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Abstract. “Formal category theory” refers to a commonly applicable frame-

work (i) for defining standard categorical structures—monads, adjunctions,
limits, the Yoneda embedding, Kan extensions—and (ii) in which the classi-

cal proofs can be used to establish the expected relationships between these

notions: e.g. that right adjoints preserve limits. One such framework is a 2-
category equipped with a bicategory of “modules.” (A module or profunctor

from a category A to a category B is a functor Aop × B → Set, for instance

hom: Aop ×A→ Set.)
In [RV1], we show the basic category theory of quasi-categories can be

developed formally in a strict 2-category, the “homotopy 2-category” of quasi-
categories. A main point is that certain weak 2-limits present in this 2-category,

particularly comma objects, encode universal properties up to the appropriate

notion of equivalence for quasi-categories. An important feature of these “for-
mal” definitions and proofs is that they apply representably in other higher

homotopical contexts, including Rezk objects (e.g., complete Segal spaces). In

the quasi-categorical context, we are reprising the foundational work pioneered
by Joyal, Lurie, and others. Our aim is to develop new tools to prove further

theorems, but an important side benefit is that this work applies equally to

other models.
The aforementioned comma objects are precisely those modules that are

represented by ordinary functors. In work in progress, we have developed a

general theory of modules between quasi-categories, which is robust enough to
support a complete formal category theory. (Modules appear under the guise

of correspondences in Lurie’s work, but our presentation, as two-sided discrete
fibrations, is different.) This allows us to prove, for instance, the familiar

(co)limit formula for pointwise Kan extensions.

At present, these new results do not immediately translate to other flavors
of (∞, 1)-categories, or to (∞, n)-categories, because there is one key technical

property (a “homotopy exponentiability” criterion for maps) that we prove in

specific reference to the quasi-categorical model. In what follows, we explain
some of the basic ideas behind formal category theory (how comma objects are

used to encode categorical structures), describe the “homotopy expontentia-

bility” criterion, and explore future vistas.

Overview

Speaking loosely, an (∞, n)-category is a weak higher category with objects;
1-morphisms, 2-morphisms, 3-morphisms, and so on in each positive dimension;
and with the property that all morphisms above dimension n are weakly invertible.
For instance, the points in a space can be regarded as the objects of an (∞, 0)-
category whose 1-morphisms are paths, 2-morphisms are homotopies, 3-morphisms
are homotopies between homotopies, and so on. Thanks to a lot of hard work
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with contributions made by many people, there are a plethora of models of (∞, n)-
categories, which, by even more hard work, have been shown to be equivalent, in a
suitable sense.

Our aim is to provide the tools necessary to do something with (∞, n)-categories:
to understand what it means for some (∞, n)-category to have limits of a particular
shape and what it means for a functor between (∞, n)-categories to have a right
adjoint. These notions are not unrelated: as a test that the right definitions have
been identified, one should be able to prove that right adjoints preserve limits.

This sort of work has been done for one particular model of (∞, 1)-categories,
namely the quasi-categories studied by Joyal, which are called ∞-categories by
Lurie. However, the definitions and proofs are highly technical and cannot easily be
generalized to other models of (∞, 1)-categories or to (∞, n)-categories. To achieve
this, we use ideas from formal category theory to guide our definitions and simplify
our proofs. In so doing, we recover the category theory of quasi-categories and can
immediately generalize most of our results to other higher category contexts.

Basic formal category theory

The simplest framework for formal category theory is a strict 2-category that we
will denote by K2. The prototypical example might be the 2-category of categories,
functors, and natural transformations. Soon K2 will be a 2-category whose objects
are (∞, n)-categories, whose morphisms are functors of such, and whose 2-cells are
homotopy classes of 1-simplices in appropriate hom-spaces, which we call natural
transformations.

Adjunctions and equivalences. We will use single arrows to denote 1-cells and
double arrows to denote 2-cells.

