Pretalk	Adjunctions and monads	Weighted limits	Algebras and descent data	Monadicity and descent
0000	0000	00	0000	000000

The formal theory of adjunctions, monads, algebras, and descent

Emily Riehl

Harvard University http://www.math.harvard.edu/~eriehl

Reimagining the Foundations of Algebraic Topology Mathematical Sciences Research Institute Tuesday, April 8, 2014

Formal theory of adjunctions, monads, algebras, descent

Joint with Dominic Verity.

Pretalk 0●00	Adjunctions and monads	Weighted limits 00	Algebras and descent data	Monadicity and descent
Plan				

Part I. adjunctions and monads

• context: $2\text{-CAT}(-\infty, 2)\text{-CAT}$ • Theorem. Any adjunction in a homotopy 2-category extends to a homotopy coherent adjunction in the $(\infty, 2)$ -category.

(Interlude on weighted limits.)

Part II. algebras and descent

- definitions of algebras, descent objects: via weighted limits
- proofs of monadicity, descent theorems: all in the weights!

Pretalk 00●0	Adjunctions and monads	Weighted limits	Algebras and descent data	Monadicity and descent
Some	basic shapes			

gories with a monad	weight ("shape") for	
$= \bullet \rightarrow \bullet \rightleftharpoons \bullet \cdots$	underlying object	
= ● і р	descent object	
$= \bullet \rightleftharpoons \bullet \rightleftharpoons \bullet \rightleftharpoons \bullet \cdots$	object of algebras	

Moreover:

۵. ۵

 \mathbb{A}_{∞}

An $(\infty, 2)$ -category is a simplicially enriched category whose hom-spaces are quasi-categories.

$$\operatorname{Cat}_{N} \overset{\text{ho}}{\underset{N}{\overset{}}} \operatorname{qCat} \qquad \rightsquigarrow \qquad 2\operatorname{-CAT}_{\operatorname{incl}} \overset{\text{htpy 2-cat}}{\underset{\operatorname{incl}}{\overset{}}} (\infty, 2)\operatorname{-CAT}$$

Examples.

- 2-categories: categories, monoidal categories, accessible categories, algebras for any 2-monad, ...
- $(\infty, 2)$ -categories: quasi-categories, complete Segal spaces, Rezk objects, . . .

Pretalk 0000	Adjunctions and monads •000	Weighted limits 00	Algebras and descent data	Monadicity and descent
T I 0	·			

The free adjunction

 $\mathbf{Adj}:=$ the free adjunction, a 2-category with

- objects + and -
- $\operatorname{hom}(+,+) = \operatorname{hom}(-,-)^{\operatorname{op}} := \mathbb{A}_+$
- $\operatorname{hom}(-,+) = \operatorname{hom}(+,-)^{\operatorname{op}} := \mathbb{A}_{\infty}$

Theorem (Schanuel-Street). Adjunctions in a 2-category K correspond to 2-functors $Adj \rightarrow K$.

Adjunctions and monads000000

Weighted limits

Algebras and descent data 0000

Monadicity and descent

The free homotopy coherent adjunction

Theorem (Schanuel-Street). Adjunctions in a 2-category ${\bf K}$ correspond to 2-functors ${\bf Adj} \to {\bf K}.$

A homotopy coherent adjunction in an $(\infty, 2)$ -category K is a simplicial functor $Adj \rightarrow K$.

data in
$$\operatorname{Adj}$$
: -, + ; $+, +$; $-\overline{--}, +$; ...

 $n\text{-}\mathrm{arrows}$ are strictly undulating squiggles on n+1 lines

Pretalk 0000	Adjunctions and monads	Weighted limits	Algebras and descent data	Monadicity and descent

Homotopy coherent adjunctions

A homotopy coherent adjunction in an $(\infty, 2)$ -category K is a simplicial functor $Adj \rightarrow K$.

Theorem. Any adjunction in the homotopy 2-category of an $(\infty, 2)$ -category extends to a homotopy coherent adjunction.

