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Abstract. We present general techniques for constructing functorial factor-

izations appropriate for model structures that are not known to be cofibrantly
generated. Our methods use “algebraic” characterizations of fibrations to pro-

duce factorizations that have the desired lifting properties in a completely cate-

gorical fashion. We illustrate these methods in the case of categories enriched,
tensored, and cotensored in spaces, proving the existence of Hurewicz-type

model structures, thereby correcting an error in earlier attempts by others.

Examples include the categories of (based) spaces, (based) G-spaces, and dia-
gram spectra among others.

1. Introduction

In the late 1960s, Quillen introduced model categories, which axiomatize and
thereby vastly generalize a number of classical constructions in algebraic topology
and homological algebra. Somewhat ironically, a model category of spaces whose
“cofibrations” were the classical, meaning Hurewicz, cofibrations and whose “fibra-
tions” were the Hurewicz fibrations, established in [Str72], is somewhat difficult to
obtain. The source of difficulties is two-fold. One has to do with subtleties involving
point-set topology. The other obstacle is due to the fact that this model structure
is not known to be cofibrantly generated : while its fibrations are certainly defined
by a lifting property, this lifting property is against a proper class of maps, and not
simply a set. In the absence of this set-theoretical condition, there is no general
procedure for constructing factorizations whose left and right factors satisfy the
desired lifting properties.

In particular, while there exist natural notions of Hurewicz cofibrations and fi-
brations, Strøm’s ideas seem to be confined to the category of spaces. Only in
the last decade has there been progress toward Hurewicz-type model structures in
one of their most natural settings: categories enriched, tensored, and cotensored
over spaces [SV02, Col06b]. Natural examples include based and unbased spaces,
G-spaces, and diagram spectra. In the presence of a Quillen-type model structure,
a Hurewicz-type model structure gives rise to a mixed model structure by an ob-
servation of Cole [Col06a]. May and Ponto have advertized mixed model structures
on topological spaces and categories of spectra [MP12] which combine Quillen- and
Hurewicz-type model structures. The weak equivalences and fibrations are the weak
homotopy equivalences and the Hurewicz fibrations; the cofibrant objects on spaces
are the spaces of the homotopy types of CW complexes. May and Ponto argue that
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this is the model structure in which homotopy theory has always implicitly worked.
For example, in the parametrized world [MS06], actual cell complexes are subtle
and working in the mixed model structure promises a real simplification.

However, the difficulties inherent in this topic resurface in a mistake, recently no-
ticed by Richard Williamson, in a crucial proof in [Col06b], throwing the existence
of Hurewicz-type model structures once more into doubt. The result claimed by
Cole and proven here allows this philosophy to be applied to topological categories
satisfying a smallness condition. In this paper, we present general techniques for
producing factorizations for non-cofibrantly generated model categories that make
use of the “algebraic” perspective on fibrations, explained below. We impose al-
gebraic structures in order to replace point-set level arguments step-by-step with
categorical ones, formulating a proof that is not specific to the category at hand.
An interesting feature of this perspective is that it precisely identifies the flaw in
Cole’s proof and simultaneously suggests its solution.

A test case, spelled out in Section 3 and 4, illustrates how we might use the
algebraic perspective to circumvent certain point-set level arguments in the con-
struction of factorizations. Malraison and May [Mal73, May75] observed that the
Moore path space allows for an algebraic characterization of Hurewicz fibrations.
Based on their results, we present a new factorization for the Strøm model struc-
ture on topological spaces, which in particular avoids Strøm’s work on Hurewicz
cofibrations [Str66,Str68]. In fact, the construction of this factorization generalizes
to any topologically bicomplete category, and we suspect that our arguments could
also be used to establish the existence of Hurewicz-type model structures there.
However, we prefer an alternative approach which can be more easily adapted to
other (non-topological) contexts. This construction, outlined below, takes the or-
dinary path space as its point of departure but requires more elaborate algebraic
machinery.

We explain our methods in analogy with the cofibrantly generated case. The
starting point is an observation about Quillen’s small object argument, due to
Richard Garner [Gar07, Gar09]. In a cofibrantly generated model category, a map
is a fibration if and only if it has the right lifting property against a particular
set of arrows; this is the case just when one can choose a solution to each such
lifting problem. These chosen solutions are encoded as a solution to a single lifting
problem involving the “step-one” factorization of Quillen’s small object argument,
which factors a map as a trivial cofibration followed by a map that is not typically a
fibration. Put another way, a map is a fibration if and only if it admits the structure
of an algebra for the (pointed) endofunctor that sends a map to its step-one right
factor. In this way, Quillen’s step-one factorization gives rise to an “algebraic”
characterization of the fibrations in any cofibrantly generated model category.

