gal(E/K) in this product is closed, and therefore, Gal(E/K) is compact.

Local class field theory studies the abelian extensions of a local field. The composite of
two abelian extensions is again abelian because the group Gal(L1 · L2/K) is a subgroup of
the product Gal(L1/K) × Gal(L2/K) via the homomorphism σ 7→ (σ |L1 , σ |L2). Hence, it
makes sense to define a maximal abelian extension Kab of K as the composite of all finite
ones.

One natural way to describe an abelian extension L/K is to separate it into a tower of its
unramified and totally ramified parts. As a consequence of Lemma 2.4 below, L contains a
canonical unramified extension F of K obtained by adjoining the Teichmüller representatives
of the residue field kL to K. The extension L/F will be totally ramified. By contrast, no
canonical totally ramified subextension of L exists, a fact that will motivate the construction
of Kπ in Section 5.

There are many equivalent definitions of when an extension is ramified. In the local
context, an extension L/K is unramified if a prime element π of K remains prime in L,
i.e., if every α ∈ L can be written as uπn for some u ∈ O×L and n ∈ Z. The extension
is ramified otherwise. For finite extensions, the ramification degree of L/K is the unique
positive integer e such that the image of the extension of the normalized valuation v of K to
L× is 1

e
Z. A prime element of K would have valuation 1, while a prime element of L would

have valuation 1
e
. Note that if e = 1, then prime elements of K are prime in L and the

extension is unramified. If e = [L : K] then L/K is totally ramified. Equivalently, it follows
from the definition of vL that L/K is totally ramified if and only if N(L×) contains a prime
of K. If p does not divide e then the extension is tamely ramified, and it is wildly ramified
otherwise.

2.2.1 Unramified Extensions

Unramified extensions are characterized through the following important lemma.

Lemma 2.4. Let L/K be a finite, Galois extension. If L/K is unramified, then there
is a canonical isomorphism Gal(L/K)

∼→ Gal(kL/k) where kL is the residue field of L.
Conversely, if Gal(L/K) ' Gal(kL/k), the L/K is unramified.

Proof. Let L/K be finite and Galois, let kL = k[a], and let g(X) be the minimal polynomial
for a. Because k is finite, it is perfect, and g(X) has distinct roots. If g(X) is any lift of
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g(X) to L, then by Hensel’s Lemma there exists a unique α ∈ L such that g(α) = 0 and
α ≡ a mod m. Because L is Galois, g splits in L, so g splits in kL, and kL/k is Galois.

Automorphisms of L/K preserve OL and mL, so there is a well-defined homomorphism
Gal(L/K)→ Gal(kL/k). When L/K is unramified, [L : K] = [OL : O] = [OL/(π) : O/(π)]
= [kL : k], so L = K(α) and each σ ∈ Gal(L/K) maps α to a distinct conjugate. The
conjugates of α are distinct in kL, because finite fields are perfect, which means that g is
separable. Thus, by Hensel’s Lemma, the map Gal(L/K) → Gal(kL/k) is surjective, and
therefore an isomorphism.

Conversely, if Gal(L/K) ' Gal(kL/k), then [OL/mL : O/m] = [kL : k] = [L : K] =
[OL/O] = [OL/(π) : O/(π)]. As OL has only one ideal of each index, this implies that
mL = (π). In particular, π remains prime in L, so L/K is unramified.

The composite of two unramified extensions is again unramified, so it makes sense to de-
fine a maximal unramified extension Kur of K as the union of all finite unramified extensions.
One natural question is whether Kur ⊂ Kab. This is true, and follows as a consequence of
the following lemma.

Lemma 2.5. For any local field K and positive integer n, there exists a unique unramified
extension L of degree n over K, which is Galois with cyclic Galois group.

Proof. It is well known that the elements of the finite field k of order q are precisely the
roots of Xq −X in the separable closure of Z/p. Furthermore, there exists a unique cyclic
extension of degree n over k consisting of the roots of Xqn −X. Let g(X) be the minimal
polynomial for a primitive (qn − 1)-st root of unity over k and let g(X) be any lift of g(X)
to K. Then g is irreducible because it is irreducible mod m. Let L be the splitting field of
g over K. By the theory of Teichmüller representatives, the roots of g in L are in bijection
with the roots over k, so they are distinct. Hence, L/K is separable and Galois, and because
the degree of g is equal to the degree of g, [L : K] = [Fqn : k] = n. Let kL be the residue field
of L. By construction, kL ⊃ Fqn , so [kL : k] ≥ n. But [L : K] is always greater than or equal
to [kL : k], so kL = Fqn . Because Gal(L/K) maps onto Gal(kL/k) and these groups have
the same order, they are isomorphic, so from Lemma 2.4, L/K is an unramified extension
of degree n, as desired. In particular, Gal(L/K) ' Gal(kL/k), which is cyclic because kL/k
is a finite Galois extension of finite fields.

For uniqueness, assume two distinct unramified extensions L,L′ existed. Then the com-
posite extension LL′ would also be unramified over K. By the above observation that the
Galois groups of L/K and L′/K are both Z/n, and the Galois group of LL′/K must be
a finite cyclic group as well. Let E = L ∩ L′, also an unramified extension of K of order
n/m. Then Gal(L/E) ' Gal(L′/E) = Z/m, because this extension is unramified. Because
L∩L′ = E, Gal(LL′/E) ' Z/m×Z/m, which is not cyclic, contradicting the fact that this
extension is unramified. This contradiction guarantees uniqueness.

Not only is Gal(L/K) cyclic when L/K is unramified, but it has a canonical generator.
Let r = [kL : k], where k is a finite field of order q = pf . Then the map Frob(x) = xq

is an automorphism of kL/k called the Frobenius automorphism. Because kL has order qr,
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Frobr(x) = xq
r

= x for all x ∈ kL so Frob has order dividing r. If Frobd were the identity
for some d < r, then the elements of kL would all be roots of Xqd − X, which cannot be
because qd < #kL. So Frob has order r and thus generates Gal(kL/k). By the isomorphism,
for unramified extensions there is a unique automorphism σ ∈ Gal(L/K) such that σx ≡ xq

(mod π) for all x ∈ L and that generates Gal(L/K). This automorphism is denoted by
FrobL/K .

It follows from Lemma 2.5 that Kur = ∪Kn where Kn denotes the unique unramified
extension of K of degree n. By the theory of Teichmüller representatives, Kn is in fact the
splitting field of Xqn−X over K. Furthermore, the Frobenius automorphism extends to Kur

and can be identified as the image of the generators of Gal(Kn/K) = Z/n in

Gal(Kur/K) = Ẑ = lim←− Z/nZ.

2.2.2 Ramified Extensions

In general, ramified extensions are more complicated than their unramified counterparts. To
study these extensions, it is useful to keep more precise track of the behavior of elements of
its Galois group. For any Galois extension L/K, there exist subgroups

In = {σ ∈ Gal(L/K) | v(x− σx) ≥ n+ 1 ∀x ∈ L}

called higher ramification groups for each n ∈ N. The higher ramification groups clearly
form a chain of decreasing subgroups Gal(L/K) ⊇ I0 ⊇ I1 ⊇ · · · . The group I0 is the inertia
group I that arises as the kernel of the exact sequence

0→ I → Gal(L/K)→ Gal(kL/k)→ 0

because σ ∈ I0 if and only if σ acts trivially on the residue field.
When L/K is unramified, Gal(L/K) ' Gal(kL/k) by Lemma 2.4, so the inertia group is

trivial. Conversely, if the inertia group is trivial, then Gal(L/K) ' Gal(kL/k), which implies
that L/K is unramified. In general, Gal(L/K)/I0 ' Gal(kL/k) is the Galois group of the
largest unramified subextension of L/K.

When L/K is totally ramified, the index [mL : m] = n, which means that [kL : k] =
[OL/mL : O/m] = [L : K]/[mL : m] = n/n = 1. So kL = k and Gal(kL/k) is trivial, which
means that I0 = Gal(L/K). In this case, the higher ramification groups can be identified by
computing v(π − σπ) for a fixed prime π ∈ L, a fact that is proven in the following lemma.

Lemma 2.6. Let L/K be totally ramified and let π ∈ L be any prime element. Then the
group In = {σ ∈ Gal(L/K) | v(π − σπ) ≥ n+ 1}.

Proof. If σ ∈ In, then from the original definition, it is clear that v(π−σπ) ≥ n+1. To show
conversely that if v(π−σπ) ≥ n+1 then σ ∈ In, it suffices to show that v(π−σπ) ≤ v(x−σx)
for all x ∈ L.

Let a1, . . . , aq ∈ L denote any lift of the residue field kL such that the ai are distinct
modulo mL. Then any x ∈ L can be written uniquely as b−nπ

−n + · · · + b0 + b1π + · · ·
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where the coefficients bi are in the set {a1, . . . , aq}. Choose the set {a1, . . . , aq} to be the
Teichmüller representatives in L. Then the ai are fixed by Gal(L/K) = I0. So given x ∈ L
and σ ∈ Gal(L/K), x−σx = b1(π−σπ)+b2(π2−(σπ)2)+· · · , because the terms of valuation
less than one must vanish because Gal(L/K) = I0. This expression can be factored to yield
x−σx = (π−σπ)(b1 + b2(π+σπ) + · · · ). As x−σx is the product of π−σπ and an integer,
it follows that v(π − σπ) ≤ v(x− σx), completing this proof.

The following lemma will prove useful later on.

Lemma 2.7. Let L/K be a finite Galois extension of local fields. Then if the residue field
of L has order q′, [I0 : I1] | (q′ − 1) and [In : In+1] | q′ for n ≥ 1. Furthermore, for large
enough m, In = {1} for all n > m, so I1 has p-power order.

Proof. For the first claim, we will prove something slightly stronger: namely, that there is
a homomorphism I0 → O×L/(1 + mL) with kernel I1 given by σ 7→ σπ/π where π is a fixed
prime in L. To see this, note that σπ and π have the same valuation, so this element is
indeed a unit. For σ, τ ∈ I0, τ(σπ/π) ≡ σπ/π mod mL, so τσπ/(τπ) ≡ σπ/π and hence
τσπ/π ≡ (τπ/π)(σπ/π) mod mL. In particular, this map is a homomorphism, as claimed.
If σ ∈ I1, then σπ ≡ π mod m2

L, which by division implies that σπ/π ∈ 1 + mL, so I1 is
contained in the kernel of this map. For the converse, if σπ/π ∈ 1 + mL, then σπ ≡ π
mod m2

L. By definition I0 acts trivially on the residue field. Hence, because σ fixes π
mod m2

L, σ ∈ I1, proving that this is the kernel of the homomorphism. It follows that
I0/I1 ↪→ O×L/(1 + mL) ' k×L , so in particular, this quotient has order dividing q′ − 1.

More generally, there is an injective homomorphism In/In+1 ↪→ (1+mn
L)/(1+mn+1

L ) given
by the map σ 7→ σπ/π for any n ≥ 0. From this map, it is clear that In/In+1 has p-power
order if and only if every element 1 + πnu of (1 + mn

L)/(1 + mn+1
L ) does. The latter follows

immediately from the isomorphism (1+mn
L)/(1+mn+1

L )→ kL given by the map 1+πnu 7→ u.
Finally, we show that for large enough index, In is trivial. For each σ ∈ Gal(L/K)\{1},

there is some x ∈ K not fixed by σ. Let sσ = v(x− σx) for this particular x. As Gal(L/K)
is finite there is some integer m greater than sσ for each non-trivial σ. For all n > m, In is
clearly trivial. It follows that I1 has p-power order, completing this proof.

3 Formal Group Laws

For any commutative ring A with identity, we define A[[T ]] to be the ring of formal power
series

∑
i≥0 aiT

i, where addition and multiplication of two power series are defined in the
usual way. Power series in several variables can be defined similarly. When f ∈ A[[T ]] and
g ∈ TA[[T ]] then the composition f(g(T )) makes sense. However, if g has a nonzero constant
term, then computing the constant term of f(g(T )) would require an infinite sum; because
we are dealing with purely formal sums, we have no notion of convergence, and this is not
possible.

A commutative formal group law is a power series F ∈ A[[X, Y ]] such that
(a) F (X, Y ) = F (Y,X) in A[[X, Y ]];
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(b) F (0, Y ) = Y and F (X, 0) = X;
(c) F (X,F (Y, Z)) = F (F (X, Y ), Z) in A[[X, Y, Z]].