Theorem. Moreover, the spaces of extensions are contractible Kan complexes.

Upshot: there is a good supply of adjunctions in $(\infty, 2)$ -categories.

Proposition. Adj is a simplicial computed (*cellularly* cofibrant).

Pretalk	Adjunctions and monads	Weighted limits	Algebras and descent data	Monadicity and desce
0000	0000	00	0000	000000

Homotopy coherent monads

 $\mathbf{Mnd}:=\mathsf{full}\ \mathsf{subcategory}\ \mathsf{of}\ \mathbf{Adj}\ \mathsf{on}\ +.$

A homotopy coherent monad in an $(\infty, 2)$ -category K is a simplicial functor $Mnd \rightarrow K$., i.e.,

- $\bullet \ + \mapsto B \in \mathbf{K}$
- $\mathbb{A}_+ \to \hom(B, B) =:$ the monad resolution

Warning: A monad in the homotopy 2-category need not lift to a homotopy coherent monad.

Pretalk 0000	Adjunctions and monads	Weighted limits ●○	Algebras and descent data	Monadicity and descent
Interlu	de on weighte	d limits		

Let ${\bf K}$ be a 2-category or an $(\infty,2)\text{-category},$ ${\bf A}$ a small 2-category.

$weight^{op}$	\times	diagram	\mapsto	limit
\cap		\cap		Μ
$(\mathbf{Cat}^{\mathbf{A}})^{\mathrm{op}}$	×	$\mathbf{K}^{\mathbf{A}}$	$\xrightarrow{\{-,-\}_{\mathbf{A}}}$	K

Facts:

- $\{W, D\}_{\mathbf{A}} :=$ some limit formula using cotensors
- a representable weight evaluates at the representing object
- colimits of weights give rise to limits of weighted limits

Cellular weighted limits

Example (
$$\mathbf{A} := b \xrightarrow{f} a \xleftarrow{g} c$$
). Define $W \in \mathbf{sSet}^{\mathbf{A}}$ by:

A cellular weight is a cell complex in the projective model structure on Cat^A or $sSet^A$.

Example: Bousfield-Kan homotopy limits.

Completeness hypothesis: K admits cellular weighted limits.

Fix a homotopy coherent monad: $\begin{array}{ccc} \mathbf{Mnd} &
ightarrow \mathbf{K} \\ + & \mapsto & B \end{array}$

Goal: define the object of algebras $alg B \in \mathbf{K}$ and the monadic homotopy coherent adjunction $alg B \xrightarrow[u]{\pm} B$

$$\operatorname{alg} B := \{\mathbb{A}_{\infty}, B\}_{\mathbf{Mnd}} = \operatorname{eq}\left(B^{\mathbb{A}_{\infty}} \rightrightarrows B^{\mathbb{A}_{+} \times \mathbb{A}_{\infty}}\right)$$

Pretalk 0000	Adjunctions and monads	Weighted limits	Algebras and descent data ○●○○	Monadicity and descent
Algebr	ras. continued			

$$\operatorname{alg} B := \{\mathbb{A}_{\infty}, B\}_{\mathbf{Mnd}} = \operatorname{eq} \left(B^{\mathbb{A}_{\infty}} \rightrightarrows B^{\mathbb{A}_{+} \times \mathbb{A}_{\infty}} \right)$$

Example: $\mathbf{K} = \mathbf{qCat}$. A vertex in $\mathrm{alg}B$ is a map $\mathbb{A}_{\infty} \to B$ of the form:

$$b \xrightarrow{\eta \longrightarrow}_{\leftarrow \beta} tb \xrightarrow{\eta \longrightarrow}_{\leftarrow t\eta \longrightarrow}_{\leftarrow t\beta} t^{2} b \xrightarrow{\eta \longrightarrow}_{\leftarrow t\eta \longrightarrow}_{\leftarrow t\eta \longrightarrow} t^{3} b \cdots$$

Pretalk	Adjunctions and monads	Weighted limits	Algebras and descent data	Monadicity and desc
0000	0000	00	0000	000000

The monadic homotopy coherent adjunction

... is all in the weights!

