Made-to-Order Weak Factorization Systems

Emily Riehl

1 The Algebraic Small Object Argument

For a cocomplete category M which satisfies certain “smallness” condition (such
as being locally presentable), the algebraic small object argument defines the
functorial factorization necessary for a “made-to-order” weak factorization system
with right class J%. For now, 7 is an arbitrary set of morphisms of M but later we
will use this notation to represent something more sophisticated.

The small object argument begins by defining a generic lifting problem, a single
lifting problem that characterizes the desired right class:
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The diagonal map defines a solution to any lifting problem between 7 and f.
Taking a pushout transforms the generic lifting problem into the step-one functorial
factorization, another generic lifting problem that also factors f.

This defines a pointed endofunctor R;: M?> — M? of the arrow category. An
Ri-algebra is a pair (f, s) as displayed. By construction, Lif € 2(J%). However,
there is no reason to expect that R1f € J%: maps in the image of R need not be R;-
algebras —unless R is a monad. The idea of the algebraic small object argument, due
to Garner [5], is to freely replace the pointed endofunctor R; by a monad. (When all
maps in the left class are monomorphisms, the free monad is defined by “iteratively
attaching non-redundant cells” until this process converges.)
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Following Kelly [6], and assuming certain “smallness” or “boundedness” condi-
tions, it is possible to construct the free monad R on a pointed endofunctor R; in
such a way that the categories of algebras are isomorphic. Garner shows that with
sufficient care, Kelly’s construction can be performed in a way that preserves the
fact that the endofunctor R; is the right factor of a functorial factorization whose
left factor L, is already a comonad. In this way, the algebraic small object produces
a functorial factorization f = Rf - ILf in which LL is a comonad, R is a monad, and
R-Alg =~ R;-Alg = J2.

Example 1 Consider {f) — =} on the category of sets. The algebraic small object
argument produces the generic lifting problem displayed on the left and the step-one
functorial factorization displayed on the right:
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Every lifting problem after step one is redundant. Indeed, Rf = f[] 1 is already a
monad and the construction converges in one step to define the factorization f =

F1I1-incl.

Example 2 Consider {dA" — A"},>, on the category of simplicial sets. Here we
may consider lifting problems against a single generator at a time, inductively by
dimension. The step-one factorization of X — Y attaches the O-skeleton of Y to
X. There are no non-redundant lifting problems involving the generator @ <> A°,
so we move up a dimension. The step-two factorization of X — Y now attaches
1-simplices of Y to all possible boundaries in X U skyY. After doing so, there are no
non-redundant lifting problems involving dA! < A!. The construction converges
at step .

The algebraic small object argument produces an algebraic weak factorization
system (IL, R), a functorial factorization that underlies a comonad IL and a monad R,
and in which the canonical map LR = RL defines a distributive law. The functorial

factorization f = Rf - Lf characterizes the underlying weak factorization system
(L, R):
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because the specified lifts assemble into a canonical solution to any lifting problem:
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2 Generalizations of the Algebraic Small Object Argument

The construction of the generic lifting problem admits a more categorical descrip-
tion which makes it evident that it can be generalized in a number of ways,
expanding the class of weak factorization systems whose functorial factorizations
can be “made-to-order.”

Step zero of the algebraic small object argument forms the density comonad, i.e.,
the left Kan extension along itself, of the inclusion of the generating set of arrows:
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When M is cocomplete, this construction makes sense for any small category of
arrows J . The counit of the density comonad defines the generic lifting problem (1),
admitting a solution if and only if f € J¥ — but now J2 denotes the category in
which an object is a map f together with a choice of solution to any lifting problem
against J that is coherent with respect to (i.e., commutes with) morphisms in .
Proceeding as before, the algebraic small object argument produces an algebraic
weak factorization system (L, R) so that R-Alg = J2 over M?, and L-coalgebras
lift against R-algebras.

Example 3 In the category of cubical sets, let M, 1, U, C suggestively denote
four subfunctors of the 2-dimensional representable (0. For n > 2 and
J C {1,....n} with [J| = n — 2, define "/ C 0" to be N ® I, and
similarly for the other three shapes. Consider the category whose objects are
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the inclusions M’ < [O" for each shape and whose morphisms are generated by

Yy — ﬂf\{f}

* the projections l J for each j € J, and
Dn Dn—v]
7j

n’ r—lJU{r'}
* theinclusions J J embedding 0" as the facei = 0 ori = 1.

Dn Dﬂ-—- 1
This generates the fibrant replacement functor, see Bezem—Coquand—Huber [3].

Example 4 ([8, §4.2]) Any algebraic weak factorization system (L,R) on M
induces a pointwise-defined algebraic weak factorization system (LA, R*) on the
category M? of diagrams. Moreover, when (L, R) is generated by 7, (LA, RA) is
generated by the category AP x 7, whose objects are tensors of arrows of J with
covariant representables.

If M is tensored, cotensored, and enriched over a closed monoidal category V,
we may choose to define the generic lifting problem using the V-enriched left Kan
extension
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where Sq(j,f) € V is the object of commutative squares. The enriched algebraic
small object argument produces an algebraic weak factorization system whose
underlying left and right classes satisfy an enriched lifting property, defined
internally to V. The classes of an ordinary weak factorization system satisfy this
enriched lifting property if and only if tensoring with objects from V preserves the
morphisms in the left class [9, §13].

Example 5 Consider {0 — R} in the category of modules over a commutative
ring R with identity. In analogy with Example 1, the unenriched algebraic small
object argument produces the left-hand functorial factorization, while the enriched
algebraic small object argument produces the factorization on the right:

incl fDev incl [l
X—X® (ByR) — 7, X—XpY—Y.

Example 6 (Barthel-May-Riehl [1]) On the category of unbounded chain com-
plexes of R-modules, consider the sets {0 — D"},cz and {§"7! < D™z, where
D" is the chain complex with R in degrees n and n — 1 and identity differential,
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and where S” has R in degree n and zeroes elsewhere. The enriched algebraic small
object argument converges at step one in the former case and at step two in the
latter case to produce the natural factorizations through the mapping cocylinder and
the mapping cylinder, respectively (see “Mapping (co)cylinder factorizations via the
small object argument” on the n-Category Café).

The algebraic weak factorization systems constructed in Examples 4 and 6 are
not cofibrantly generated (in the usual sense) [4, 7].

Example 7 (Barthel-Riehl [2]) There are two algebraic weak factorization systems
on topological spaces whose right class is the class of Hurewicz fibrations. A map is
a Hurewicz fibration if it has the homotopy lifting property, i.e., solutions to lifting
problems

A —— X
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Ax] —— Y (2)

defined for every topological space A. As there is proper class of generators, it is not
possible to form the coproduct in (1). However, the functor Top®® — Set sending A
to the set of lifting problems (2) is represented by the mapping cocylinder Nf:

Nf — Y/ Nf > X
l ‘ evj > incly, ‘ ‘/
p g Nfxl ——Y
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It follows that any lifting problem (2) factors uniquely through the generic lifting
problem displayed on the right. The algebraic small object argument proceeds as
usual, though there are some subtleties in the proof of its convergence.

There is another algebraic weak factorization system “found in the wild”: the
factorization through the space of Moore paths. The category of algebras for the
Moore paths monad admits the structure of a double category in such a way that the
forgetful functor to the arrow category becomes a double functor. A recognition
criterion due to Garner implies that this defines an algebraic weak factorization
system.
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