Here 0 ∈ A is the additive identity in A[[T ]]. Note that substitution is permitted in (c)
because (b) implies that F (X, Y ) has no constant term.

The power series F can be thought of as providing a group operation for the variables
X and Y prior to identifying a group in which these elements belong. Indeed, the notation
X+F Y := F (X, Y ) is sometimes adopted to make idea more obvious. In this light, property
(a) gives commutativity, (b) identity, and (c) associativity for elements of TA[[T ]]. Property
(b) is often given as F (X, Y ) ≡ X +Y (mod deg. 2), and this substitution is equivalent (see
[3, pg 50] or [6, pg 16-17] for the non-obvious implication).

A simple but important example of a commutative formal group law is the polynomial
F (X, Y ) = X + Y +XY . We will return to this example later.

To show that inverses exist in TA[[T ]] for the group law F (X, Y ), it suffices to show that
the indeterminate T is invertible. This is accomplished by the following lemma.

Lemma 3.1. There is a unique h(T ) ∈ TA[[T ]] such that F (T, h(T )) = 0.

Proof. From property (b), it is clear that F (X, Y ) = X+Y +
∑

i,j≥1 aijX
iY j; i.e., F contains

no higher order terms in only one variable. Hence, the equation F (T, h(T )) = 0 can be solved
by inductively constructing polynomial solutions hn(T ) to the equations F (T, hn(T )) ≡ 0
(mod deg. n). It is easy to see that h2(T ) = −T + a11T

2. Given a polynomial hn(T )
such that F (T, hn(T )) ≡ 0 (mod deg. n), then the equation F (T, hn(T ) + bn+1T

n+1) ≡ 0
(mod deg. n + 1) amounts to a one-variable linear equation in the coefficients of hn and F ,
which can certainly be solved.

Note that if f(T ) ∈ TA[[T ]], then F (f(T ), h ◦ f(T )) = 0. Hence, for any commutative
formal group law F , the addition law f+F g := F (f(T ), g(T )) makes TA[[T ]] into an abelian
group. In what follows, let iF : TA[[T ]] → TA[[T ]] be the map that takes a power series f
to its inverse iF ◦ f with respect to the commutative formal group law +F .

Let F (X, Y ) and G(X, Y ) be two commutative formal group laws over the same ring A.
A power series f ∈ TA[[T ]] such that f(F (X, Y )) = G(f(X), f(Y )), or, more familiarly,
f(X +F Y ) = f(X) +G f(Y ), is called a homomorphism and written as f : F → G. If there
exists a power series g ∈ TA[[T ]] such that g : G → F and f ◦ g = g ◦ f = T , then f is
an isomorphism. As usual, a homomorphism f : F → F is called an endomorphism. For
example, when F (X, Y ) = X + Y + XY , f(T ) = (1 + T )p − 1 is an endomorphism. In
general:

Lemma 3.2.
(a) The set Hom(F,G) is a subgroup of TA[[T ]] with respect to the addition law +G.
(b) End(F ) forms a ring with respect to the addition law +F and the multiplication law

of composition.

The proof of this lemma will require the associativity of composition in the ring TA[[T ]],
which we might as well check now. This particularly clever proof of associativity is given in
Milne [6, pg 15].
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Lemma 3.3. Let f, g, h ∈ TA[[T ]]. Then f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Proof. For any f, g, h ∈ TA[[T ]], (fg) ◦ h = (f ◦ h)(g ◦ h). In particular, fn ◦ g = (f ◦ g)n.
When f = T n, both (f ◦ g) ◦h and f ◦ (g ◦h) equal (g ◦h)n, and when f =

∑
n≥1 anT

n, both
equal

∑
n≥1 an(g ◦ h)n.

When dealing with power series in multiple variables, we will abuse notation slightly and
write G ◦ f for G(f(X), f(Y )). For example, f : F → G is a homomorphism if and only if
f ◦ F = G ◦ f .

Proof of Lemma 3.2. Let f, g ∈ Hom(F,G) and let h = f+Gg. Then h◦F = f ◦F+Gg◦F =
G ◦ f +G G ◦ g = (f(X) +G f(Y )) +G (g(X) +G g(Y )). By associativity and commutativity
in TA[[T ]], this equals (f(X) +G g(X)) +G (f(Y ) +G g(Y )) = h(X) +G h(Y ) = G ◦h. Hence,
h ∈ Hom(F,G). Using associativity and commutativity again, it follows that G(G,G◦ iG) =
(X+GY )+G(iG(X)+GiG(Y )) = (X+GiG(X))+G(Y+GiG(Y )) = 0+G0 = 0, soG◦iG = iG◦G.
Hence, for any f ∈ Hom(F,G), G◦(iG◦f) = (G◦iG)◦f = ig◦(G◦f) = ig◦(f◦F ) = (ig◦f)◦F .
So iG ◦ f ∈ Hom(F,G). Trivially, 0 ∈ Hom(F,G), so it is indeed a subring under +G.

Associativity of composition is given in Lemma 3.3, so to show that End(F ) is a ring, it
remains to only check distributivity. For any f ∈ End(F ), f ◦(g+F h) = f ◦F (g(X), h(Y )) =
F (f(g(X)), f(h(Y )) = f ◦g+F f ◦h. With the note that T acts as the multiplicative identity
for End(F ), the proof is complete.

Now let A = O, the ring of integers of a local field K, and F ∈ A[[X, Y ]] be a commutative
formal group law. For any x, y ∈ mL ⊂ OL, the maximal ideal in the ring of integers of
a finite extension L of K, the series F (x, y) converges. So mL becomes a commutative
group with addition x +F y := F (x, y). For example, if F (X, Y ) = X + Y + XY , then the
operation +F on m is simply the multiplicative group law of 1 + m. Furthermore, because
f(T ) = (1 + T )p − 1 is an endomorphism of F , the following diagram commutes,

m
f //

a7→1+a
��

m

a7→1+a
��

1 + m
a7→ap // 1 + m

where m is an abelian group under +F and 1 + m is an abelian group under the usual
multiplication in K×.

4 Lubin-Tate Formal Groups

For the remainder of this paper, let K be a local field and A = O. For each prime element
π ∈ K, let Fπ be the set of power series f ∈ O[[X]] such that:

(a) f(X) ≡ πX (mod deg. 2)
(b) f(X) ≡ Xq (mod π)

where q is the order of the residue field k of K. The second condition means that the image

13



of f under the homomorphism O[[X]] → k[[X]] that maps each coefficient to its residue
modulo π is Xq. In other words, the elements of Fπ are precisely those power series whose
derivative at 0 is π and which reduce modulo m to the Frobenius map.

For example, the polynomial f(X) = πX + Xq always lies in Fπ. When K = Qp and
π = p, then f(X) = (1 +X)p − 1 lies in Fπ as well.

Proposition 4.1. For each f ∈ Fπ there exists a unique commutative formal group law Ff
with coefficients in O such that f is an endomorphism.

This Ff is the Lubin-Tate formal group law for f . Proof of Proposition 4.1 requires the
following lemma.

Lemma 4.2. Let f, g ∈ Fπ and let φ1(X1, . . . , Xn) be a linear form over O. There is a
unique φ ∈ O[[X1, . . . , Xn]] such that

(a) φ ≡ φ1 (mod deg. 2)
(b) f(φ(X1, . . . , Xn)) = φ(g(X1, . . . , Xn)).

Proof. The idea is to construct φ by successive polynomial approximations φr that satisfy
(a) and (b) (mod deg. r + 1) and are unique (mod deg. r + 1). Note that f ◦ φ1 ≡ φ1 ◦ g
(mod deg. 2) and, by condition (a), φ1 is unique, so this linear form is appropriately named.
Given the existence of a unique φr, let φr+1 = φr + h, where h ∈ O[X1, . . . , Xn] is homo-
geneous of degree r + 1. As f ∈ Fπ, f ◦ φr+1 ≡ f ◦ φ + πh (mod deg. r + 2). Similarly,
φr+1 ◦ g ≡ φr ◦ g + h(πX1, . . . , πXn) ≡ φr ◦ g + πr+1h. So condition (b) is satisfied if
(πr+1 − π)h = f ◦ φr − φr ◦ g (mod deg. r + 2). Modulo π, f(X) ≡ g(X) ≡ Xq, so
f ◦φr−φr ◦g ≡ φr(X1, . . . , Xn)q−φr(Xq

1 , . . . , X
q
n), and this is equivalent to 0 mod π because

we are working in characteristic p. So π divides f ◦ φr − φr ◦ g. Because πr − 1 ∈ O×, h
does indeed have coefficients in O, so our construction of φr+1 is valid. In this manner, we
inductively construct a power series φ such that f ◦φ = φ ◦ g (mod deg. r) for all r. Clearly,
φ ≡ φ1 (mod deg. 2), completing the proof.

The characterization of Lubin-Tate formal group laws now follows.

Proof of Proposition 4.1. By Lemma 4.2, for each f ∈ Fπ, there exists a unique power series
Ff ∈ O[[X, Y ]] such that Ff (X, Y ) ≡ X + Y (mod deg. 2) and f ◦ Ff = Ff ◦ f . It remains
to show that Ff is a commutative formal group law. It is clear that Ff (X,Ff (Y, Z)) ≡
X + Y + Z ≡ Ff (Ff (X, Y ), Z) (mod deg. 2). Furthermore, f ◦ Ff (X,Ff (Y, Z)) =
Ff (f(X), f ◦ Ff (Y, Z)) = Ff (f(X), Ff (f(Y ), f(Z))) and similarly f ◦ Ff (Ff (X, Y ), Z) =
Ff (Ff (f(X), f(Y )), f(Z)). So by the uniqueness statement in Lemma 4.2, Ff (X,Ff (Y, Z)) =
Ff (Ff (X, Y ), Z). As Ff (X, 0) ≡ X and Ff (0, Y ) ≡ Y (mod deg. 2) and each power series
commutes with f , the uniqueness statement in Lemma 4.2 again shows that Ff (X, 0) = X
and Ff (0, Y ) = Y . Similarly, as Ff (X, Y ) ≡ Ff (Y,X) ≡ X+Y (mod deg. 2) and f commutes
with each series, Ff (X, Y ) = Ff (Y,X), completing the proof.

Let f ∈ Fπ and let Ff denote the corresponding Lubin-Tate formal group law given by
Proposition 4.1. By Lemma 4.2 for each a ∈ O, there exists a unique [a]f ∈ O[[X]] such that
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(a) [a]f ≡ aX (mod deg. 2);
(b) [a]f ◦ f = f ◦ [a]f .

Note, for example, that [π]f = f .

Proposition 4.3. For each a ∈ O, [a]f ∈ End(Ff ). Furthermore, the map a 7→ [a]f defines
an injective ring homomorphism O ↪→ End(Ff ).

Proof. Once again, this proof is an easy exercise in the application of Lemma 4.2. As
[a]f ≡ aX (mod deg. 2), [a]f ◦ Ff ≡ aX + aY ≡ Ff ◦ [a]f (mod deg. 2). Because both
Ff and [a]f commute with f , f ◦ ([a]f ◦ Ff ) = [a]f ◦ f ◦ Ff = ([a]f ◦ Ff ) ◦ f and similarly,
f(Ff ([a]f (X), [a]f (Y ))) = Ff (f([a]f (X)), f([a]f (Y ))) = Ff ([a]f (f(X)), [a]f (f(Y ))). By the
uniqueness statement in Lemma 4.2, [a]f ◦ Ff = Ff ◦ [a]f , so [a]f ∈ End(Ff ).

It remains to check the three properties of a ring homomorphism, beginning with the
obvious fact that [1]f = T . Recall that the binary operations on the ring End(Ff ) are +Ff

and composition. Hence, it remains to show that [a]f +Ff [b]f = [a+b]f and [ab]f = [a]f ◦ [b]f .
For the former, [a]f +Ff [b]f ≡ (a + b)X (mod deg. 2) because Ff is a formal group law,
and the same is true of [a + b]f by definition. As [a]f , [b]f , f ∈ End(Ff ), which is a ring by
Lemma 3.2, distributivity shows that f commutes with [a]f +Ff [b]f as well as [a + b]f , so
by the uniqueness statement in Lemma 4.2 once again, [a]f +Ff [b]f = [a + b]f . A similar
proof shows that [a]f ◦ [b]f = [ab]f . Finally, the homomorphism is injective because a can be
recovered as the leading coefficient of [a]f .