Definition. An adjunction consists of objects A, B; 1-cells u : A→ B, f : B → A;
and 2-cells η : idB ⇒ uf , ε : fu⇒ idA satisfying the following pair of identities.
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In a strict 2-category, any pasting diagram of 2-cells, such as displayed in the
preceding definition, has a unique composite 2-cell. The displayed pasting diagram
is the 2-categorical encoding of the so-called triangle identities, which assert that
both pasting composites of the unit and counit 2-cells are identities.

The standard proofs of the following results can be interpreted in a generic 2-
category.

Proposition.

(i) Any two left adjoints to a common 1-cell are isomorphic.
(ii) Adjunctions compose.

In any 2-category, there is a standard notion of equivalence between objects.

Definition. An equivalence between a pair of objects A and B consists of a pair
of 1-cells u : A → B, f : B → A and a pair of 2-cell isomorphisms idB ∼= uf and
idA ∼= fu.
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Again, the standard proof can be interpreted in a generic 2-category.

Proposition. Any equivalence can be promoted to an adjoint equivalence.

Limits and colimits. Now suppose that K2 has some notion of “exponentiation,”
an operation that defines 2-functors (−)X : K2 → K2 indexed by objects X in some
other category (such as Cat or sSet). If A is an object of K2, the object AX is
thought of as the object of X-shaped diagrams in A. As is standard, a morphism
X → Y should induce a map AY → AX . We’ll assume also that exponentiation
by the terminal object is the identity; this gives rise to a “constant diagram map”
const : A → AX for any diagram shape X. In the examples we will consider, the
provenance of such a structure is obvious, so I won’t spell out precisely what is
necessary.

Definition. An object A ∈ K2 has X-shaped limits if the 1-cell const : A → AX

has a right adjoint lim: AX → A.

Proposition. If A and B have X-shaped limits, any right adjoint u : A → B
preserves them.

Proof. Suppose f is left adjoint to u. By bifunctoriality of exponentiation, the

1-cells B
f−→ A

const−−−→ AX and B
const−−−→ BX

fX

−−→ AX agree. Thus the right adjoints

AX
lim−−→ A

u−→ B and AX
uX

−−→ BX
lim−−→ B are isomorphic. �

Remark. The fully general version of the previous proposition — in which A is
assumed to have certain, but not necessarily all, X-shaped limits, and nothing is
assumed a priori about B — is no more difficult to prove. The reason we have
not presented it here is it requires us to discuss the general definition of what it
means for A to have colimits of particular X-shaped diagrams, a property which is
encoded by an absolute right lifting diagram in K2. Absolute right lifting diagrams
are very easy to work with but are most likely unfamiliar.

Weak comma objects. Further results are possible if the 2-category K2 has weak
comma objects.

Definition. Given B
f−→ A

g←− C, a weak comma object consists of the data

f ↓ g
cod

{{xxxx dom

##FFFF

⇐C

g ##GGGGG B

f{{wwwww

A

satisfying a weak universal property with three components:
(1-cell induction): Given any 2-cell as displayed on the left

X
c
~~}}}} b

  AAAA

⇐C

g   AAAA B

f~~}}}}

A

=

X

��
f ↓ g
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{{xxxx dom

##FFFF

⇐C

g ##GGGGG B

f{{wwwww

A
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there exists a 1-cell X → f ↓ g so that the given 2-cell factors through the comma
cone along this map.

(2-cell induction): Defined similarly.
(2-cell conservativity): Any 2-cell induced by a pair of 2-cell isomorphisms is

itself an isomorphism.

As a corollary of these universal properties, the 1-cells X → f ↓ g induced by a
given 2-cell form a connected groupoid over the identities on c and b.

Example. The following special cases of weak comma objects are particularly im-
portant:

f ↓ A
cod

{{wwww dom

##GGGG

⇐α

B ↓ u
cod

{{wwww dom

##GGGG

⇐βA
HHHHH

HHHHH B

fzzvvvvv
A

u $$HHHHH B

vvvvv
vvvvv

A B

A generalized element of f ↓ A, meaning a morphism X → f ↓ A, corresponds
to a generalized element a : X → A of A, a generalized element b : X → B of B,
together with a 2-cell fb⇒ a.

Proposition. If f a u, then f ↓ A and B ↓ u are equivalent over A×B.

