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Abstract. ∞-categories are a sophisticated tool for the study of mathemati-

cal structures with higher homotopical information. This note, directed at the

Friends of Harvard Mathematics, introduces this notion from first principles.

1. The philosophy of category theory

The fundamental philosophy of category theory is that anything one would want
to know about a mathematical object is determined by the maps (a.k.a. functions
or transformations, sometimes simply “arrows”) to or from it. For instance, func-
tions from a singleton set to a set X classify its elements; functions from X to the
set {0, 1} identify subsets. Linear maps from R to a real vector space V correspond
bijectively to its vectors. More refined analysis can be used to decode the entire
vector space structure. Continuous functions from the singleton space to a topolog-
ical space T identify its points. Maps from T to the Sierpinski space classify open
sets. And so forth.

Mathematical objects of a fixed type assemble into a category. A category con-

sists of objects X,Y, Z, . . . and maps X
f−→ Y, Y

g−→ Z, . . . including specified identi-

ties X
1X−−→ X. This data is subject to the following axiom: to any pair X

f−→ Y
g−→ Z

there must be some specified composite map

Y
g

  @@@@
=

X

f >>}}}}

gf
// Z

and furthermore this composition law must be both associative and unital. The
first of these conditions says that a single arrow is the specified composite (hg)f and
h(gf) whenever these compositions are defined. The latter says that composition
with an identity has no effect.
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f
// Y X

1X >>||||

f
// Y

For instance, there is a category of sets and functions; of vector spaces and
linear transformations; and of topological spaces and continuous maps, to name
just a few. One might say that the objects of a category are the “nouns” and
the maps the “verbs” in the language appropriate to the mathematical theory of
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interest [Maz07]. The title of this beautiful essay asks “When is one thing equal to
some other thing?” — a question which we now address.

Definition. A map X
f−→ Y is an isomorphism if there exists a map Y

g−→ X such
that the displayed composites are identities.

Y

=
g

  AAAA X

=
f

  AAAA

X

f >>}}}}

1X
// X Y

g >>}}}}

1Y
// Y

The term derives from the Greek: “iso” = “same” “morphic” = “shape”. This
notion was called an equivalence in the foundational paper [EM45] in which cate-
gories are introduced as a formalism with which to describe natural comparisons
between parallel mathematical constructions.

An easy argument shows that the map g is also an isomorphism and furthermore
uniquely determined. We say two objects are isomorphic if there exists an isomor-
phism between them. The following lemma says that if two objects are isomorphic,
then they are identical from the vantage point of our philosophy.

Lemma. If X and Y are isomorphic then there is a bijection between the collections
of maps

{Z → X} ! {Z → Y }

Proof. Composition with the map X
f−→ Y defines a function from the collection

of maps {Z → X} to the collection {Z → Y }; composition with Y
g−→ X defines

a function in the other direction. To show that these functions define a bijection,

we prove that they are inverses. For this, suppose we are given a map Z
h−→ X. Its

image under the composite function is

g(fh) = (gf)h = 1Xh = h

by the associativity and unitality axioms. �

The first major theorem in category theory is that the converse holds as well. It is
not possible to overstate the importance of this result which says that a mathemati-
cal object is determined up to isomorphism by its universal property or, equivalently,
by the (set-valued) functor that it represents.

Lemma (Yoneda lemma). If there exists a natural bijection

{Z → X} ! {Z → Y }
for all objects Z in the category, then X and Y are canonically isomorphic.

2. A motivating example from homotopy theory

Let us now bring this discussion into the realm of homotopy theory. Fix a
topological space T—for instance a surface, perhaps a torus, on which, we might
imagine, lives a very small bug.

T __ j
� T __ j

�
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Returning to the philosophy introduced above, we might try to investigate the
space T by considering continuous maps from simple geometric objects into T . In
particular, we might choose maps that describe possible trajectories for the bug,
whose positions are represented by points in T and whose meanderings are described
by means of paths, i.e., continuous functions from the interval [0, 1] to T .

These considerations naturally suggest a category whose objects are points and
whose morphisms are paths. Paths that start and end at a common point can be
composed by “traveling twice as fast.” The composition of a path f from position x
to position y with a path g from position y to position z is the path where the bug
traverses f over the course of the interval [0, 1

2 ] and traverses g over the course of

the interval [12 , 1]. But this composition law fails to be associative: a bug traveling
along the path h(gf) spends half its time on h and a quarter each along g and f
while a bug traveling along (hg)f spends half its time along f and only a quarter
each on g and h.

While these paths aren’t identical, they are homotopic. The homotopy takes the
form of a continuous function from the product [0, 1] × [0, 1] to T as depicted by
the following schematic picture.

'''''''''''''''''''

'''''''''''''''''''gf h

g hf

[
0

]
1

[

[
0

1

The construction suggested above does yield a category Π1T provided we instead
define maps to be homotopy classes of paths. Incidentally, the reason we suggested
that T might be a surface, such as a torus, with non-zero genus is so that this
category will have more than one map between any two given points.

Assuming the space T is path connected, the category Π1T is equivalent (as a
category) to the fundamental group of T , “one of the most celebrated invariants in
algebraic topology” [Lur08]. Nonetheless, this construction is somewhat unsatisfy-
ing, because the “homotopy classes” lose the information provided by the explicit
homotopies. The forgetting involved with this truncation was necessary because
categories, as classically defined, are only 1-dimensional. The “higher homotopical
information” of the space T instead organizes into an ∞-category.