We are now prepared to give the following definition. A formal O-module over an O-
algebra A is:

(a) a commutative formal group law Ff ;
(b) an injective ring homomorphism O ↪→ EndA(Ff ), a 7→ [a]f (X).

The Lubin-Tate formal group law Ff gives an actual abelian group (mL,+Ff ) for any finite
extension L of K. Furthermore, the group (mL,+Ff ) has a natural O module structure with
scalar multiplication a · x defined as [a]f (x) for all a ∈ O, x ∈ mL. This module structure
will be used in Section 5 to provide a Galois action of K× on large abelian extensions of K.

More generally, for any f, g ∈ Fπ and a ∈ O, there exists a unique [a]g,f ∈ O[[X]] such
that

(a) [a]g,f ≡ aX (mod deg. 2);
(b) [a]g,f ◦ f = g ◦ [a]g,f ,

again by Lemma 4.2. As in the proof of Proposition 4.3, an easy application of Lemma 4.2
shows that [a]g,f ∈ Hom(Ff , Fg) and [ab]h,f = [a]h,g ◦ [b]g,f .

Proposition 4.4. For any f, g ∈ Fπ, Ff ' Fg as formal O-modules over O.

Proof. Let u ∈ O× be a unit. Then X = [1]f = [1]f,f = [u−1]f,g ◦ [u]g,f , so [u]g,f and [u−1]f,g
are inverse isomorphisms. In particular, [1]g,f : Ff → Fg gives a canonical isomorphism.

It follows from this proposition that the choice of endomorphism f ∈ Fπ is unimportant
because the resulting formal group laws are isomorphic. However, the choice of uniformizer
π ∈ K does matter, as we shall see in Section 5.
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5 Main Theorems

The point of studying Lubin-Tate formal groups is that they allow for a straightforward
construction of totally ramified abelian extensions, which will be used to prove the following
theorem.

Theorem 5.1. Let K be a local field. There is a unique group homomorphism
φ : K× → Gal(Kab/K) such that

(a) for any uniformizer π of K and any finite unramified extension L of K,
φ(π)|L = FrobL/K;

(b) for any finite abelian extension L of K, φ induces an isomorphism
K×/N(L×)

∼→ Gal(L/K) via the map a 7→ φ(a)|L : K× → Gal(L/K).

The map φ is called the Artin map or the local reciprocity map. For the remainder of this
section, the goal will be to construct, for a fixed prime element π ∈ K, a maximal totally
ramified extension Kπ with N(K×π ) = πZ and then explicitly describe a Galois action of K×

on Lπ := Kπ ·Kur via a homomorphism φπ. This section will conclude by showing that both
LK = Lπ and φK = φπ are independent of the choice of uniformizer. The goal of Section 6
will then be to show that Kab = LK and that φK : K× → Gal(Kab/K) satisfies properties
(a) and (b) and is unique.

5.1 Constructing Abelian Extensions

Fix a prime π ∈ K and choose some f ∈ Fπ. By Proposition 4.4 the choice of f is unimpor-
tant, because all resulting group laws Ff are isomorphic. Let Λf = ms = {α ∈ Ks | |α| < 1},
given the structure of an O-module with addition α +Λf β = Ff (α, β) and multiplication
a · α = [a]f (α). Note that for α, β ∈ Λf all power series in this definition converge.

Let Λf,n be the submodule of Λf killed by πn, i.e., Λf,n is the set of roots of [πn]f = f (n) =
f ◦ f ◦ · · · ◦ f (n times) in Λf . The fact that Λf,n is indeed a submodule follows because Ff
and [a]f commute with f .

Proposition 5.2. The O-module Λf,n is isomorphic to O/(πn). Hence, End(Λf,n) ' O/(πn)
and Aut(Λf,n) ' (O/(πn))×.

Proof. It is easy to see that an isomorphism h : Ff → Fg induces an isomorphism of O-
modules Λf → Λg, so the choice of f ∈ Fπ is unimportant. Hence, for simplicity, choose f to
be the polynomial f(X) = πX +Xq. In this case, f (n) has finitely many roots, so it is clear
that Λf,n is finitely generated. The ring O is a principal ideal domain, so by the structure
theorem for finitely generated modules

Λf,n ' O/(πd1)× · · · × O/(πdr), d1 ≤ d2 ≤ · · · ≤ dr.

By elementary field theory, f has q distinct roots, and the non-zero roots are conjugates,
which must have the same valuation. Because the product of the non-zero roots is π, this
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valuation is positive and non-zero, so all of the roots of f lie in Λf . Hence, Λf,1 has q =
#k = [O : (π)] elements, and, by the structure theorem, Λf,1 ' O/(π).

For n > 1, consider the exact sequence

0→ Λf,1 → Λf,n
π−→ Λf,n−1 → 0.

For any α ∈ Λf , the roots of the polynomial f(X)− α have a norm with positive valuation,
which means that these roots lie in Λf . Hence, the map π : Λf → Λf is surjective, which
means that π : Λf,n → Λf,n−1 is surjective as well. It follows by induction that #Λf,n = qn.
Furthermore, an inductive argument shows that Λf,n must be cyclic. The only way that the
map π from Λf,n can have O/(πn−1) as its image is if Λf,n contains O/(πn) as a subgroup.
Therefore, Λf,n ' O/(πn) as claimed.

Let F ∈ O[[X1, . . . , Xn]] be a power series. Then for any finite Galois extension L of K,
the elements σ ∈ Gal(L/K) commute with F , i.e.,

F (σα1, . . . , σαn) = σF (α1, . . . , αn)

for all α1, . . . , αn ∈ m. When F is a polynomial, this follows directly from the fact that σ is
a field automorphism fixing the elements of O. In general σ acts continuously on L because
it preserves valuation. Hence, it preserves limits as well. Let Fm be the unique polynomial
of degree m congruent to F (mod deg. m). Thus

σF (α) = σ lim
m→∞

Fm(α) = lim
m→∞

σFm(α) = lim
m→∞

Fm(σα) = F (σα).

In particular, the elements of Gal(L/K) act as an O-module isomorphism on Λf,n.
Let Kπ,n = K[Λf,n], the subfield of Ks generated over K by the elements of Λf,n. Note

that the module Λf,n depends on the choice of f ∈ Fπ, but Kπ,n does not because all such
modules are isomorphic, and the extension Kπ,n/K is a splitting field, and hence Galois.

Theorem 5.3.
(a) For each n, Kπ,n is totally ramified of degree (q − 1)qn−1.
(b) The action of O on Λf,n defines an isomorphism (O/mn)× → Gal(Kπ,n/K).
(c) For each n, π is a norm from Kπ,n to K.

In particular, it follows from (b) that Kπ,n/K is abelian.

Proof. Again, for convenience, choose f(X) = πX+Xq. Let α1 be a non-zero root of f . Then
inductively construct a sequence of roots α2, . . . , αn such that αi is a root of f(X) − αi−1.
By construction, αi is a root of f (i) but not a root of f (i−1). Consider the sequence of fields

K ⊂ K[α1] ⊂ · · · ⊂ K[αn] ⊂ K[Λf,n].

Each extension, excepting K[Λf,n], is obtained by adjoining the root of an Eisenstein polyno-
mial. Hence, the first extension has degree q−1 and the n−1 remaining extensions are each
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of degree q. In particular, [K[Λf,n] : K] ≥ (q − 1)qn−1. By construction v(α1) = 1/(q − 1)
and v(αi) = v(αi−1)/q for i ≥ 2, so the extensions K[αi]/K are totally ramified as well.

By definitionK[Λf,n] is the splitting field of f (n), so Gal(K[Λf,n]/K) can be identified with
a subgroup of the group of permutations of the set Λf,n. Furthermore, because each element
of Gal(K[Λf,n]/K) acts as an O-module isomorphism on Λf,n, this subgroup is contained in
Aut(Λf,n) ' (O/mn)×, which has order (q−1)qn−1. Hence, (q−1)qn−1 ≥ #Gal(K[Λf,n]/K),
which shows that K[Λf,n] = K[αn], the extension Kπ,n/K has degree (q − 1)qn−1, and
Kπ,n/K is totally ramified. Additionally, Gal(Kπ,n/K) ' (O/mn)× because they have the
same order.

By construction αn is a root of the polynomial (f(X)/X) ◦ f (n−1) = π+ · · ·+X(q−1)qn−1
.

As K[αn] has degree (q − 1)qn−1 over K, this polynomial must be the minimal polynomial
for αn. The norm of αn over K is defined to be the product of its conjugates, which means
that NKπ,n/Kαn = (−1)(q−1)qn−1

π = π.

Let Kπ = ∪Kπ,n. As a consequence of Theorem 5.3, Gal(Kπ/K) = lim←− Gal(Kπ,n/K) '
lim←− (O/mn)× = O×. The extensions Kπ,n and Kπ are non-canonical. For example, Kπ,1 =
Kπ′,1 if and only if the unit π′/π has a q − 1-st root in K. This is the case if and only if
π ≡ π′ mod m. In general, the fields Kπ,n and Kπ′,n are less likely to be equal as n gets
large, and for each π ∈ K, the field Kπ is distinct. The following proposition makes this
more precise.

Proposition 5.4. Let u ∈ 1 + mn and π′ = uπ. Then Kπ,n = Kπ′,n.

Proof. We claim, there exists a unit η ∈ Os such that u = Frob (η)/η, that can be constructed
recursively. Let u = 1 + πna and write η = 1 + πnv, where v will be chosen to satisfy this
equation mod πn+1. We have

Frob (η)

η
=

1 + Frob(πnv)

1 + πnv
≡ 1 + Frob(πnv)− πnv mod πn+1.

Thus, we wish to solve the equation Frob(πnv)−πnv ≡ πna mod πn+1. Let Frob(πn) = πnw.
Then, this equation is equivalent to w Frob(v)− v− a ≡ 0 mod π. Modulo m, the Frobenius
acts as by exponentiation, so this becomes wvp − v − a ≡ 0 mod π. A root of wXp −X − a
exists in Os, and η can be constructed by proceeding inductively.

Let f ′ ∈ Fπ′ and α′ ∈ Λf ′,n. We claim that there exists a unique power series ρ such that
ρ(X) ≡ ηX mod deg. 2 and f ′ ◦ ρ = ρϕ ◦ f , where ρϕ is the power series that results when
the Frobenius automorphism is applied to the coefficients of ρ. This last equality certainly
holds mod deg. 2, and ρ can be constructed through a complicated inductive argument (see
[3, pg 47-49]). From the uniqueness of this power series, it follows that ρ : Ff → Ff ′ is a
homomorphism. Note that ρ◦Ff ≡ Ff ′◦ρ ≡ η(X+Y ) mod deg. 2. Because Ff has coefficients
in O which are fixed by the Frobenius, f ′ ◦ ρ ◦Ff = ρϕ ◦ f ◦Ff = ρϕ ◦Fϕ

f ◦ f = (ρ ◦Ff )ϕ ◦ f .
Similarly, f ′ ◦Ff ′ ◦ ρ = Fϕ

f ′ ◦ f ′ ◦ ρ = Fϕ
f ′ ◦ ρϕ ◦ f = (Ff ′ ◦ ρ)ϕ ◦ f . By uniqueness of the power

series ρ, ρ ◦ Ff = Ff ′ ◦ ρ, and in particular, Λf ′,n = ρ(Λf,n) and there exists α ∈ Λf,n such
that α′ = ρ(α).
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By definition f ′(X) ≡ uπX mod deg. 2, and because f ′ has coefficients in O, f ′ϕ = f ′.
Hence, the homomorphism ρ : Ff → F ′f must map [π′]f to f ′. This means that ρ ◦ [u]f ◦
[π]f = ρ ◦ [π′]f = f ′ ◦ ρ = ρϕ ◦ f = ρϕ ◦ [π]f . It follows that ρϕ = ρ ◦ [u]f , and therefore
ρϕ(α) = ρ([u]f (α)). Because u ≡ 1 mod mn and Aut(Λf,n) ' (O/(πn))× ' O×/(1 + mn),
[u]f acts trivially in Aut(Λf,n). Therefore, α ∈ Λf,n implies that [u]f (α) = α, which means
that ρϕ(α) = ρ(α).

Because Kur ∩Kπ,n = K, the Frobenius automorphism can be extended to an automor-
phism ϕ of Ln = Kur · Kπ,n such that Lϕ = Kπ,n. Because the Frobenius fixes Kπ,n 3 α,
(ρ(α))ϕ = ρϕ(α) = ρ(α). Hence, ϕ fixes α′ = ρ(α). Therefore, Kπ′,n ⊂ Kπ,n. A similar
argument with u−1 shows that Kπ,n ⊂ Kπ′,n, so these fields are equal.