Given a morphism fb⇒ a, there is a standard formula for the adjunct morphism
of b ⇒ ua in terms of the unit and counit of the adjunction. This argument is
precisely encoded by the following 2-categorical proof.

Proof. By 1-cell induction, there are 1-cells w : B ↓ u → f ↓ A and w′ : f ↓ A →
B ↓ u defined to satisfy the identities:

B ↓ u
cod

���������
dom

��:::::::

⇐β

B ↓ u

w

��

f ↓ A
cod

���������
dom

��9999999

⇐α

f ↓ A

w′

��
A

:::::::

:::::::
u //

⇐ε

B

f���������
= f ↓ A

cod

���������
dom

��:::::::

⇐α

A

u
��:::::::

⇐η

B

�������

�������

foo = B ↓ u
cod

���������
dom

��:::::::

⇐β

A A B
f

oo B A
u

// B

By definition, these 1-cells lie over A×B. By the series of pasting identities

f ↓ A

w′

��

f ↓ A

w′

��

f ↓ A
cod

���������
dom

��9999999

⇐α
=

f ↓ A
cod

���������
dom

��9999999

⇐α

B ↓ u

w

��
=

B ↓ u
cod

���������
dom

��:::::::

⇐β

= A

u
��9999999

⇐η

B
foo

�������

�������
A B

f
oo

f ↓ A
cod

���������
dom

��:::::::

⇐α

A

:::::::

:::::::
u //

⇐ε

B

f���������
⇐ε B

f���������

A B
f

oo A A
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ww′ and idf↓A are induced by the same 2-cell, so there is an isomorphism between
them fibered over A×B. Interchanging the pair of comma objects proves similarly
that w′w ∼= idB↓u. �

The homotopy 2-category

The strict 2-categories K2 of interest arise as the homotopy 2-category of a quasi-
categorical context K. A quasi-categorical context, is a simplicially enriched category
whose hom-spaces are quasi-categories. A quasi-category is a simplicial set with a
weak composition of morphisms in all dimensions. Part of the point of this talk is
that the precise definition of this notion does not matter.

A quasi-categorical context comes equipped with two distinguished classes of
maps, which we call equivalences and isofibrations. The totality of this data satisfies
the properties enjoyed by the fibrant objects in a model category that is enriched
over simplicial sets (with the Joyal model structure) and in which all fibrant objects
are cofibrant.

The prototypical example is given by the category of quasi-categories: the Joyal
model structure is monoidal. Other examples include complete Segal spaces or
more general categories of Rezk objects: simplicial objects in a model category that
are Reedy fibrant and satisfy the Segal and completeness conditions. For instance,
Barwick’s n-fold complete Segal space model of (∞, n)-categories has this form. If
K is a quasi-categorical context, so is the slice category K/A over any object A.

Remark. Without too much additional difficulty, the hypothesis that “all of the fi-
brant objects are cofibrant” could be removed, but we don’t know of any interesting
examples in which this is not the case.

Definition. The homotopy 2-category K2 of a quasi-categorical context K is the
strict 2-category defined by applying the homotopy category functor ho: qCat →
Cat to each of the hom-spaces in K. Its objects are the objects of K; its 1-cells are
the morphisms of K, which we call functors; and its 2-cells are homotopy classes of
1-simplices in the hom-spaces of K.

A quasi-categorical context admits exponentials by arbitrary simplicial sets, and
this structure descends to 2-functors on the homotopy 2-category of the form de-
scribed above. Moreover, the homotopy 2-category has weak comma objects f ↓ g
defined by the pullback

f ↓ g

����

//
y

A∆1

����
C ×B

g×f
// A×A

in K. This pullback exists because the fibrant objects in a simplicial model category
are closed under Bousfield-Kan-style homotopy limits. More precisely, the comma
construction is an example of a simplicially enriched (weighted) limit of a pointwise
fibrant diagram whose weight is projective cofibrant.