By contrast, the Hurewicz fibrations in a topologically bicomplete category are
not characterized by a lifting property against a set of maps. Nonetheless, we show
that the “step-one” factorization produced by Cole, while not factoring a map into
a trivial cofibration followed by a fibration, nonetheless provides a precise algebraic
characterization of the fibrations. As above, the right factor of this factorization
is a pointed endofunctor whose algebras are precisely the fibrations. A general
categorical construction replaces this functorial factorization with another whose
right functor is a monad whose algebras are again precisely the fibrations. In
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particular, the right factor is itself a free algebra and thus a fibration for entirely
formal reasons: no point-set topology is necessary for this proof.

It remains to show that the left factor is a trivial cofibration for the model
structure; again, on account of the algebraic perspective, no point-set topology is
required. Instead, we use a composition criterion to show that the left functor
so-constructed is a comonad. In particular, the left factor is a coalgebra for said
comonad. For easy formal reasons, such coalgebras lift (canonically) against alge-
bras for the right functor, which proves that the left factor is a trivial cofibration.
This yields our main theorem.

Theorem. On any category C enriched, tensored, and cotensored over spaces and
satisfying a mild set-theoretical condition there exists a model structure whose fibra-
tions, cofibrations, and weak equivalences are the h-fibrations, strong h-cofibrations,
and homotopy equivalences respectively.

Abstractly our approach can be described as follows. Suppose given a category
with two distinguished classes of morphisms: a class of “fibrations” that are char-
acterized as algebras for a pointed endofunctor and a class of “trivial cofibrations”
that are determined by a lifting property against the fibrations. In practice, the
former often arise as maps admitting solutions for a certain functorially constructed
“generic lifting problem”; the pointed endofunctor is obtained by pushing out this
square. If the pointed endofunctor obtained in this manner satisfies a certain “small-
ness” condition, we can then construct a candidate functorial factorization by freely
replacing it by a monad. If either of the following conditions hold

(a) the category of algebras for the pointed endofunctor admits a vertical com-
position law, defined in Section 4 below, or

(b) the left factor in the factorization associated to the pointed endofunctor is
a comonad

then these functors factor a map as a trivial cofibration followed by a fibration.
By work of Garner [Gar09], both (a) and (b) hold automatically in the cofibrantly
generated case, which is thereby subsumed.

In fact, the methods of this paper generalize effortlessly to produce algebraic
factorizations for any enriched bicomplete category equipped with an interval, i.e., a
bipointed object, which satisfies a certain smallness condition. This can be used, for
instance, to construct model structures on categories enriched in chain complexes.
More details will appear in a forthcoming paper with Peter May.

Let us briefly compare this with previous work extending the small object argu-
ment to non-cofibrantly generated model categories. The main theorem of [Cho06]
states that if

(i) there is a cardinal κ such that the domains of the arrows in the generating
class of trivial cofibrations are κ-small and

(ii) there exists a functorial construction of a “generic lifting problem” in the
sense of Remark 5.11,

then an analogue of Quillen’s small object argument can be used to construct ap-
propriate functorial factorizations. In spaces, the Hurewicz fibrations are generated
by the class {A→ A× I} of cylinder inclusions. There are examples of spaces that
are κ-small only if κ exceeds the cardinality of their underlying set. Hence, for
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topological categories, the condition (i) is unreasonable. By contrast, our condi-
tions (a) and (b) provide sufficient control over the left factor to allow us to weaken
the smallness condition.

The structure of this paper parallels the gradual removal of point-set topology;
in particular, we introduce categorical notions and results along the way as needed.
In Section 2, we review Strøm’s construction of a functorial factorization for the
Hurewicz-type model structure on spaces and indicate why it is not suitable for
generalization. In Sections 3 and 4, we introduce the algebraic perspective on
fibrations by considering the Moore path functorial factorization. In Section 5, we
discuss Hurewicz type model structures on any complete and cocomplete category
that is tensored, cotensored, and enriched in topological spaces, and prove our main
theorem. Finally, in the appendix, we explain the problem with Cole’s factorization
and present a few more details about our construction.