The next two results describe the norm groups of Kπ,n and Kπ more explicitly.

Proposition 5.5. The group N(K×π,n) is the subgroup of K× generated by π and units
congruent to 1 mod πn.

Proof. Note that if we assume the existence of the Artin map, this result follows immediately.
By Theorem 5.1, K×/N(L×) ' Gal(Kπ,n/K) ' O×/(1 + mn) ' K×/(π, 1 + mn), so N(L×)
is generated by π and 1 + mn as claimed. Without assuming such a map exists, however,
this result is considerably more difficult.

By Theorem 5.3, π is a norm from Kπ,n to K, so it remains to describe the units
in N(K×π,n). Let u ∈ 1 + mn. By Proposition 5.4, Kuπ,n = Kπ,n, so by Theorem 5.3,
uπ ∈ N(K×π,n) as well. So u = uπ/π ∈ N(K×π,n). Hence, N(K×π,n) contains the group
generated by π and 1 + mn.

To show that these groups are equal, it suffices to show that the units in N(K×π,n) are
contained in 1 + mn. Because the only norms which are units are units of norms, what we
need to show is that N(O×π,n) ⊂ 1 + mn. Let ζ ∈ N(O×π,n), and fix a root α of f (n) such that

α is not a root of f (n−1) for fixed f ∈ Fπ. The ring Oπ,n ⊂ O[α] because α is a uniformizer
and Kπ,n is totally ramified, which means there is a lift of kπ,n in O. So ζ = h(α) for some
power series h(x) ∈ O[[X]]. Because ζ is a unit, h(0) 6= 0 mod m, so h(X) is invertible in
O[[X]].

Let γ, γ′ ∈ Λf,1. By associativity of addition for formal groups, (X +Ff γ) +Ff γ
′ =

X +Ff (γ +Ff γ
′). It follows that a power series of the form h1(X) =

∏
γ∈Λf,1

h(X +Ff γ)

satisfies h1(X +Ff γ) = h1(X). For any power series h1 such that this is the case, it can be
shown that there exists some power series h2(X) such that h1 = h2 ◦ f and that h2 is unique
(see [3, pg 70-71]). Define ρ(h) to be the unique power series such that

ρ(h) ◦ f =
∏

γ h(X +Ff γ), where γ ∈ Λf,1.

Because Λf,1 contains a complete set of conjugates, the coefficients of ρ(h) are fixed by the
Galois group, so ρ(h) ∈ O[[X]]. Define ρn(h) to be ρ(ρn−1(h)) where ρ0(h) = h.

Recall that f(X) ≡ Xq mod m. Thus ρ(h) ◦ f ≡ ρ(h) ◦Xq mod m. On the other hand,
γ ∈ Λf,1 ⊂ mπ,1, so X +Ff γ ≡ X mod mπ,1. Hence,

∏
γ h(X +Ff γ) ≡ h(X)q ≡ h(Xq) mod

mπ,1. Because
∏

γ h(X +Ff γ) and h(Xq) are polynomials over O, these must be equivalent
modulo m = O ∩ mπ,1 as well. Therefore, ρ(h) ◦ Xq ≡ h(Xq) mod m, which means that
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ρ(h) ≡ h mod m. In particular, because h ∈ O[[X]]×, the same is true of ρn−1(h) and ρn(h),
and furthermore ρn−1(h1) ≡ ρn(h1) mod mn. Let u1 = ρn−1(h1)(0) and u2 = ρn(h1)(0). Then
it clearly follows that u1, u2 ∈ O× with u1 ≡ u2 mod mn.

We claim that
ρn(h) ◦ f (n) =

∏
β∈Λf,n

h(X +Ff β).

For n = 0, 1, this is trivial, so we assume inductively assume that it holds for n− 1. Let Λ
be a set of coset representatives for Λf,n/Λf,1, so that Λf,n = {β +Ff γ | β ∈ Λ, γ ∈ Λf,1}.
Then ∏

β∈Λf,n

h(X +Ff β) =
∏
Λ

∏
Λf,1

h(X +Ff β +Ff γ) =
∏
β∈Λ

ρ(h) ◦ f ◦ (X +Ff β).

Because f is an endomorphism of Ff , f ◦ (X+Ff β) = f(X)+Ff f(β), where β ∈ Λf,n implies
that f(β) ∈ Λf,n−1, and in fact, f(Λ) = Λf,n−1. Hence,∏

β∈Λf,n

h(X +Ff β) =
∏

β′∈Λf,n−1

ρ(h)(f(X) +Ff β
′).

By the inductive hypothesis, this last term equals ρn−1(ρ(h)) ◦ f (n−1)(f(X)) = ρ(n)(h) ◦ f (n);
hence, ρn(h) ◦ f (n) =

∏
β∈Λf,n

h(X +Ff β) as claimed.

In particular, this implies that u1 =
∏

β∈Λf,n−1
h1(β) and u2 =

∏
β∈Λf,n

h1(β). Hence

u2/u1 =
∏
β

h1(β) where β ∈ Λf,n − Λf,n−1.

Because the set Λf,n − Λf,n−1 is a complete set of conjugates in the extension Kπ,n/K,
u2/u1 = NKπ,n/K(h1(α)) = NKπ,n/K(ζ) = u ∈ N(K×π,n). Clearly u2 ≡ u1 mod mn implies
u ≡ 1 mod mn, so this shows that N(O×π,n) ⊂ 1 + mn, as desired.

Corollary 5.6. The group N(K×π ) is the cyclic subgroup of K× generated by π, which will
be denoted πZ.

Proof. The norm group of an infinite extension is the intersection of the norm groups of its
finite subextensions. Because the intersection of 1 + mn for all n ≥ 1 is 1, this result follows
immediately.

In particular, the fields Kπ are distinct for each π ∈ K. However, we will show that
the field Kπ · Kur is independent of the choice of uniformizer. In other words, there is no
canonical maximal totally ramified abelian extension over K, but there do exist canonical
totally ramified extensions Kπ,n ·Kur of Kur for each n, as we shall see below.

Consider the field Lπ = Kπ ·Kur. Because Kπ ∩Kur = K,

Gal(Lπ/K) ' Gal(Kπ/K)×Gal(Kur/K),
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so it suffices to describe the action of σ ∈ Gal(Lπ/K) on Kπ and Kur separately. With this
in mind, define a homomorphism

φπ : K× → Gal(Lπ/K)

as the composition of the following homomorphisms:

K× → O× × Z→ Gal(Kπ/K)×Gal(Kur/K) ' Gal(Lπ/K)

uπm 7−→ (u,m) 7−→ ([u−1]f ,Frobm) =: φπ(uπm).

The goal is to prove that both φπ and Lπ are independent of the choice of a uniformizer
π ∈ K. Let $ = uπ be another prime element of K, and let f ∈ Fπ and g ∈ F$. If Ff
were isomorphic to Fg over O, then the field Kπ,n and K$,n would be the same for all n.
Because π and $ are distinct there is some n ∈ Z such that π/$ 6= 1 mod mn. Then by
Proposition 5.5, π is a norm from Kπ,n to K but not from K$,n, so these fields cannot be
equal. This, together with Proposition 5.4, shows that Kπ,n = K$,n if and only if π = u$
with u ∈ 1 + mn. However, we hope to show that over Kur, the extensions Kπ,n · Kur are
canonical, that is independent of the choice of uniformizer. To do so, we must show that Ff
and Fg are isomorphic over Kur.

The field Kur is an increasing union of complete fields, but is not itself complete. This
is true more generally for any infinite extension of K constructed as an increasing union of
finite extensions. It is not terribly difficult to construct a series, in which the partial sums
form a Cauchy sequence of elements in extensions of increasing finite degree, but the limit
cannot be in any finite extension and consequently is not in the union of such extensions.
In other words, Kur is not complete, so power series evaluated at mur might not converge.
Thus, it is necessary to work over its completion K̂ur. The Frobenius automorphism of the
extension Kur/K extends to K̂ur by continuity.

Lemma 5.7. There exists a power series ρ ∈ Ôur[[X]] such that
(a) ρ(X) ≡ εX (mod deg. 2) for some unit ε;
(b) Frob ρ = ρ ◦ [u]f ;
(c) ρ ◦ Ff = Fg ◦ ρ;
(d) ρ ◦ [a]f = [a]g ◦ ρ for all a ∈ O.

Properties (a) and (c) say that ρ is an isomorphism Ff → Fg, and (d) says that ρ
commutes with the actions of O. A self-contained proof of this result is given in Milne [6,
pg 27-28].

As Ff and Fg are isomorphic over K̂ur, the extensions of this field generated by the roots

of f (n) and g(n) are the same. Hence, Kπ · K̂ur = K$ · K̂ur. By taking the completions,

K̂π ·Kur = ̂K$ ·Kur as well. The following lemma completes the argument that Lπ = L$.

Lemma 5.8. Let E be any algebraic extension of a local field K considered as a subfield of
Ks and let Ê be its completion. Then Ê ∩Ks = E.
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Proof. By definition, Gal(Ks/E) fixes every element of E, so by continuity, it fixes Ê ∩Ks

as well. Hence, by Galois theory, Ê ∩Ks must be contained in E, but E ⊂ Ê ∩Ks so these
fields are equal.

It follows that Kπ ·Kur = K̂π ·Kur ∩Ks = ̂K$ ·Kur ∩Ks = K$ ·Kur, so Lπ = L$, as
desired.

To show that φπ is independent of the choice of uniformizer, we shall show that φπ($) =
φ$($). Consequently, for any uniformizers π, π′, $ ∈ K, φπ($) = φ$($) = φπ′($). The
set of uniformizers generates K×, so it follows that φπ = φπ′ .

On Kur both φπ($) and φ$($) induce the Frobenius automorphism, so it remains only
to show that they yield the same automorphism of K$. Let f ∈ Fπ and g ∈ F$. On K$,
φ$($) is the identity. Let ρ be as in Lemma 5.7. Recall ρ : Ff → Fg is an isomorphism,
which means that it is also an isomorphism of Λf,n → Λg,n as O-modules. To show that
φπ($) is the identity on K$, it suffices to show that φπ($) is the identity on Λg,n for all n,
i.e., for all α ∈ Λf,n, that φπ($)(ρ(α)) = ρ(α). Because $ = uπ, φπ($) = φπ(u)φπ(π). By
definition, φπ(π) fixes Kπ and acts as the Frobenius automorphism on Kur, while φπ(u) fixes

Kur and acts as [u−1]f on Kπ. Both actions on Kur extend to K̂ur by continuity. Recalling

that ρ has coefficients in K̂ur,

φπ($)(ρ(α)) = φπ(u)φπ(π)(ρ(α)) = (φπ(π)(ρ))(φπ(u)(α)) = Frob ρ ◦ [u−1]f (α) = ρ(α)

by statement (b) of Lemma 5.7. Hence φπ($) = φ$($), completing the proof.

6 Existence of the Artin Map

Write LK for Lπ and φK for φπ now that we know both are independent of the choice of
π ∈ K. To show that there exists a homomorphism φ : K× → Gal(Kab/K) satisfying
condition (a) of Theorem 5.1, it suffices to show that Kab = LK so that we can take φ to be
φK . A further argument will show that φK satisfies condition (b) as well. At this point, it
will be easy to show that φK is the unique map satisfying both conditions, completing the
proof of Theorem 5.1.

6.1 Proof that Kab = LK

Because Kur ⊂ Kab, the Frobenius automorphism of Kur can be extended non-uniquely to
an automorphism ψ of Kab. Let Fψ denote the fixed field of ψ. Clearly Fψ ∩Kur = K, the
fixed field of ψ|Kur , and the following lemma will show that Fψ ·Kur = Kab. To show that
Kab = Lπ, we will show that Fψ = Kπ for some prime π of K whose choice corresponds to
the choice of the extension ψ of the Frobenius.

