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Plan

Part 1. adjunctions and monads

htpy
LT T
e context: 2-CATc £ (00,2)-CAT
incl
e Theorem. Any adjunction in a homotopy 2-category extends to
a homotopy coherent adjunction in the (0o, 2)-category.

(Interlude on weighted limits.)

Part Il. algebras and descent

o definitions of algebras, descent objects: via weighted limits
e proofs of monadicity, descent theorems: all in the weights!
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Some basic shapes

categories with a monad

Algebras and descent data Monadicity and descent
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underlying object

descent object

object of algebras

Moreover:
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(00, 2)-categories

An (00, 2)-category is a simplicially enriched category whose
hom-spaces are quasi-categories.
ho htpy 2-cat
P T T
Catc_L. qCat > 2-CATc L . (00,2)-CAT
N incl

Examples.
@ 2-categories: categories, monoidal categories, accessible
categories, algebras for any 2-monad, ...
@ (00,2)-categories: quasi-categories, complete Segal spaces,
Rezk objects, ...
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The free adjunction

Adj := the free adjunction, a 2-category with
@ objects + and —
e hom(+,+) = hom(—, —)P:=
e hom(—,+) = hom(+4, —)P:=

Theorem (Schanuel-Street). Adjunctions in a 2-category K
correspond to 2-functors Adj — K. J
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The free homotopy coherent adjunction

Theorem (Schanuel-Street). Adjunctions in a 2-category K
correspond to 2-functors Adj — K. J

A homotopy coherent adjunction in an (oo, 2)-category K is a
simplicial functor Adj — K.

.

data in Adj: —, + ; ﬂ U

n-arrows are strictly undulating sqwggles on n + 1 lines
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Homotopy coherent adjunctions

A homotopy coherent adjunction in an (o0, 2)-category K is a
simplicial functor Adj — K.

Theorem. Any adjunction in the homotopy 2-category of an
(00, 2)-category extends to a homotopy coherent adjunction.

Theorem. Moreover, the spaces of extensions are contractible Kan
complexes.

Upshot: there is a good supply of adjunctions in (oo, 2)-categories.

Proposition. Adj is a simplicial computad (cellularly cofibrant). )
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Homotopy coherent monads

Algebras and descent data Monadicity and descent
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Mnd := full subcategory of Adj on +.

A homotopy coherent monad in an (oo, 2)-category K is a
simplicial functor Mnd — K., i.e

o +—»BecK
e . — hom(B,B) =: the monad resolution
idp — st <t t2 3. ..
—tn— ~<~—tu——o

—ttn—>

12
and higher data: "t/N B [ [ M U

t t '.7777._

Warning: A monad in the homotopy 2-category need not lift to a
homotopy coherent monad.
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Interlude on weighted limits

Let K be a 2-category or an (o0, 2)-category, A a small 2-category.

weight®? X diagram — limit
m m m
(Cath)r x KA  1odda g

Facts:
o {W,D}a := some limit formula using cotensors
@ a representable weight evaluates at the representing object

@ colimits of weights give rise to limits of weighted limits
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Cellular weighted limits

Example (A :=b Had c). Define W € sSet® by:

homy x A% L hom, x A 0

| -

Monadicity and descent
000000

homy xAY L hom, x A® —— homy U hom, <fi hom, xOA!

|

{W,—=}A =: comma object w

|

hom, xA!

A cellular weight is a cell complex in the projective model l

structure on Cat® or sSet?.

Example: Bousfield-Kan homotopy limits.