Acknowledgments. We would like to thank Richard Williamson for bringing this
problem to our attention and Richard Garner, whose work inspired much of this
paper. This work also benefitted from conversations with Richard Garner, Peter
May, Bill Richter, Mike Shulman, and Richard Williamson. We would like to thank
the referee for many helpful comments and several simplifications. The first author
would also like to thank Harvard University for its hospitality.

2. Strøm’s model structure on spaces

In this short section, we review a few select details of Strøm’s construction of a
model structure on the category of topological spaces and continuous maps whose
weak equivalences are homotopy equivalences, fibrations are Hurewicz fibrations,
and cofibrations are closed Hurewicz cofibrations.

Remark 2.1. Even though Strøm works in the category of all topological spaces,
we restrict ourselves to a convenient category of spaces, denoted Top, which in
particular should be cartesian closed. The two most prominent examples are k-
spaces and compactly generated weak Hausdorff spaces. For a detailed discussion
of these point-set issues, we refer the interested reader to [MS06, Ch. 1].

Write I for the unit interval, topologized in the standard way with endpoints
0, 1. Recall that Hurewicz fibrations are those maps in Top that have the homo-
topy lifting property, i.e., the right lifiting property with respect to all inclusions

A
i0−→ A× I. Dually, the Hurewicz cofibrations are those maps with the homotopy

extension property, i.e., the left lifting property against all projections Y I
p0−→ Y .

There is a subtle, but important point here: In order to organize the aforemen-
tioned classes of maps into a model structure on Top, we need the (model structure)
cofibrations and trivial cofibrations, i.e., those cofibrations that are also homotopy
equivalences, to be precisely the maps that lift against the (model structure) trivial
fibrations and fibrations, respectively. In general, however, the Hurewicz cofibra-
tions and fibrations don’t have this property, but this can be fixed by requiring the
(model structure) cofibrations to be closed Hurewicz cofibrations.

Remark 2.2. Cofibrations in the category of compactly generated spaces are auto-
matically closed, but interestingly this is not the case in the category of k-spaces;
cf. [MS06, 1.6.4]. Compare with the notion of strong cofibrations, introduced
by [SV02], which we discuss in Section 5.
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The factorization axiom (CM5) is the most difficult one to establish for this
model structure, and here it suffices to construct the trivial cofibration – fibration
factorization. The main point-set level input to demonstrate this factorization is
the following result of Strøm’s [Str66, Thm. 3]:

Proposition 2.3. If i : A → X is an inclusion of a strong deformation retract
such that there exists a map q : X → I with q−1(0) = A, then i is a closed Hurewicz
cofibration as well as a homotopy equivalence.

This enables Strøm to prove:

Proposition 2.4. Every continuous map f : X → Y can be factored as a homotopy
equivalence and closed Hurewicz cofibration i followed by a Hurewicz fibration p.

The proof can be found in [Str72, Prop. 2], building on earlier work [Str68]. Here,
we merely describe the construction so as to highlight the difficulties of näıvely
extending it to topologically enriched categories. Strøm’s factorization makes use
of

Definition 2.5. The mapping path space Nf of f : X → Y is defined to be the
pullback

Nf
χf
//

φf

��

Y I

p0

��

X
f
// Y

Strøm’s construction 2.6. Any map f can be factored as f = π◦j, with j : X →
Nf the map that sends a point of X to the constant path at its image under f and
π : Nf → Y evaluation of paths at their endpoint. This map j is not necessarily a
cofibration, so Strøm factors it through the space E formed by gluing

E = X × I
⋃

X×(0,1]

Nf × (0, 1]

along j and the inclusion of the half open interval. The map j factors as i : x 7→
(x, 0) followed by the natural projection π′ obtained by including E into Nf × I
and projecting to the mapping space. The result is a commutative diagram

X
f
//

i

��

j

!!

Y

E
π′
// Nf

π

OO

Using Proposition 2.3 and [Str68, Thm. 8 and 9], Strøm checks that i is a trivial
cofibration and p := π ◦ π′ is a fibration.