Formal category theory in a quasi-categorical context. The content of the
papers [RV1, RV2, RV3] is stated in the language of quasi-categories but all of the
results appearing there apply, essentially without change, in any quasi-categorical
context K. What this means is that the definitions of the basic categorical concepts
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can be interpreted in K and the proofs, largely taking place in the homotopy 2-
category, are also unchanged.

For example, in [RV2], we define the object of algebras for a homotopy coherent
monad to be a particular projective cofibrant weighted limit and prove the monadic-
ity theorem, which characterizes the accompanying free-forgetful adjunction in K2.

Two-sided discrete fibrations

Perhaps the most important thing that is missing from the basic framework
of a 2-category with weak comma objects is the Yoneda embedding (classically,
the “hom” bifunctor Aop × A → Set) and its generalizations (arbitrary functors
Bop×A→ Set). These go by a variety of names: modules, profunctors, distributors,
or correspondences. There are several possible ways to encode modules in a 2-
category. Given the structures that are present in a homotopy 2-category K2, our
preference will be to use weak comma objects.

For example, the Yoneda embedding for A is encoded by the comma object:

A ↓ A
cod

{{vvvv dom

##HHHH

⇐A
IIIII

IIIII A

uuuuu
uuuuu

A

By 1-cell induction, any 2-cell with codomain A can be encoded by a functor abut-
ting to A ↓ A.

X

�� ��
⇐

A

=

X

��
A ↓ A

cod

��
dom

��
⇐

A

But A ↓ A has additional universal properties relating to the pre- and post-
composition actions by arrows in A, which can only partially be established by
2-cell induction. These additional universal properties are expressed by saying that

A
cod←−− A ↓ A dom−−−→ A is a two-sided discrete fibration in K2.

Cartesian fibrations. To state this definition, we first need a notion of cartesian
fibration. For quasi-categories, this coincides exactly with the notion introduced
by Lurie, but our 2-categorical definition can be interpreted in any homotopy 2-
category.

Definition. An isofibration p : E � B is a cartesian fibration if

(i) Every X
e //

b   @@@@@@@@ E
⇑α

p

��
B

admits a p-cartesian lift χ : ē ⇒ e along p. Here a 2-

cell χ is p-cartesian if it satisfies a weak form of the expected factorization
axiom and also has a 2-cell conservativity property: any endomorphism of
χ siting over the identity on b is an isomorphism.

(ii) The p-cartesian 2-cells are stable under restriction along any functor.
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Replacing the 2-category K2 by its dual Kco
2 , which reverses the 2-cells but not

the 1-cells, we obtain the notion of a cocartesian fibration. The search for examples
is greatly aided by the following theorem, which is a generalization of a 2-categorical
result of Street [S].

Theorem. For an isofibration p : E � B, the following are equivalent:

(i) p is a cartesian fibration.
(ii) The natural functor

E

p �� ��????
// B ↓ p

dom
�������

B

admits a right adjoint over B.
(iii) The natural functor E ↓ E → B ↓ p admits a right adjoint right inverse.

The right adjoint in (ii) picks out the domain of the lifted 2-cells; the p-cartesian
lift is specified by the counit. The functor in (iii) picks out the p-cartesian lift.

Example. Using this theorem and the universal properties of weak comma objects, it
is relatively straightforward to show that dom: E ↓ E � E is a cartesian fibration.
More generally, dom: f ↓ g → B is a cartesian fibration.

Definition. A cartesian fibration p : E � B is discrete if any 2-cell X
&&
88⇑ E

whose composite with p is an identity is an isomorphism.

Example. Let 1 ∈ K2 denote the terminal object. If b : 1 → B is a point, then
dom: B ↓ b� B is a discrete cartesian fibration.

Finally:

Definition. A span A
q
�− E

p
−� B is a two-sided discrete fibration if

(i) E → A×B is a discrete cartesian fibration in K2/A.
(ii) E → A×B is a discrete cocartesian fibration in K2/B.

Example. The span C
cod
�−− f ↓ g

dom
−−−� B is a two-sided discrete fibration.

The equipment for quasi-categories

With the notion of a two-sided discrete fibration to encode modules, we can now
introduce the complete framework for formal category theory.