Lemma 6.1. Let ψ be an extension of the Frobenius element of Kur to Kab and let Fψ be
the fixed field of ψ. Then Fψ ·Kur = Kab.
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Proof. Let E be any field such that Fψ ⊂ E ⊂ Kab and [E : Fψ] < ∞. If [E : Fψ] = n,
then let F ′ = Fψ ·Kn and F ′′ = E ·Kn ⊃ Fψ ·Kn = F ′ where Kn is the unique unramified
extension of K of degree n. Because Fψ ∩ Kur = K, [F ′ : Fψ] = [Kn : K] = n. Hence,
F ′′ is a finite extension of Fψ that contains two extensions of degree n. Because the fixed
field of ψ in Kab is F , Gal(F ′′/F ) must be a finite cyclic group generated by ψ|F ′′ , for if
this were not the case, ψ would fix some finite extension of F . The only way that a finite
cyclic Galois extension can contain two subfields of the same order is if they are equal. So
E = Fψ ·Kn ⊂ Fψ ·Kur. As this is true for any E ⊂ Kab that is finite over Fψ, Fψ ·Kur = Kab

as claimed.

The image of φK consists of precisely those automorphisms σ such that σ|Kur is an integer
power of the Frobenius automorphism, and this subset is dense in Gal(LK/K) because

the Frobenius generates a dense subset of Gal(Kur/K) = Ẑ. Because Kur ⊂ LK ⊂ Kab,
σ = ψ|LK also restricts to Frob on Kur. So σ = φK(π) for some uniformizer π depending on
the extension ψ of the Frobenius automorphism of Kur.

Because Kπ ⊂ Kab is fixed by σ = ψ|LK , Kπ ⊂ Fψ. If these fields are not equal, then
there exists some finite cyclic extension E of K that is contained in Fψ but is not contained
in Kπ. Because E ∩Kur = K, E is totally ramified. Hence, Gal(E/K) = I0, kE = k = Fq,
and Lemma 2.7 implies that the degree [E : K] is the product of a factor of q − 1 and a
power of p. Because [Kπ,1 : K] = q − 1, the degree [E : E ∩ Kπ,1] = [E · Kπ,1 : Kπ,1] is a
power of p, while [E ∩Kπ,1 : K] is prime to p because it is a subextension of Kπ,1/K, and
[Kπ,1 : K] is prime to p. It follows that there exists a cyclic extension E ′ of K of p-power
degree such that E ′∩ (E ∩Kπ,1) = K and E ′ · (E ∩Kπ,1) = E. Because (E ∩Kπ,1) ⊂ Kπ but
E is not, E ′ * Kπ. Replacing E ′ with a subfield if necessary, there exists by construction a
finite cyclic p-power extension E ′ of K such that K ⊂ E ′ ⊂ Fψ and [E ′ : E ′ ∩Kπ] = p.

Kab = Fψ ·Kur
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To show that Kπ = Fψ, we will use the field E ′ to construct a totally ramified cyclic
extension L/K of degree p such that N(L×) = K×. This contradicts the following lemma,
which implies that no such E ′ can exist, and hence, that Kπ = Fψ.

Lemma 6.2. Let L/K be a cyclic extension of degree p. Then N(L×) 6= K×.
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Proof. Let G = Gal(L/K) and let In be the inertia groups defined in Section 2.2. Because
G is cyclic of order p, each In is either G or 1. If I0 = 1 then L/K is unramified, and if $ is
a prime in L, then vL($) = 1. Hence, v(NL/K($)) = p, because the valuation is an additive
homomorphism, and the valuation is preserved by field automorphisms. In particular, there
are no primes of K in N(L×), so this result is obvious.

When I0 = G, L/K is totally ramified, and by Lemma 2.7, the quotient I0/I1 has order
prime to p. As #I0 = p and #I1 is either 1 or p, it must be that I1 = I0 = G. Hence, there
is some integer s ≥ 1 such that

G = I0 = I1 = · · · = Is, Is+1 = Is+2 = · · · = 1.

Let 1+x ∈ 1+ms+1
L . Then NL/K(1+x) =

∏
σ∈G(1+σ(x)) = 1+

∑
λ x

λ+NL/K(x) where λ
ranges over all elements of the form σ1+. . .+σt, 1 ≤ t ≤ p−1 in the group ring Z[G] where the
σi are distinct. Since p is prime, left multiplication of λ by any non-identity group element has
no stabilizer. In particular, λ, σλ, . . . , σp−1λ are distinct elements of Z[G], so

∑
λ x

λ can be
decomposed into sums of the form

∑
σ∈G x

σλ = TrL/K(xλ). For totally ramified extensions, it
follows from the definition of the extension of the valuation v on K to L that NL/K(ms+1

L ) ⊂
ms+1. Hence, if we can show that TrL/K(xλ) ∈ ms+1, then NL/K(1 + ms+1

L ) ⊂ 1 + ms+1, and
the norm map NL/K induces a homomorphism ϕ : O×L/(1 + ms+1

L )→ O×/(1 + ms+1
K ).

To show that the trace maps ms+1
L into ms+1 when L/K is totally ramified, we define the

different D = DL/K as follows. Let p = {z ∈ L : Tr(z) ∈ O}. Clearly OL ⊂ p, so D = p−1

is a non-zero ideal of OL. Fix a prime $ ∈ L and let f(X) be its minimal polynomial
over K. The derivative f ′(X) may be computed algebraically and gives a polynomial over
K. A rather ugly computation shows that D = f ′($)OL (see [3, pg 30-31]). It is clear
that f ′($) =

∏
($ − σ($)) where the product is taken over G− {1}. Because Is = G and

Is+1 = 1, it follows from Lemma 2.6 that v($ − σ($)) = s + 1 for all σ 6= 1 ∈ G. So

v(f ′($)) = (p− 1)(s+ 1), and D = m
(p−1)(s+1)
L . Clearly if x ∈ ms+1

L , then λx ∈ ms+1
L . Hence,

Tr(λ(x)) ∈ Tr(ms+1
L DD−1) = Tr(ms+1

L m
(p−1)(s+1)
L p) = m

p(s+1)
L Tr(p) ⊂ m

p(s+1)
L . When L/K is

totally ramified, mp
L = m, so Tr(λ(x)) ∈ ms+1 as desired, and the norm map NL/K induces a

homomorphism ϕ : O×L/(1 + ms+1
L )→ O×/(1 + ms+1).

Let u = σ$/$. It is clear that NL/K(u) = 1, so u is in the kernel of this map. But
v($ − σ($)) = s + 1 implies that v(1 − u) = s, so u ∈ 1 + ms

L but u /∈ 1 + ms+1
L , and ϕ

is not injective. However, since L/K is totally ramified, their residue fields are equal, and
1 + ms+1

L and 1 + ms+1 have the same indices in O×L and O×, respectively. Hence, ϕ is not
surjective, which means that N(O×L ) 6= O×. Because only units have norms that are units,
it follows that N(L×) 6= K×.

Restriction of the map φK to O× induces an isomorphism with Gal(Kπ/K). Let B ⊂ O×
be the subgroup isomorphic to Gal(Kπ/K

∗) under this map, where K∗ = E ′ ∩ Kπ. As
K∗ ⊂ Kab, B is normal, and O×/B ' Gal(K∗/K), a cyclic group of order ps. In particular,
there is a continuous character χ of O×/B with order ps. The set O× is clearly complete
and totally bounded, the latter because it can be covered by neighborhoods a+ mn where a
is indexed by the set kn − {0}. Hence, O× is compact, and χ can be lifted to a continuous
character on the group O× with kernel B.
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We wish to show that there is a continuous character λ of O× such that λp = χ. The
kernel of this map will give an extension K ′/K∗ of degree p that is distinct from E ′/K∗,
another extension of degree p. These two extensions will be used to produce a field L of
degree p over K with N(L×) = K×, which will lead to a contradiction.

Lemma 6.3. Let χ be a continuous character of O×/B ' Gal(K∗/K) of order ps. Then
there exists a continuous character λ of O× of order ps+1 such that λp = χ.

Proof. By Lemma 2.3, O× ' k× × (1 + m), and χ(k×) must equal 1, because k× has order
prime to p. So it suffices to consider the characters of 1 + m. The structure of this module
depends on whether it has torsion elements, which depends on whether or not K contains a
primitive p-th root of unity. Thus, we will consider these cases separately.

If K contains no primitive p-th roots of unity, then the group 1+m is a free Zp module of
possibly infinite rank (see [3, pg 23-25]; Proposition 7.6 proves this result in the characteristic
0 case). Characters on Zp have the form νy : Zp → S1, x 7→ e2πi[xy] where [·] is the p-adic
floor function, i.e., z − [z] ∈ Zp for all z ∈ Qp, and y ∈ Qp is fixed. The map y 7→ νy has
kernel Zp, so the character group of Zp is isomorphic to Qp/Zp. Because Qp is a divisible
group and quotients of divisible groups are divisible, Qp/Zp is divisible. Hence, the desired
character λ must exist.

If, on the other hand, K contains a primitive p-th root of unity ζp, this root will generate
a torsion submodule of 1 + m. To prove that χ has a p-th root, we will show that χ(ζp) = 1,
so that χ is determined by its action on a free Zp module as before. Note that if K contains
a p-th root of unity, it must have characteristic 0, for no such roots are found in fields of the
form k((T )). This case requires the following two lemmas.

Lemma 6.4. Let K
ps

⊂ K∗
p
⊂ E ′ with E ′/K cyclic and K of characteristic 0. Then

ζp ∈ N(K∗×).

Proof. If σ is a generator for Gal(E ′/K), then τ = σp
s

generates Gal(E ′/K∗). Because
ζp ∈ K∗, Kummer theory shows that there is some α ∈ E ′ such that E ′ = K∗(α) and
ατ−1 = ζp. Let β = ασ−1. Then βτ−1 = (ατ−1)σ−1 = ζσ−1

p = 1. Hence, β is fixed by
Gal(E ′/K∗) and must lie in K∗. By simple division,

τ − 1 = (σ − 1)

ps−1∑
i=0

σi.

Hence N(β) =
∏ps

i=0 β
σi−1 = ατ−1 = ζp ∈ N(K∗×), as desired.

Note that K∗/K is totally ramified because E ′ and Kπ are totally ramified extensions of
K. By hypothesis, [K∗ : K] is finite, so the following lemma applies.

Lemma 6.5. For any finite, totally ramified extension K∗ of K and any non-zero element
α of K∗, φK(NK∗/K(α))|K∗ = φK∗(α)|K∗ = 1.
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Proof. It suffices to prove this for uniformizers π∗ of K∗, because these generate the mul-
tiplicative group. Extend φK∗(π

∗) to an automorphism τ of the algebraic closure Ks/K.
Let F denote the fixed field of τ in Ks. By construction, the fixed field of τ in LK∗ is
K∗π∗ , so F ∩ LK∗ = K∗π∗ and F ∩ K∗ur = K ∗π∗ ∩K∗ur = K∗. So F/K∗ is totally ram-
ified, and F contains K∗π∗ . As discussed in Section 2.2, an extension is totally ramified
if and only if its norm group contains a uniformizer of the ground field. By Corollary 5.6
NK∗π/K

∗(K∗×π∗ ) = (π∗)Z, so NF/K∗(F
×) ⊂ NK∗π/K

∗(K∗×π∗ ) implies that π∗ is this uniformizer.
But then NF/K∗(F

×) = (π∗)Z as well.
By the definition of φK∗ , τ acts as the Frobenius automorphism on K∗ur. Because K∗/K

is totally ramified, Gal(K∗ur/K∗)
∼→ Gal(Kur/K), so τ acts as the Frobenius on Kur as well.

Let σ = τ |LK . So σ acts as the Frobenius on Kur, which means that σ = φK(π) for some
prime π ∈ K. The fixed field of σ in LK is Kπ, which must be contained in F . As F/K∗ and
K∗/K are totally ramified, F/K must be as well, which by the discussion above means that
NF/K(F×) = πZ. Because NF/K∗(F

×) = (π∗)Z, NK∗/K(π∗) ∈ NF/K(F×) = πZ. But because
K∗/K is totally ramified and π∗ is a prime in K∗, NK∗/K(π∗) must be a prime in K. Hence,
NK∗/K(π∗) = π, completing the proof.

By definition, φK∗ maps K∗× to automorphisms over K∗, so the restriction of any of these
maps to K∗ must be the identity. Hence, by Lemmas 6.4 and 6.5, φK(ζp)|K∗ = φK∗(β)|K∗ =
1. Therefore, ζp ∈ B, and χ(ζp) = 1. It follows that the character χ of O× is determined by
its action on a free Zp module, and as in the previous case, λ exists.

Let C be the kernel of λ in O× and let K ′ ⊂ Kπ be the field such that C is isomorphic to
Gal(Kπ/K

′). Because K∗ = E ′ ∩Kπ and K∗ ⊂ K ′ ⊂ Kπ, K∗ = E ′ ∩K ′. By construction,
[kerχ : kerλ] = p, so both E ′/K and K ′/K are cyclic extensions of degree ps+1 over K
and degree p over K∗. It follows that there is a cyclic extension L/K of degree p such that
E ′ ·K ′ = L ·K ′.