This construction generalizes without problems to any category C enriched, ten-
sored, and cotensored in spaces. In particular, we might define E to be the pushout

X ⊗ (0, 1]
X⊗i′

//

j⊗(0,1]
��

X ⊗ I

��

Nf ⊗ (0, 1] // E
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i′ being the map induced by the inclusion (0, 1]→ I. However, Strøm’s characteri-
zation of trivial cofibrations is not available in the enriched context, so one needs to
check directly that, among other things, the following lifting problem can be solved
for any A:

A //

i0
��

E

p

��

A⊗ I //

<<

Y

But E being defined as a colimit, it seems very difficult if not impossible to check
that a lift exists and thus that p is indeed a fibration.

We will come back to this point in §5.1.

3. The Moore paths factorization I

We now present a second construction of the trivial cofibration – fibration factor-
ization for the h-model structure on Top in order to illustrate some of the key ideas
involved in the “algebraic” perspective on homotopy theory. Following [May75], we
introduce a functorial factorization based on the Moore path space to characterize
the Hurewicz fibrations as algebras for a pointed endofunctor. We use this char-
acterization to prove that the right factor is a Hurewicz fibration and then apply
Proposition 2.3 to show that the left factor is a closed Hurewicz cofibration and
homotopy equivalence.

Interestingly, because this functorial factorization is particularly nice, the point-
set topology input provided by Proposition 2.3 is not necessary to show that the
left factor is a trivial cofibration. We will explain how this works in Section 4,
introducing ideas that will be essential for our construction of a suitable functorial
factorization for a general topologically bicomplete category in Section 5.

3.1. The Moore path space. Let Y be a space and let R+ = [0,∞). The space
ΠY of Moore paths is defined to be the pullback

(3.1) ΠY

πend

��

// Y R+ × R+

shift
��

Y
const

// Y R+

The map “shift” is adjunct to the map given by precomposing with the addition

map R+ × R+ +−→ R+. It has the effect of reindexing a path so that it starts at
the indicated time. Unpacking this definition, ΠY can be identified with the set of
pairs (p, t), where t ∈ R+ and p : [0, t] → Y is a path in Y of length t, topologized

as a subspace of Y R+ × R+. The map πend sends (p, t) to p(t).
Following [May75]:

Definition 3.2. The Moore path space Γf of f : X → Y is defined to be the
pullback

(3.3) Γf //

��

ΠY

π0

��

X
f
// Y
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where π0 : (p, t) 7→ p(0) is the evaluation of paths at 0. In other words, Γf is the
set of triples (p, t, x) where (p, t) is a Moore path in Y and x is a point in the fiber
over p(0).

As with Nf above, we use the space Γf to define a factorization

(3.4) X
f

//

If
  

Y

Γf

Mf

>>

The left factor If : X → Γf sends a point x ∈ X to the length-zero path at
f(x). The right factor Mf : Γf → Y is the endpoint-evaluation map, obtained by
composing the top map of (3.3) with πend : ΠY → Y .

Unlike the case for the factorization constructed using the ordinary mapping
space Nf , the Moore path space factors a map into a trivial cofibration If followed
by a fibration Mf . The proofs of these facts make use of the algebraic perspective
on homotopy theory. To proceed, we need a few definitions.

3.2. Functorial factorizations. For the reader’s convenience, we briefly review
the notion of a functorial factorization. Let C be any category. Denote by C2 the
arrow category of C; its objects are arrows of C, drawn vertically, and its morphisms
are commutative squares which compose “horizontally”. Write dom, cod: C2 ⇒ C
for the evident forgetful functors, defined respectively by precomposing with the
domain and codomain inclusions 1⇒ 2 of the terminal category into the category
• → •.

Definition 3.5. A functorial factorization consists of a pair of functors L,R : C2 →
C2 such that

domL = dom, codR = cod, codL = domR,

and with the property that for any f ∈ C2, the composite (in C) of Lf followed by
Rf is f .