Theorem. There is a bicategory qMod2 of quasi-categories; modules, i.e., two-

sided discrete fibrations A
q
�− E

p
−� B, written E : A9 B; and isomorphism classes

of maps of spans. Moreover, qMod2 is biclosed: the functors E⊗B − and −⊗AE
admit right biadjoints.

Note that the proposition proven above asserts that if f a u, then the modules
f ↓ A and B ↓ u are isomorphic as 1-cells A9 B.

Remark. For this result, and from hereon, we have specialized to the case of quasi-
categories. Twice in its proof, we use the fact that (co)cartesian fibrations are
“homotopy exponentiable”: that pullback along a (co)cartesian fibration p : E � B
defines a left Quillen functor p∗ : sSet/B → sSet/E. As in category theory, not all
functors have this property, but there is a particular conduché condition, asserting
that a certain family of simplicial sets are weakly contractible, that implies it. We
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have yet to explore how it may be generalized to other contexts. For the time
being, we might note that the structures on qMod2 requiring this condition are
convenient, but not strictly necessary.

The bicategory qMod2 extends the homotopy 2-category of quasi-categories:

Theorem. The identity-on-objects homomorphism qCat2 ↪→ qMod2 that carries
f : A→ B to B ↓ f : A9 B is locally fully faithful.

The proof of this result uses the Yoneda lemma for maps between modules.

Theorem. The covariant represented module B ↓ f : A 9 B is left adjoint to the
contravariant represented module f ↓ B : B 9 A in qMod2.

The preceding three theorems combine to assert that qCat2 ↪→ qMod2 defines
an equipment for quasi-categories, in the sense of Wood [W].

Formal category theory. With this structure in place, we can now commence
with the formal category theory. For example, there is a standard definition of a
right (Kan) extension diagram in any 2-category. In qCat2 this is too weak (failing,
in general, to be “pointwise”), but in qMod2 it gives the correct notion.

Definition. Consider a pair of functors f : A→ B and g : A→ C. Because qMod2

is closed, we can form the following right extension diagram

A
C↓g
| //

B↓f
|

@@@@

��@@@ ⇐
C

E
|~

~

��~
~

B

If the module E is covariantly representable, i.e., if E ∼= B ↓ r for some r : C → B,
then r is the right extension of f along g.

We use the following theorem to identify representable modules, which allows us
to determine when right extensions exist.

Theorem. A module C
q
�− E

p
−� B is covariant representable if and only if the

following equivalent conditions hold:

(i) q has a right adjoint right inverse
(ii) each fiber of q has a terminal object

The right inverse of (i), composed with p, defines the representing functor C →
B. Condition (ii) can be used to establish the expected result: if B has limits
indexed by certain comma objects, then the right extension of f along g exists.

Epilogue: the conduché condition

Consider an isofibration p : E � B between quasi-categories. We want a con-
dition that implies that p∗ : sSet/B → sSet/E is left Quillen with respect to the
Joyal model structures.

Definition. p is conduché if for all

∆n−1 dk //

e

��

∆n

b

��
E

p
// // B

0 < k < n,
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the conduché space Cp(e, b, k) is weakly contractible.

The conduché space Cp(e, b, k) is a simplicial set whose vertices are those n-
simplices of E lying over b and with kth face e. The higher simplices are defined
similarly but with respect to degenerated copies of b at the kth vertex.

For any isofibration p, the proof that p∗ is left Quillen immediately reduces to
the question of whether the monomorphism Y → X defined by pullback

Y //

��????????

��/
/////////////y

Λnk

1111111

��1
111111
!!CCCCCCC

X

��

//
y

∆n

b
��

E
p

// // B

is a trivial cofibration in the Joyal model structure. Note that the vertices e indexing
the conduché spaces correspond to (n − 1)-simplices that are present in X but
missing from Y . The 0-simplices of Cp(e, b, k) are the n-simplices that could be
attached to a Λnk -horn in Y to adjoin e. The proof that pulling back along a
conduché functor is left Quillen uses a Reedy category argument to present Y → X
as a relative cell complex built from inner horn inclusions indexed by data derived
from the conduché spaces.
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