Completeness hypothesis: K admits cellular weighted limits. )
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Algebras for a homotopy coherent monad

. Mnd — K

Fix a homotopy coherent monad:
+ = B

Goal: define the object of algebras algB € K and the monadic

f
homotopy coherent adjunction 3]gB =1 B
u

e B ¢ KMnd ~ € CatMnd

Mnd

algB = { o, B}ama =cq(B = = B +* =) ]




Pretalk Adjunctions and monads Weighted limits Algebras and descent data Monadicity and descent
0000 0000 oo 0e00 000000

Algebras, continued

algB :={ o, B}Mnd = €q (B © = B +% °°) J

Example: K = qCat. A vertex in algB is a map ~, — B of the

form:
1 o
1 1o 2p —tn—> 43
b T T 2 T
<~—tf— —ttn—s>
<—ttf—

and higher data, e.g., " tb
b




Pretalk Adjunctions and monads Weighted limits Algebras and descent data Monadicity and descent
0000 0000 oo [eXe] Yo} 000000

The monadic homotopy coherent adjunction

...is all in the weights!

AdjOp yoneda CatAd‘] res CatMnd {_7B}Mnd KOP
- = hom _ — 59 — algB
\ ( \
) ) H o
aF — hom — I — B

Note: Adj a simplicial computad ~~ these weights are cellular.

Q: Doesn't this imply that up-to-homotopy monads have monadic
adjunctions and hence are homotopy coherent?
A: No! Homotopy 2-categories don't admit cellular weighted limits.
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Descent data for a homotopy coherent monad

Fix B € KMnd A descent datum is a coalgebra for the induced
monad on the object of algebras.

dscB := coalg(alg(B)) € CatMnd
dscB :={ ,B}mMnd = €q (B = B +* )

Example (K = qCat). A vertex in dscB is a map — B:

b <—f}7 th —;7% t2b- - and higher data
_—— S— 67
—ty—

dscB

D

e

B
A
\

+<—)
\\X) l/&// ~

> o= in CatM?d in K —algB -
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Totalizations of cosimplicial objects in an object of K

The monadicity and descent theorems require geometric realization
of simplicial objects valued in an object of an (oo, 2)-category.

An object B € K admits totalizations iff there is an absolute
right lifting diagram in hoK:
B
tot \L
const
v
— > B
id
Equivalently:
const
@ Jan adjunction B 1 _ B in hoK.
tot

const
@ 1 a homotopy coherent adjunction B ~— L _ B in K.
tot
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Totalizations of split augmented cosimplicial objects

Theorem. In any (00, 2)-category with cotensors, the totalization
of a split augmented cosimplicial object is its augmentation., i.e.,

B

evo
const
K

B ~>——B
res

is an absolute right lifting diagram for any object B.

1
o : [0] : .
Proof: is all in the weights! i ! is an equationally

_~
incl

witnessed absolute right extension diagram in Cat. Apply B(~).
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Canonical presentations of algebras and descent data

Theorem. Any descent datum is the totalization of a canonical
dscB

o . d :
cosimplicial object of free descent data: ' f iconst is an
K

dscB T dscB

absolute right lifting diagram.

Theorem. Any algebra is the geometric realization of a canonical
algB
id

simplicial object of free algebras.: lconst is an

T
algB ——>algB °

absolute left lifting diagram.
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Monadic descent in an (oo, 2)-category

Theorem. For any homotopy coherent monad in an
(00, 2)-category with cellular weighted limits, there is a canonical
map

Bf—/—l———>dscB
algB

@ that admits a right adjoint if B has totalizations

@ that is full and faithful if elements of B are totalizations of
their monad resolution

@ that is an equivalence if comonadicity is satisfied

The theory of comonadic codescent is dual: replace the weights by
their opposites.
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Monadicity theorem in an (oo, 2)-category

Theorem. For any homotopy coherent adjunction f - u with
homotopy coherent monad ¢, there is a canonical map

AZ=—=—= > algB
TR
N
f u?t
B

@ that admits a left adjoint if A has geometric realizations of
u-split simplicial objects

@ that is an adjoint equivalence if u creates these colimits.




Pretalk Adjunctions and monads Weighted limits Algebras and descent data Monadicity and descent
0000 0000 oo 0000 [eletelelel )

Further reading

“The 2-category theory of quasi-categories” arXiv:1306.5144

“Homotopy coherent adjunctions and the formal theory of
monads” arXiv:1310.8279

“A weighted limits proof of monadicity” on the n-Category Café
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