It is convenient to assign a name, say E, to the common functor codL =
domR : C2 → C that sends an arrow to the object through which it factors. A
functorial factorization factors a commutative square

(3.6)

X
u //

f

��

W

g

��

Y
v
// Z

as

X
u //

Lf

��

f

��

W

Lg

��
g

��

Ef
E(u,v)

//

Rf

��

Eg

Rg

��

Y
v
// Z

The functors L and R are equipped with canonical natural transformations to
and from the identity on C2 respectively, which we denote by ~ε : L→ id and ~η : id→
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R. The components of these natural transformations at f ∈ C2 are the squares

X

Lf

��

X

f

��

X

f

��

Lf
// Ef

Rf

��

Ef
Rf
// Y Y Y

In other words, L and R are pointed endofunctors of C2, where we let context
indicate in which direction the functors are pointed. An algebra for the pointed
endofunctor R is defined analogously to the notion of an algebra for a monad, except
of course there is no associativity condition in the absence of a multiplication map
~µ : R2 → R. Similarly, a coalgebra for the pointed endofunctor L is defined analo-
gously to the notation of a coalgebra for a comonad. Unpacking these definitions
we observe:

Lemma 3.7. f ∈ C2 is an R-algebra just when there exists a lift

(3.8) X

Lf

��

X

f

��

Ef
Rf
//

t

>>

Y

Furthermore any choice of lift uniquely determines an R-algebra structure for f .
Dually, i ∈ C2 is an L-coalgebra just when there exists a lift

A

i

��

Li // Ef

Ri

��

B

s

>>

B

Furthermore any choice of lift uniquely determines an L-coalgebra structure for i.

A key point, which we will make use of later, is expressed in the following lemma.

Lemma 3.9. Any L-coalgebra (i, s) lifts canonically against any R-algebra (f, t).

Proof. Given a lifting problem, i.e., a commutative square (u, v) : i→ f , the func-
torial factorization together with the coalgebra and algebra structures define a
solution, namely the composite of the dashed arrows:

A
u //

Li

��

X

Lf

��

Ei
E(u,v)

//

Ri

��

Ef

Rf

��

t

OO

B

s

OO

v
// Y �

3.3. The Moore paths functorial factorization. The construction (3.4) above
defines a functorial factorization I,M : Top2 → Top2 through the Moore path
space. Furthermore, a classical result of May [May75, 3.4] can be stated as follows:
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Proposition 3.10. A map is a Hurewicz fibration if and only if it admits the
structure of an M -algebra.

Furthermore, as is noted in [Mal73] and [May75], the pointed endofunctor (M,~η)
extends to a monad M = (M,~η, ~µ). This is the point at which Moore paths make
their key contribution: composition of paths of variable lengths is strictly associa-
tive. In particular, the arrows Mf are themselves (free) M -algebras, and are hence
fibrations.

Lemma 3.11. The Moore paths functorial factorization extends to a monad M =
(M,~η, ~µ) over cod on the arrow category Top2.

Proof. We need only define µ : ΓMf → Γf , the domain component of the multipli-
cation natural transformation M2 →M . A point in ΓMf is a Moore path (p, t) in
Y together with a point in Γf — this being itself a Moore path (p′, t′) in Y together
with a point x in the fiber of p′(0) — such that p(0) = p′(t′). The map µ sends this
data to the concatenated path pp′ of length t+ t′ together with the chosen point x
in the fiber over pp′(0) = p′(0). The remaining details are left to the reader. �

These results allow for an easy proof of Proposition 2.4.

Corollary 3.12. The factorization (3.4) factors f into a trivial cofibration If and
a fibration Mf .

Proof. By Proposition 3.10 and Lemma 3.11, Mf is a (free) M -algebra and hence
a Hurewicz fibration, so the only thing to check is that If is a trivial cofibration.
But this follows immediately from Proposition 2.3, using the map q : Γf → [0, 1]
given by sending a Moore path (p, t, x) of length t to min(t, 1). �

An alternate proof that If is a trivial cofibration, which avoids Strøm’s charac-
terization 2.3, was suggested by the referee. By Proposition 3.10 and Lemma 3.9,
it suffices to show that If is an I-coalgebra. Lemma 3.7 says that a map i : A→ B
is an I-coalgebra if and only if there is a lift

A

i

��

Ii // Γi

Mi
��

B

>>

B

This is the case, by the universal property of Γi, if and only if i extends to a Moore
strong deformation retract : a retraction p of i together with a Moore homotopy h
from ip to 1B whose components have length zero when restricted along i.