3. Simplicial sets

An ∞-category is a particular sort of simplicial set. A simplicial set X consists
of sets X0, X1, X2, . . . of simplices in varying dimension which we might visualize
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in the following manner

x ∈ X0 x0
f // x1 ∈ X1

x1 g

""DDDD
=

x0

f <<zzzz
h

// x2

∈ X2

x1

��

""DDDD

x0

<<zzzz

""DDDD
// x3

x2

<<zzzz

∈ X3

The data of a simplicial set also consists of functions

X0
// X1oo

oo //
// X2

oo
oo

oo
//
//

//
X3 · · ·oo

oo

oo

oo

that specify which lower-dimensional simplices are faces of higher-dimensional sim-
plices and which higher-dimensional simplices represent degenerate copies of lower-
dimensional simplices. These functions satisfy certain relations that are evident
from their geometric description.

Example. To any category C there is an associated simplicial set NC with 0-simplices
the objects of C, 1-simplices the maps, 2-simplices composable pairs of maps, 3-
simplices composable triples, and so on. In this simplicial set, a simplex is uniquely
determined by its spine, the sequence of edges connecting the 0th vertex to the 1st
to the 2nd to the 3rd and so on. This simplicial set is used to define the classifying
space of a group.

Example. To any topological space T there is an associated simplicial set ST with
0-simplices the points of T , 1-simplices the paths, 2-simplices continuous functions
from the topological 2-simplex into T , 3-simplices continuous functions from the
topological 3-simplex to T , and so on. This simplicial set is used to define the
homology of a topological space.

Simplicial sets themselves form a category. Indeed, returning to the philosophy
expressed above, a simplicial set X is entirely described by maps to it. In particular,
the n-simplices of X correspond bijectively to maps ∆n → X whose domain is the
standard n-simplex. Here ∆n is the simplicial set with a single non-degenerate n-
simplex, together with its faces and their degeneracies. There is a sub simplicial set
Λn
k ⊂ ∆n for each 0 ≤ k ≤ n called the (n, k)-horn which is the simplicial set formed

by the throwing away the non-degenerate n-simplex and its k-th (n−1)-dimensional
face. For example, the (2, 1)-horn is the simplicial set depicted below

1

��====

0

@@����
2

⊂
1
= ��====

0

@@����
// 2

A map Λ2
1 → X specifies a pair of 1-simplices in X so that the target vertex of one

is the source vertex of the other.

4. ∞-categories

We are now prepared to define an ∞-category.
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Definition. An ∞-category is a simplicial set X so that for each n ≥ 2, 0 ≤ k ≤ n
any (n, k)-horn in X extends to an n-simplex.

Λn
k

//

��

X

∆n

>>}
}

}
}

We have already seen two classes of examples.

Example. For any category C, NC is an ∞-category. Each (2, 1)-horn admits an
extension to a 2-simplex because composable maps have a specified composite.
Each (3, 1)- and (3, 2)-horn admits an extension because this composition law is
associative. Indeed, each (n, k)-horn admits a unique extension to an n-simplex
because the simplices in NC are uniquely characterized by their spine, which is
visible in the horn.

Example. For any topological space T , ST is an ∞-category. A map Λn
k → ST

corresponds to a continuous function from a topological realization of the (n, k)-
horn into the space T . This topological horn includes into the topological n-simplex
and this inclusion is a deformation retract, meaning there is a continuous retraction
of the n-simplex onto the (n, k)-horn. This retraction may be used to define the
desired extension. Indeed, note that this argument works equally well for (n, 0)-
and (n, n)-horns in ST .

In general, we think of an ∞-category as a weak category with maps in each
dimension. The 0-simplices are the objects and the 1-simplices are the maps. For

any composable pair of maps x
f−→ y, y

g−→ z, the extension condition in the case
n = 2 guarantees that there exists a 2-simplex

y
g

��????
=

x

f ??����
h
// z

which we think of as a homotopy witnessing that h is a composite of f and g. The
3-dimensional extension condition implies, among other things, that any two com-
posites are themselves homotopic. The 4-dimensional extension condition implies,
among other things, that any two parallel homotopies have a “higher homotopy”
comparing them, and so on. There is a sense in which these (higher) homotopies
may themselves be composed; with respect to this composition law, all (higher)
homotopies are invertible. One way to express this property is to say that between
any two vertices in an∞-category there is a topological space of maps, though this
space is only well-defined up to homotopy type.

5. Equivalences in ∞-categories

Finally, we return to a question considered at the beginning: What should it
mean for two objects of an ∞-category to be equivalent? A quick definition is
that objects of an ∞-category are equivalent just when they are isomorphic in the
associated homotopy category. This leads to the following concrete definition.
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Definition. A 1-simplex x
f−→ y in a ∞-category is an equivalence if there exists a

1-simplex y
g−→ x and 2-simplices

y
g

��>>>>
=

x
f

��>>>>
=

x

f @@����
1x
// x y

g @@����
1y

// y

Part of the magic of∞-categories is visible in the following result, which says that
equivalences in an ∞-category are automatically “infinite-dimensional.” Let J be

the simplicial set with two 0-simplices 0, 1; two non-degenerate 1-simplices 0
f−→ 1,

1
g−→ 0; and indeed two non-degenerate simplices in each dimension continuing in

the pattern depicted

1
g

��=====
=

0
f

��=====
=

0

f
@@�����

10
// 0 1

g
@@�����

11
// 1

1

g

��

11

��===== 0

f

��

10

��=====

0

f
@@�����

10 ��===== f
// 1 1

g
@@�����

11 ��===== g
// 0

0
f

@@�����
1

g

@@�����

Theorem. Equivalences in an ∞-category correspond to maps J → X. More
precisely, a 1-simplex in X is an equivalence if and only if it can be extended to a
map whose domain is J .

The proof is reasonably elementary though it requires some clever combinatorics.
The reader might enjoy proving a special case: that the data described above can
be extended to dimension three.
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