L ·Kπ

nnnnnnnnnnnn

E ′ ·K ′ = L ·K ′
p

pppppppppppp
p

PPPPPPPPPPPPPP Kπ

B=kerχ

|||||||||||||||||||

E ′ K ′

C=kerλ

K∗ = E ′ ∩K ′

p

OOOOOOOOOOOO

p
mmmmmmmmmmmmmm

K

ps+1

??????????????????
ps

ps+1

|||||||||||||||||||

Lemma 6.6. L ⊂ LK.

Proof. Assume L * LK . Then the fact that [L : K] = p implies that L∩LK = K, and hence
Gal(L · LK/K) ' Gal(L/K) × Gal(LK/K) ' Gal(L/K) × Gal(Kπ/K) × Gal(Kur/K) for
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any prime π ∈ K. In particular, (L ·Kπ)∩Kur = K, so L ·Kπ is a totally ramified extension
of K. As discussed in Section 2.2, an extension is totally ramified if and only if its norm
group contains a uniformizer of K. Because N((L · Kπ)×) ⊂ N(K×π ) = πZ, we must have
π ∈ N((L ·Kπ)×). This norm group is a subgroup of N(L×) as well, so π ∈ N(L×). Because
any uniformizer could have been chosen for the decomposition LK = Kπ ·Kur, this implies
that N(L×) contains every prime of K, and hence N(L×) = K×. This contradicts Lemma
6.2, so L must be contained in LK as claimed.

Because [L : K] = p and L · K ′ 6= K ′, L ∩ K ′ must equal K. Hence, the fact that
E ′ · K ′ = L · K ′ implies that L ⊂ E ′ ⊂ Fψ. By Lemma 6.6, L ⊂ Fψ ∩ LK = Fπ. But by
construction K ′ ⊂ Kπ, so E ′ ⊂ E ′ · K ′ = L · K ′ ⊂ Kπ, contradicting our previous claim.
Hence, Fψ = Kπ which means that LK = Kab, so our proof is finally complete.

6.2 Norms

Let L/K be any finite extension of K. As L is also local, the above results give a map
φL : L× → Gal(Lab/L) satisfying condition (a) of Theorem 5.1. A natural question, explored
partially in Lemma 6.5, is how the map φL relates to φK , and the answer to this question
will show that φK satisfies condition (b) as well.

Theorem 6.7. Let L/K be a finite extension of local fields and let φK and φL be the maps
constructed in Section 5. Then the following diagram is commutative

L×

NL/K

��

φL
// Gal(Lab/L)

ρ

��

K× φK
// Gal(Kab/K)

where NL/K is the norm map and ρ : Gal(Lab/L) → Gal(Kab/K) is restriction. In other
words, φL(x)|Kab = φK(NL/K(x)) for all x ∈ L×.

Proof. It is clear that if this theorem holds for two intermediate extensions F/K and L/F ,
then it holds for L/K as well. In particular, take F = L∩Kur, so that F/K is unramified and
L/F is totally ramified. For a totally ramified extension, this theorem follows immediately
from the proof of Lemma 6.5. Hence, it remains to consider the case where L/K is unramified.
Let [L : K] = m so that L is the unique unramified extension of degree m (see Lemma
2.5). As before, it suffices to show that φL(π′)|Kab = φK(NL/K(π′)) for some prime π′ ∈
L. Consider Lπ′,n, a totally ramified extension of L, which by Theorem 5.3 is such that
π′ ∈ NLπ,n/L(L×π,n). So again, Lemma 6.5 shows us that φL(π′)|Lπ,n = 1 for all n ≥ 0. In
particular, φL(π′)|Lπ = 1. On the other hand, on Kur, φL(π′) acts as the Frobenius over
L, i.e., the m-th power of the Frobenius over K, because π′ is a prime element. Because
L/K is unramified, v(NL/K(π′)) = m, so φK(NL/K(π′)) has the same action on Kur. Hence,
φL(π′)|Kab = φK(NL/K(π′)), and the proof is complete.

27



Let L/K be a finite abelian extension of local fields. Define a map

φL/K : K× → Gal(L/K) by a 7→ φK(a)|L

to be the composition of φK and the canonical projection homomorphism Gal(Kab/K) →
Gal(L/K).

Theorem 6.8. The map φL/K induces an isomorphism

K×/N(L×)
∼→ Gal(L/K).

Proof. As a corollary to Theorem 6.7, the kernel of φL/K is N(L×). The image of φK is
a dense subgroup of Gal(Kab/K) because it contains precisely those automorphisms whose
restriction to Kur is an integer power of the Frobenius, and these automorphisms are dense
in Gal(Kur/K) = Ẑ. Because Gal(Kab/L) is an open normal subgroup, this implies that
φL/K is surjective. Hence, K×/NL/K(L×)

∼→ Gal(L/K).

Theorem 6.8 completes the proof of Theorem 5.1, modulo the claim about uniqueness
of the Artin map. For this, let φ : K× → Gal(Kab/K) be a map satisfying conditions (a)
and (b) of Theorem 5.1. By construction, π ∈ N(K×π,n) for each n, so condition (b) implies
that φ(π) is the identity on Kπ,n, and thus also for Kπ. Meanwhile, condition (a) completely
determines the action of φ(π) on Kur. Hence, the action of φ(π) on Kab is completely
determined, and as the prime elements generate K×, the map described in Theorem 5.1 is
unique.

An obvious consequence of Theorem 6.8 is that for a finite abelian extension L/K of
local fields, [K× : N(L×)] = [L : K], a result called the fundamental equality in local class
field theory. The pre-Lubin-Tate perspective used this result as a building block for local
class field theory. This theorem also illustrates why the Artin map is sometimes called the
norm residue map: because it induces an isomorphism of the quotient group of K× modulo
the norm group N(L×) onto Gal(L/K).

A final important result, called the Existence Theorem, gives a topological characteri-
zation of the subgroups of K× that are norm groups for some finite abelian extension L of
K.

Theorem 6.9 (Existence Theorem). A subgroup N of K× is of the form N(L×) for some
finite abelian extension L of K if and only if N is of finite index and open in K×.

Proof. Because N has finite index, there are only a finite number of cosets of the form πjN ,
which means that for some m ≥ 1, πm ∈ N . Furthermore, it is easy to see that the set
{1 + mn : n ∈ N} forms a neighborhood basis for the identity in K×; hence for sufficiently
large n, 1 + mn ⊂ N because N is open. Hence, N contains the subgroup Hn,m generated
by πm and the set 1 + mn. Let Km denote the unique unramified extension of degree m over
K, and consider the subfield Kn,m = Kπ,n ·Km of Kab. By the definition of the Artin map,
φ(a) acts trivially on Kn,m for all a ∈ Hn,m. Hence, Hn,m is contained in the kernel of the
quotient map φL/K : K× → Gal(L/K), i.e., by Theorem 6.8, Hn,m ⊂ N(L×). However the
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index [K× : Hn,m] = [O× : 1 + mn] · [m : mm] = (q− 1)qn−1m = [Kπ,n : K][Km : K] = [Kn,m :
K] = [K× : N(K×n,m)], so N(K×n,m) = Hn,m.

In particular, any open subgroup N ⊂ K× of finite index contains a norm group N(K×n,m)
as a subgroup. Let L be the subfield of Kn,m fixed by φKn,m/K(N). Then N is the kernel of
φ : K× → Gal(L/K); therefore, by Theorem 6.8, N = N(L×).

Conversely, of L is a finite abelian extension of K, the map φL/K gives an isomorphism
K×/N(L×) ' Gal(L/K), which means that N(L×) has finite index in K×. To show that
N(L×) is open, it suffices to show that it contains an open subgroup. The set O×L is compact,
so its image under the norm map is closed in K×. Only units have norms which are units,
so the quotient O×/N(O×L ) injects into K×/N(L×). So N(O×L ) has finite index and is open
as well, which means that N(L×) is open.

6.3 Summary

It is worth pausing for a moment to take note of what we have accomplished with the proof
of Theorem 5.1. We have shown that there exists a canonical homomorphism φ : K× →
Gal(Kab/K) and that, for each finite abelian extension L/K, the diagram

K×

��

φ
// Gal(Kab/K)

σ 7→σ|L
��

K×/N(L×)
∼ // Gal(L/K)

is commutative, with K×/N(L×)→ Gal(L/K) an isomorphism. Furthermore, for any prime
π ∈ K, φ(π)|Kur is the Frobenius element. As a consequence of this last statement, for any
u ∈ O×, φ(u)|Kur = φ(uπ)|Kur · φ(π)−1|Kur = 1. So O× is contained in the kernel of the map

K×
φ−→ Gal(Kab/K)

σ 7→σ|Kur−→ Gal(Kur/K).

In fact, O× is the kernel of this map, because any x ∈ K× with non-zero valuation will act
as an integer power of the Frobenius on Kur. In other words, this map factors into

K×
v−→ K×/O× ' Z n7→Frobn−→ Gal(Kur/K).

The isomorphisms K×/N(L×)
∼→ Gal(L/K) form a projective system as L ranges over

all finite abelian extensions of K. Therefore, in passing to the projective limit, we obtain an
isomorphism

φ̂ : K̂×
∼→ Gal(Kab/K) where K̂× = lim←−K

×/N(L×).

The topology of the projective limit K̂× is the topology inherited by this group as a subgroup
of the product

∏
K×/N(L×) over all finite abelian extensions L, where each quotient is given

the discrete topology and the product is given the product topology. In other words, K̂× is
the completion of K× with respect to the topology for which the norm groups N(L×) form a
fundamental system of neighborhoods of 1. By the Existence Theorem, this topology, called
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the norm topology, is contained in the usual topology from the multiplicative valuation on
K×, and, in fact, it is coarser. For example O× is not open in the norm topology because all
subgroups N(L×) have finite index by Theorem 6.9, and O× does not. However, the norm
topology induces the usual topology on O×. To see this, recall that the sets 1 + mn form a
fundamental system of neighborhoods of unity in the valuation topology. While these sets
are not open in K̂×, they are open in O× because 1 + mn = O× ∩ N(K×π,n) by Proposition
5.5. Therefore, when we complete the terms in the exact sequence

0→ O× → K×
v−→ Z→ 0

with respect to the norm topology, the result is an exact sequence

0→ O× → K̂× → Ẑ→ 0.

In this context, Ẑ denotes the completion of Z with respect to the topology defined by
subgroups of finite index, which is the same as the definition Ẑ = lim←− Z/nZ given previously.

Hence, the choice of a prime element π ∈ K determines a decomposition K̂× ' π
bZ × O×,

which gives a decomposition Kab = Kπ ·Kur, where Kπ is the fixed field of φ(π) and Kur is
the fixed field of φ(O×). The image of the homomorphism φ in Gal(Kab/K) is dense because

Z is dense in Ẑ, so the Artin map encodes all of the information provided by φ̂.

7 Classifying Galois Groups

One application of the correspondence provided by the Artin map and the categorization of
norm groups of finite extensions given in the Existence Theorem is to the problem of counting
and classifying the Galois extensions of a local field with a particular automorphism group.
The following sections will consider this problem for Galois groups of increasing complexity.

7.1 Prime-Order Cyclic Groups

Let K be a local field with residue field k of order q = pf . Given a prime l, what are the
extensions L/K with Galois group Z/l? How many are there?

By the Artin map described in Theorem 5.1, Gal(L/K) ' K×/N(L×). For any Galois
extension of degree l, (K×)l ⊂ N(L×) because this is the set of norms of K× ⊂ L×. So
Gal(L/K) can be identified via the Artin map with a quotient of K×/(K×)l. By the Ex-
istence Theorem, every quotient of order l will correspond to a norm group and hence to
Z/l extension of K. Conversely, Theorem 5.1 guarantees that every Z/l extension of K
corresponds to a distinct quotient of K×/(K×)l of order l.

By choosing a uniformizer, K× is non-canonically isomorphic to the direct product
Z × O×. The subgroup of l-th powers of a direct product is simply the product of l-th
powers of each group; hence, (K×)l ' lZ × (O×)l. So K×/(K×)l ' Z/l × O×/(O×)l. By
definition, the residue field k ' O/m and k× ' (O/m)× ' O×/(1 + m), as both of the latter
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are multiplicative groups of non-trivial cosets of m modulo the equivalence a+ m ∼ b+ m if
and only if a− b ∈ m. Hence, there is an exact sequence

1→ 1 + m→ O× → k× → 1.