A

i
��

const

##

B

p

��

h // ΠB

π0

��

πend // B

A
i
// B

Taking i to be If , it is easy to check that the maps in the pullback (3.3) define
a Moore strong deformation retract, making If an I-coalgebra and hence a trivial
cofibration.
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Remark 3.13. Note, in general the notions of M-algebras (algebras for the full
monad) and M -algebras (algebras for the pointed endofunctor) are distinct; the
former is more restrictive. We will always take care to use a blackboard bold letter
to distinguish algebras for the monad from algebras for the pointed endofunctor of
the same name. But in fact, because these functors arise in functorial factorizations,
every M -algebra is a retract of an M-algebra, namely, its right factor. In particular,
a map has the left lifting property with respect to the M -algebras if and only if it
has the left lifting property with respect to the M-algebras.

For the Moore paths factorization, M-algebras are those Hurewicz fibrations that
admit a “transitive path lifting function” in the terminology of [May75]. The free
algebras Mf are both M-algebras and M -algebras.

4. The Moore paths factorization II

In fact, the Moore paths functorial factorization is an example of an algebraic
weak factorization system, defined below. This structure provides tighter algebraic
control over the trivial cofibrations and fibrations, which in particular can be used
to show that the left factor of a map always lifts against any algebra for the right
factor.

Our proof that the Moore paths functorial factorization defines an algebraic
weak factorization system uses a simple characterization, due to Richard Garner,
that allows us to identify categories of algebras for the monad of an algebraic weak
factorization system existing “in the wild.”

In Section 5, by extending the methods introduced here, we will be able to
construct functorial factorizations appropriate for categories that are enriched, ten-
sored, and cotensored over topological spaces, but where point-set level character-
izations of classes of maps in the ambient category are not generally available.

4.1. Composition of algebras. Let L,R : C2 → C2 define a functorial factoriza-
tion. To simplify the following discussion, we consider only algebras for the right
factor R; dual results apply to the case of coalgebras for the left factor L.

Definition 4.1. A morphism (u, v) : f → f ′ in C2, i.e., a commutative square (3.6)
is a map of R-algebras if the square of lifts displayed in the interior of the cube

(4.2) X

Lf

��

u // X ′

Lf ′

��

X
u //

f

��

W

f ′

��

Ef

Rf   

E(u,v)
//

s
==

Ef ′
s′

<<

Rf ′ !!

Y
v

// Y ′

commutes, i.e., if u · s = s′ · E(u, v).

Example 4.3. The identity arrow at any object is always an R-algebra with a
unique R-algebra structure given by its right factor. Furthermore, for any R-algebra
(f, s), the map (f, 1Y ) : (f, s) → (1X , R1X) is an R-algebra map. The proof is a
one line diagram chase:

R1X · E(f, 1Y ) = 1Y ·Rf = Rf = f · s
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by (3.6) and (3.8).

Write AlgR for the category of R-algebras and R-algebra maps. Via the forgetful
functor AlgR → C2, R-algebras can be viewed as objects in C2. Using composition
in C, objects and morphisms in C2 can be composed “vertically”. We say the
category AlgR admits a vertical composition law if this composition operation can
be lifted along the forgetful functor.

Definition 4.4. The category AlgR admits a vertical composition law if

(i) whenever (f, s) and (g, t) are R-algebras such that codf = domg, we can
specify an R-algebra structure t • s for gf , in such a way that this compo-
sition operation is associative

(ii) furthermore, for any maps (u, v) : (f, s) → (f ′, s′) and (v, w) : (g, t) →
(g′, t′) of R-algebras between composable pairs (f, s), (g, t) and (f ′, s′),
(g′, t′), then (u,w) : (gf, t • s)→ (g′f ′, t′ • s′) is a map of R-algebras.

In other words, AlgR admits a vertical composition law if both R-algebras and
R-algebra maps can be composed vertically. This latter condition says that the
vertical composite of the squares underlying R-algebra maps must again be an
R-algebra maps with respect to the composite R-algebras.

Remark 4.5. Concisely, a vertical composition law equips the category AlgR with
the structure of a double category.

Example 4.6. For example, suppose L,R are defined by pushing out from a par-
ticular coproduct of a set of generating trivial cofibrations J as in step one of
Quillen’s small object argument:

(4.7) ·∐
j∈J

∐
Sq(j,f)

j

��

//

p

·
Lf

��

·
f

��
· // ·

Rf
// ·

By the universal property of the defining pushout, an R-algebra structure for f is
precisely a lifting function φf , i.e., a choice of solution to all lifting problems against
any j ∈ J ; see [Rie11, 2.25]. Furthermore, a map of R-algebras (f, s) → (f ′, s′) is
precisely a commutative square from f to f ′ that respects the chosen lifts.