Note: Adj a simplicial computad \rightsquigarrow these weights are cellular.

Q: Doesn't this imply that up-to-homotopy monads have monadic adjunctions and hence are homotopy coherent?A: No! Homotopy 2-categories don't admit cellular weighted limits.

0000	0000	ia monaus	00	000000
-		~		

Descent data for a homotopy coherent monad

Fix $B \in \mathbf{K}^{\mathbf{Mnd}}$. A **descent datum** is a coalgebra for the induced monad on the object of algebras.

$$\begin{split} \mathrm{dsc} B &:= \mathrm{coalg}(\mathrm{alg}(B)) & \mathbb{A} \in \mathbf{Cat}^{\mathbf{Mnd}} \\ \mathrm{dsc} B &:= \{\mathbb{A}, B\}_{\mathbf{Mnd}} = \mathrm{eq}\left(B^{\mathbb{A}} \rightrightarrows B^{\mathbb{A}_+ \times \mathbb{A}}\right) \end{split}$$

Example ($\mathbf{K} = \mathbf{qCat}$). A vertex in dscB is a map $\mathbb{A} \to B$:

Pretalk Adjunctions and monads Weighted limits Algebras and descent data Monadicity and descent 0000 000 000 000 000 000 000 000

Totalizations of cosimplicial objects in an object of ${\bf K}$

The monadicity and descent theorems require geometric realization of simplicial objects valued in an object of an $(\infty, 2)$ -category.

An object $B \in \mathbf{K}$ admits totalizations iff there is an absolute right lifting diagram in hoK:

Equivalently:

•
$$\exists$$
 an adjunction $B^{\mathbb{A}} \xrightarrow[tot]{\text{tot}} B$ in hoK.

• \exists a homotopy coherent adjunction $B^{\mathbb{A}} \stackrel{\text{const}}{\stackrel{\frown}{=}} B$ in **K**.

Totalizations of split augmented cosimplicial objects

Theorem. In any $(\infty, 2)$ -category with cotensors, the totalization of a split augmented cosimplicial object is its augmentation., i.e.,

is an absolute right lifting diagram for any object B.

Proof: is all in the weights!

$$\mathbb{A}_{\infty} \xrightarrow{[0]}{\overset{\mathbb{I}}{\underset{\mathrm{incl}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}}}\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}{\overset$$

witnessed absolute right extension diagram in Cat. Apply $B^{(-)}$.

absolute right lifting diagram.

Theorem. Any algebra is the geometric realization of a canonical algB simplicial object of free algebras.: $algB \xrightarrow{id} \downarrow_{const} is an$ $algB \xrightarrow{id} \downarrow_{const} algB^{\triangle^{op}}$ absolute left lifting diagram. Pretalk Adjunctions and monads Weighted limits Algebras and descent data 0000 000

Monadic descent in an $(\infty, 2)$ -category

Theorem. For any homotopy coherent monad in an $(\infty,2)$ -category with cellular weighted limits, there is a canonical map

- $\bullet\,$ that admits a right adjoint if B has totalizations
- that is full and faithful if elements of *B* are totalizations of their monad resolution
- that is an equivalence if comonadicity is satisfied

The theory of comonadic codescent is dual: replace the weights by their opposites.

Theorem. For any homotopy coherent adjunction $f \dashv u$ with homotopy coherent monad t, there is a canonical map

- that admits a left adjoint if A has geometric realizations of u-split simplicial objects
- that is an adjoint equivalence if u creates these colimits.

Pretalk 0000	Adjunctions and monads	Weighted limits	Algebras and descent data	Monadicity and descent 00000●				
Further reading								

"The 2-category theory of quasi-categories" arXiv:1306.5144

"Homotopy coherent adjunctions and the formal theory of monads" arXiv:1310.8279

"A weighted limits proof of monadicity" on the $n\mbox{-}\mathsf{Category}$ Café