By Lemma 2.3, O× ' k× × (1 + m) via the map a → a mod m × (a/a + m), where
a = limn→∞a

qn is the Teichmüller representative for a. So (O×)l ' (k×)l × (1 + m)l, and

K×/(K×)l ' Z/l × k×/(k×)l × (1 + m)/(1 + m)l.

To compute K×/(K×)l it remains to compute k×/(k×)l×(1+m)/(1+m)l. This is easiest
when l is not equal to p, and the result is captured in the following proposition. Let ζl be a
primitive l-th root of unity.

Proposition 7.1. Let l 6= p be a prime. Then if ζl /∈ K, K×/(K×)l ' Z/l and there exists
a unique cyclic extension of degree l. If ζl ∈ K, then K×/(K×)l ' (Z/l)2 and there exist
l + 1 cyclic extensions of degree l.

Proof. When l 6= p, it is easy to see by direct computation that (1 + m)l = 1 + m. For any
1 + aπn ∈ 1 + m with a a unit, consider the polynomial f(X) = X l − (1 + aπn). Because
l ∈ O×, 1 + (a/l)πn is a root of this polynomial mod mn+1. By Hensel’s Lemma and the fact
that v(l) = 0, this implies that there is a root in z ∈ O that is congruent to 1 + (a/l)πn mod
mn+1, so in particular z ∈ 1 + m.

Therefore, when l 6= p, K×/(K×)l ' Z/l × k×/(k×)l. Because k× is a cyclic group of
order q − 1, if l - q − 1, then (k×)l is simply k× and K×/(K×)l ' Z/l. When l | q − 1, then
k×/(k×)l ' Z/l and K×/(K×)l ' (Z/l)2.

When l - q−1, there are no l-th roots of unity in the residue field k. Hence, the polynomial
X l − 1 = 0 has no roots mod m, which means it also has no roots in K, and ζl /∈ K. Thus,
the splitting field L of this polynomial over K also yields an extension of k of degree l,
which means that L/K is unramified. Hence, the unique cyclic quotient of Z/l of order l
corresponds to the unique unramified extension of degree l, which makes sense.

When l | q − 1, Hensel’s Lemma implies that ζl ∈ K. In this case, K×/(K×)l ' (Z/l)2,
which has has l+ 1 distinct cyclic subgroups of order l and thus also l+ 1 distinct quotients
of order l. To see this, consider the group as a vector space over the finite field of order l and
count the number of one dimensional subspaces. There exist l “normalized” vectors (1, a),
a ∈ Z/l together with one “projective” vector (0, 1). Thus, when ζl ∈ K, there exists one
unramified extension and l totally ramified extensions with Galois group Z/l.

When l = p, computing (O×)p is a bit more complicated. Immediately, (k×)p = k×

because the latter is the image of the former under the familiar Frobenius automorphism.
So K×/(K×)p ' Z/p× (1 + m)/(1 + m)p. The structure of (1 + m)p varies widely based on
certain characteristics of the local field K. For one thing, when K has characteristic p, the
quotient (1 + m)/(1 + m)p is not finite, as we see in the following proposition.

Proposition 7.2. Let K = Fq((T )) be a local field of characteristic p. Then K has an
infinite number of cyclic extensions of degree p.
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Proof. When K = Fq((T )), a generic element of m can be written in the form a(T )T where
a is a power series over Fq. Immediately, (1 + a(T )T )p = 1 + pb(T ) + a(T )pT p where b(T ) is
another polynomial over Fq, but in this field, p ≡ 0, so the middle term vanishes. The map
O → O given by a(T ) 7→ a(T )p = a(T p) is clearly not surjective, suggesting that the quotient
1 + m/(1 + m)p is infinite. This can be seen by noting that the image of each irreducible
polynomial b(T ) that is not a polynomial in T p, is a distinct coset in 1 + m/(1 + m)p. It is
well known that there exist irreducible polynomials of each degree over Fq, so there are an
infinite number of extensions of degree p of Fq((T )).

Note that when l 6= p, the power series (1 + a(T )T )l may contain non-zero terms of
each degree, and the situation is very different. Because there are an infinite number of Z/p
extensions of Fq((T )), however, for the remainder of this paper we will only consider p-adic
local fields, i.e., fields K that are finite extensions of Qp for some prime p.

When K lies over Qp, the normalized valuation v(p) = e ≥ 1, where e is the ramification
degree of K/Qp. The structure of (1 + m)/(1 + m)p will depend on the specific value of e.

Lemma 7.3. Let e be the ramification degree of K/Qp and let c = min{e + 1, p}. Then
1 + m2e+1 ⊂ (1 + m)p ⊂ 1 + mc. In particular, the quotient (1 + m)/(1 + m)p is finite.

Proof. Fix a prime π of K. By definition (1 + m)p = {(1 + aπ)p | a ∈ O}. Expanding this
expression, (1+aπ)p ≡ 1+apπ+apπp mod me+2. Hence, v((1+aπ)p−1) ≥ min{e+1, p} = c,
which means that (1 + m)p ⊂ 1 + mc.

To find an integer n such that 1 + mn ⊂ (1 + m)p, we consider the polynomial f(X) =
Xp − (1 + aπn) for some a ∈ O×. Let z = a0 + a1π be a root of this polynomial, assuming
such a root exists, where a0, a1 ∈ O. Then zp ≡ ap0 mod m. By hypothesis, zp − 1 ≡ 0 mod
m, so it follows that ap0 ≡ 1 mod m. Because p - (q− 1) the map x 7→ xp is an automorphism
of the residue field k. Hence, ap0 ≡ 1 mod m if and only if a0 ≡ 1 mod m. Therefore,
any root of f(X) = Xp − (1 + aπn) in O lies in 1 + m. By Hensel’s Lemma, if there is
some α0 ∈ O such that v(f(α0)) > 2v(f ′(α0)), then f(X) has a root in O, and hence in
1 + m. In order for v(f(α0)) to be non-zero, let α0 = 1 + bπm for some m ∈ Z+ and b ∈ O.
Then v(f(α0)) = v((1 + bπm)p − 1 − aπn) = v(bpπm + bpπmp − aπn) ≥ min{m + e,mp, n}.
Meanwhile, v(f ′(α0)) = v(p(1 + bπm)p−1) = v(p) + v((1 + bπm)p−1) = e. So v(f(α0)) is
certainly larger than 2v(f ′(α0)) if m > e and n > 2e. We can choose m to be arbitrary large,
so this computation shows that 1 + m2e+1 ⊂ (1 + m)p.

It follows that (1+m)/(1+m)p ⊂ (1+m)/(1+m2e+1), which has order q2e, so in particular
the order of K×/(K×)p, and thus also the number of extensions of K with Galois group Z/p,
is bounded.

To determine the order of (1 + m)/(1 + m)p more specifically, we define subgroups

Gi = (1 + mi)/[(1 + mi) ∩ (1 + m)p].

Clearly, 1 + mi+1 ↪→ 1 + mi, so there exists a group homomorphism

1 + mi+1 → (1 + mi)/[(1 + mi) ∩ (1 + m)p].
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The kernel of this map is (1+mi+1)∩ (1+m)p, so Gi+1 ↪→ Gi. Because 1+m2e+1 ⊂ (1+m)p,
G2e+1 = {1}, so we have a decreasing sequence of groups

(1 + m)/(1 + m)p = G1 ⊃ G2 ⊃ · · · ⊃ G2e+1 = {1}.

It follows that the order of (1 + m)/(1 + m)p is

#G1 =
2e∏
i=1

#(Gi/Gi+1).

For i < c, (1 + m)p ⊂ 1 + mi, so Gi/Gi+1 = [(1 + mi)/(1 + m)p]/[(1 + mi+1)/(1 + m)p] =
(1 + mi)/(1 + mi+1) ' k. So the first c− 1 quotients in the product have order q, and

#G1 = qc−1

2e∏
i=c

#(Gi/Gi+1).

A finer analysis is needed to determine the orders of the quotients Gi/Gi+1 for c ≤ i < 2e.
For this, the specific value of c = min{e+1, p} will be important. In general, the situation is
more complex as the ramification degree e increases relative to p. The following proposition
completes this computation and determines the structure of K×/(K×)p.

Proposition 7.4. Let e be the ramification degree of K/Qp. If ζp /∈ K, then (1+m)/(1+m)p

has order qe and if ζp ∈ K, then (1 + m)/(1 + m)p has order qep. It follows that

K×/(K×)p '
{

(Z/p)[K:Qp]+1 if ζp /∈ K
(Z/p)[K:Qp]+2 if ζp ∈ K.

Proof. By definition, Gi/Gi+1 is the set {1 + bπi | b ∈ k} modulo elements with p-th roots
in O. Let η ∈ O× such that p = ηπe. Then for a ∈ O, (1 + aπ)p ≡ 1 + aηπe+1 + apπp mod
mc+1.

If p > e + 1, then v((1 + aπ)p − 1) = e + 1 = c. Let c ≤ i ≤ 2e and let a = uπi−c with
u ∈ O×. Then (1+aπ)p ≡ 1+uηπi mod mi+1. Because there exist units with residues in each
residue class and left multiplication by η ∈ O× is a transitive action on k, Gi/Gi+1 is trivial.
Hence #G1 = qc−1 = qe when p > e + 1. In this case, ζp /∈ K, because the ramification
degree of K/Qp is less than the ramification degree e(Qp(ζp)/Qp) = p− 1. Thus, K cannot
contain Qp(ζp) as a subfield, so ζp /∈ K.

Next, assume p = e+ 1. Once again, (1 + aπ)p ≡ 1 + aηπe+1 + apπp mod me+2, although
this time we cannot simplify this expression without knowing the value of v(a). If i > c =
p = e+ 1, then let a = uπi−c where u ∈ O×. Then v(a) > 0, which means that v(ap) > v(a).
Therefore, (1+aπ)p ≡ 1+uηπi mod mi+1, so again Gi/Gi+1 is trivial. It remains to consider
the case i = c. For u ∈ O×, (1 + uπ)p ≡ 1 + (uη + up)πi mod mi+1. The map ρ : k → k
given by u 7→ uη + up is an additive homomorphism because k has characteristic p. Its
kernel consists of the roots of the polynomial Xp + ηX = X(Xp−1 + η) = 0 in k, and
because k is a field there can be at most p such roots. If −η has no (p− 1)-st root modulo
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m, then Xp + ηX has no non-trivial roots mod m, and hence no roots aside from 0 ∈ k.
Consequently, the map u 7→ uη + up is surjective and Gi/Gi+1 is trivial. Suppose −η is a
(p− 1)-st root mod p. Then by Hensel’s lemma −η is a (p− 1)-st root in K, and −η = µp−1.
The original choice of uniformizer was not canonical, so we could choose $ = µπ. Then
p = ηπp−1 = η$p−1/µp−1 = −$p−1, and the equation Xp+ηX is replaced by Xp−X, which
has p solutions in k, precisely the elements of Fp. Thus, the image of u 7→ −u+up has order
q/p, and Gi/Gi+1 has order p.

Note that in the case where −η has a (p− 1)-st root in K, we have a prime $ in K such
that $p−1 = −p. By the following lemma, the field Qp($) = Qp(ζp) where ζp is a primitive
p-th root of unity. Hence, this case occurs exactly when ζp ∈ K. Thus, if p = e + 1 and
ζp /∈ K, then #G1 = qe, and if ζp ∈ K, then #G1 = qep.

Lemma 7.5. For any prime p, Qp(ζp) = Qp((−p)
1
p−1 ).

Proof. The polynomial Xp−1 + p satisfies the Eisenstein criterion, so it is irreducible over
Qp. Similarly, the Eisenstein criterion shows that the polynomial (Xp − 1)/(X − 1) is
irreducible over Qp. Hence these fields have the same degree and it suffices to show that

(−p)
1
p−1 ∈ Qp(ζp).

For convenience, take π = 1− ζp to be the uniformizing element of Qp(ζp). We compute
that N(π) =

∏p−1
i=1 (1− ζ ip) = limx→1

∏p−1
i=1 (x− ζ ip) = limx→1

xp−1
x−1

= p by L’Hôpital’s rule. In
particular v(p) = v(πp−1) in this field. Let p = ηπp−1 for some unit η. Hence,

η =
p

(1− ζp)p−1
=

p−1∏
i=1

1− ζ ip
1− ζp

,

and because
1−ζip
1−ζp = 1 + ζp + · · · + ζ ip ≡ i mod π, η ≡

∏p−1
i=1 i ≡ (p − 1)! ≡ −1 mod p. In

particular, −p = (−η)πp−1 and −η ≡ 1 mod p. By Hensel’s Lemma, −η has a (p − 1)-st

root in Qp and hence also in Qp(ζp). So (−p)
1
p−1 ∈ Qp(ζp) as desired.

It remains to consider the case p < e + 1. When a = uπn−1, the contributing terms to
v((1 + uπn)p − 1) are uηπn+e and upπnp. Let n be the smallest integer such that n+ e ≥ np
and consider i ≤ n+ e. If i is not a multiple of p, then there are no elements of O such that
v((1 + aπ)p − 1) = i, so #Gi/Gi+1 = q. If ζp ∈ K, then the ramification index e(Qp(ζp)/Qp)
divides e(K/Qp). The extension Qp(ζp)/Qp is totally ramified of degree p−1 with uniformizer
ζp− 1, so this implies that p− 1 divides e, which means that n+ e = np. For i = n+ e = np,
then as before Gi/Gi+1 has order p. If ζp /∈ K, then either this group is trivial, or np 6= n+ e
and this case does not need to be considered. If n + e is strictly greater than np and if i is
one of the n multiples of p less than n+ e, then (1 + uπi/p)p ≡ 1 + upπi mod mi+1. The map
x 7→ xp is an automorphism of k, so for each residue class there are units in O× with p-th
powers in that residue class, which means that Gi/Gi+1 is trivial. Finally if i > n+ e, then
(1 + uπi−e)p ≡ 1 + uηπi mod mi+1, and, as above, Gi/Gi+1 is trivial in this case. Putting
this information together, if p < e + 1 and ζp /∈ K, then #G1 = q(n+e)−n = qe. If p < e + 1
and ζp ∈ K, then #G1 = qep.
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The degree [K : Qp] is the product of the degree of its totally ramified and unramified
subfields, i.e., [K : Qp] = ef where e is the ramification degree and q = pf . Hence, we have
determined that the order of (1+m)/(1+m)p is qe = p[K:Qp] when ζp /∈ K and qep = p[K:Qp]+1

when ζp ∈ K. Furthermore, (1+m)/(1+m)p is an abelian group that is compatible with scalar
multiplication by Z/p because Z/p is a subfield of the residue field k. So (1 + m)/(1 + m)p

is a Z/p-vector space of order pn, where n = [K : Qp] or [K : Qp] + 1 depending on the
case, which means that (1 + m)/(1 + m)p ' (Z/p)n as an additive group. This information,
combined with the fact that K×/(K×)p ' Z/p× (1 + m)/(1 + m)p, completes the proof.

To determine the number of extensions of K with Galois group Z/p it remains to count
the number of cyclic subgroups of K×/(K×)p ' (Z/p)n+1, where n = [K : Qp] or [K : Qp]+1
depending on the case, because each one dimensional subspace uniquely corresponds to an
n dimensional subspace, which uniquely corresponds to a quotient of order p. Computing
this number is a simple combinatorial problem, and the result is: pn + pn−1 + · · · + 1 =
(pn+1 − 1)/(p− 1).

For example, it can be shown by elementary methods that there exist 7 quadratic ex-
tensions of Q2: Q2(

√
3),Q2(

√
5),Q2(

√
7),Q2(

√
2),Q2(

√
6),Q2(

√
10), and Q2(

√
14). When

K = Q2, p = 2 and e = v(2) = 1. By Proposition 7.4, K×/(K×)2 ' (Z/2)3, which has 7
cyclic subgroups of order 2, as we would expect.

7.2 ln-Torsion Groups

Rather than count explicitly the number of Galois extensions with ln-torsion automorphism
groups, it makes sense to consider the maximal abelian ln-torsion extension, which will be
the composite of these. Such an extension somehow captures all ln-torsion extensions, and
then enumerating them becomes a problem in combinatorics rather than number theory.

Let K be a finite extension of Qp, let Γ = Gal(Kab/K), and let l be any fixed prime.
Define Γn = Γ/lnΓ. Then Γn = Gal(En/K) where En is the maximal abelian ln-torsion
extension of K. For each n, [En : K] is finite because En is the composite of finite cyclic
Z/li extensions for i ≤ n, of which Section 7.1 has shown there is a finite number. Hence,
Γn is finitely generated and killed by ln, so by the structure theorem for finitely generated
abelian groups,

Γn ' (Z/l)a1 × (Z/l2)a2 × · · · × (Z/ln−1)an−1 × (Z/ln)bn .

The field E1 is the composite of all Z/l extensions of K. Hence each quotient of Γ1 =
Gal(E1/K) of order l corresponds to a distinct Z/l extension ofK. In particular, Γ1 ' (Z/l)b1
must be the group with precisely as many quotients as the number of such extensions, which
means that Γ1 ' K×/(K×)l. Hence, b1 is the value that we computed in Section 7.1.
Furthermore, for each n,

Γn/lΓn ' (Z/l)bn+
P
ai ,

and also,

Γn/lΓn ' (Γ/lnΓ)/l(Γ/lnΓ) ' (Γ/lnΓ)/(Γ/ln−1Γ) ' (ln−1Γ)/(lnΓ) ' Γ/lΓ ' Γ1.
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Consequently,

bn +
n−1∑
i=1

ai = b1

for each n.
For all m < n in Z+, there is a homomorphism Γn → Γm given by the quotient map

Γn → Γn/l
mΓn ' Γm. Hence the set {Γn} forms an inverse system. Define

Γ∞ = lim←− Γn

to be the inverse limit. The limit Γ∞ must be a Zl-module because each Γn is a Zl-module.
Thus Γ∞ ' Zr

l × T where T =
∏

(Z/ln)cn . As before, Γ∞/lΓ∞ ' (Z/l)r+
P
cn ' Γ1, so

r +
∑∞

n=1 cn = b1. In particular, only finitely many of the cn are non-zero.
Because En is the composite of all cyclic extensions of degree dividing ln, Γn ' K×/(K×)l

n
.

From this point we consider the cases l 6= p and l = p separately.
When l 6= p, (1 + m)l

n
= 1 + m by Hensel’s Lemma. Hence, (1 + m)/(1 + m)l

n
is trivial,

and
Γ∞ = lim←− K×/(K×)l

n

= lim←− Z/ln × k×/(k×)l
n

= Zl × Z/lmZ

where m is the largest power of l such that lm | q − 1. In this case, Γ1 ' (Z/l)2 if l | q − 1
and Γ1 ' (Z/l) otherwise, which is precisely the result we obtained in Proposition 7.1.

If l = p, then k×/(k×)p
n

is trivial, and Γn ' Z/pn × (1 + m)/(1 + m)p
n
. Hence,

Γ∞ = lim←− Z/pn × (1 + m)/(1 + m)p
n ' Zp × (1 + m).

This implies that the torsion submodule of Γ∞ must be the torsion submodule of 1 + m,
which consists of roots of unity. Furthermore, this torsion group is killed by some power of
p, so T must be precisely the p-power roots of unity contained in K. The structure of the
Zp-module 1 + m is given by the following proposition.

Proposition 7.6. Let K be a finite extension of Qp and let T be the group of all p-power
roots of unity in K. Then T is the torsion submodule of 1 + m, (1 + m)/T ' Zd

p where
d = [K : Qp], 1 + m ' Zd

p × T , and T is finite and cyclic.

Proof. By Lemma 7.3, (1 + m)/(1 + m)p is finite. Hence, the fact that 1 + m is a compact
Zp-module implies that 1 + m is finitely generated over Zp, which shows that its torsion
submodule is finite. Let m be the largest integer such that there exists a primitive pm-th
root of unity ζpm ∈ K. Then, T ' (Z/pm). In particular, the torsion submodule T of 1 + m

is cyclic.
Because 1 + m is a finitely generated Zp-module with torsion submodule T ' (Z/pm), we

know that 1 + m ' Zr
p× (Z/pm). The quotient of a direct product equals the product of the

quotients, so (1 +m)/(1 +m)p ' (Z/p)n where n = r if K contains no p-power roots of unity
and n = r+1 if ζp ∈ K. By Proposition 7.4, the quotient (1+m)/(1+m)p ' (Z/p)d if ζp /∈ K
and (1 + m)/(1 + m)p ' (Z/p)d+1 if ζp ∈ K. Hence, r = d = [K : Qp]. So 1 + m ' Zd

p × T
where T is the finite cyclic group of p-power roots of unity in K, as claimed.
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Hence, when l = p,
Γ∞ ' Z[K:Qp]+1

p × T

where T is the cyclic subgroup of K of p-power roots of unity. The torsion part of Γ∞, if
it exists, consists of a single cyclic subgroup, so b1 = r +

∑
cn reduces to b1 = r + 1 in the

case where ζp ∈ K and b1 = r in the case ζp /∈ K. So Γ1 ' (Z/p)[K:Qp]+1 if ζp ∈ K and
Γ1 ' (Z/p)[K:Qp] if ζp /∈ K. Using the formula [K : Qp] = (q/p)e, this is precisely the result
we obtained in Section 7.1.

7.3 Dihedral Groups

Similar techniques can be used to count extensions of K/Qp with certain non-abelian Galois
groups as well. Let l 6= p be an odd prime and let Dl denote the dihedral group of 2l
elements. Consider a tower of Galois extensions of the form:

E

G

Z/l

@@@@@@@

L

Z/2~~~~~~~

K

The group G = Gal(E/K) is determined by the action of an element τ in the non-trivial
coset of Z/2 in G on σ, the generator of Z/l ⊂ G. The element (στ)2 must be in the kernel
of the map G → G/(Z/l) ' Z/2, so (στ)2 = σi for some 0 ≤ i < l. If i 6= 0, then στ has
order 2l and G ' Z/2l is cyclic. If i = 0, then (στ)2 = 1, which means that τστ = σ−1. In
this case, G ' Dl = 〈στ | σl = τ 2 = 1, τστ = σ−1〉.

Equivalently, G ' Z/2l if and only if the subgroup 〈τ〉 ' Z/2 is normal in G, and G ' Dl

otherwise. In other words, G ' Z/2l if and only if there exists a cyclic extension L′/K of
degree l that is contained in E. If no such L′ exists, then E/K is dihedral.

E

G'Z/2l

Z/2

}}}}}}} Z/l

@@@@@@@@ E

G'Dl

Z/l

@@@@@@@@

L′

Z/l AAAAAAA L

Z/2~~~~~~~~
L

Z/2~~~~~~~~

K K

In Section 7.1, we computed the number of Z/l extensions of local fields in terms of the
order of their residue field. Fix a quadratic extension L/K. Because [L : K] = 2, either L/K
is unramified, in which case qL = q2

K , or L/K is totally ramified, in which case qL = qK .
If L/K is totally ramified, then the number of Z/l extensions of L and and the number

of Z/l extensions of K are the same. Because each Z/l extension L′ of K together with the
field L uniquely determines E = L · L′, in this case there can be no dihedral extensions of
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K containing L. This can be seen another way as well. If a Dl extension E/K contains
a totally ramified extension L/K, then E/K must be totally ramified as well; otherwise
L′ = Eur certainly exists. As l is neither 2 nor p, E/K is tamely ramified, which means
that the subgroup I1 ⊂ Gal(E/K), which is a p-group by Lemma 2.7, must be trivial.
Hence, Lemma 2.7 implies that I0 ↪→ k×E . This latter group is cyclic, and consequently
I0 ' Gal(E/K) must be as well, so there are no totally ramified dihedral extensions of K.

When L/K is unramified, qL − 1 = (qK − 1)(qK + 1). If l | qK − 1 then l | qL − 1
and K×/(K×)l ' L×/(L×)l ' (Z/l)2. Hence, there is a one-to-one correspondence between
degree l extensions of L and degree l extensions of K, which means that there are again
no dihedral extensions of K. If l | qK + 1, however, then l - qK − 1 but l | qL − 1. In this
case, K×/(K×)l ' Z/l but L×/(L×)l ' (Z/l)2, so there are (l + 1) Z/l extensions of L but
only one Z/l extension of K. Hence, when l | qK + 1 and L/K is unramified, there exist l
dihedral extensions of K. Because there is a unique unramified quadratic extension of K,
we conclude that K has l Dl extensions in the case that l | qK + 1 and none otherwise.
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