The category AlgR admits a vertical composition law. The R-algebra structure
assigned to the composite of (f, φf ), (g, φg) ∈ AlgR is the lifting function that
solves

(4.8) A

j

��

a // X

f

��

Y

g

��

B
b
//

>>

GG

Z

by first constructing the dotted lift according to φg, thereby obtaining a new lifting
problem against f whose dashed solution is chosen according to φf . It is easy to
check that this composition law respects morphisms of R-algebras and is associative.
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The category AlgR of Example 4.6 is isomorphic to a category of the following
form. For a class of morphisms J ⊂ C2, define a category J� in which an ob-
ject is an arrow f of C equipped with a lifting function φf and whose morphisms
(u, v) : (f, φf )→ (f ′, φf ′) are commutative squares so that the triangle of lifts dis-
played below commutes.

(4.9) A

j

��

a // X

f
��

u // X ′

f ′

��

B

??

b
//

77

Y
v
// Y ′

Note there is a natural forgetful functor J� → C2. The following proposition is
easy to verify [Rie11, 2.32].

Proposition 4.10. The category J� is equipped with a natural vertical composition
law as displayed in (4.8).

Remark 4.11. For a generic functorial factorization, there is no reason for there
to be a composition law for algebras of the right factor. However, we will see
shortly that the existence of such a composition law is characteristic for functorial
factorizations with good lifting properties.

4.2. Algebraic weak factorization systems. The following definition is origi-
nally due to [GT06], with a small modification by Garner [Gar09].

Definition 4.12. An algebraic weak factorization system on a category C is pair

(L,R) with L = (L,~ε, ~δ) a comonad on C2 and R = (R, ~η, ~µ) a monad on C2 such
that:

(i) (L,~ε), (R, ~η) give a functorial factorization on C, and
(ii) The natural transformation ∆: LR → RL with components given by the

commutative squares

·
δf
//

LRf

��

·
RLf

��
·

µf
// ·

is a distributive law, i.e., satisfies δ ◦ µ = µL ◦ E(δ, µ) ◦ δR.

It follows from (i) that codR = cod and that the codomain components of both

~µ and ~η are the identity; dually, domL = dom and the domain components of ~δ
and ~ε are identities. In other words, R is a monad over the functor cod, and dually
for L.

Definition 4.13. The left class of an algebraic weak factorization system (L,R) is
the class of maps that admit an L-coalgebra structure while the right class is the
class of maps that admit an R-algebra structure.

Equivalently, the left class is the retract closure of the class of L-coalgebras and
the right class is the retract closure of the class of R-algebras. Note by Lemma 3.9,
each map in the left class lifts against every map in the right class.

Lemma 4.14 (Garner). If (L,R) is an algebraic weak factorization system, then
AlgR has a canonical vertical composition law.
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A proof is given in [Gar09]. We are particularly interested in the converse.

Theorem 4.15 (Garner). If R is a monad on C2 over cod such that its category of
algebras AlgR admits a vertical composition law, then there is a canonical algebraic
weak factorization system (L,R), with the functor L : C2 → C2 defined by the unit.
Furthermore, the vertical composition law on AlgR determined by the algebraic weak
factorization system (L,R) coincides with the hypothesized one.

Partial proofs can be found in [Gar10,Rie11], but we felt that a more fleshed-out
treatment was merited.

Proof. We make frequent use of the monadic adjunction C2 � AlgR. The (non-

trivial component of the comultiplication) ~δf : Lf → L2f is the domain component
of the adjunct to the map

X

f

��

L2f
// ELf

RLf

��

Ef

Rf

��

Y Y

Explicitly, δ is the composite of E(L2f, 1) with the algebra structure assigned the
composite of the free algebras RLf and Rf . Because arbitrary maps (u, v) : f → g
give rise to maps (E(u, v), v) : Rf → Rg of free R-algebras, δ : E → EL is a natural
transformation.

It remains to show that ~δ gives L the structure of a comonad in such a way that
(L,R) is an algebraic weak factorization system. We will check coassociativity and
leave the unit and distributivity axioms to the reader.

To this end, note that the following rectangles are maps of R-algebras

Ef

Rf

��

δf
// ELf

RLf

��

E(1,δf )
// EL2f

RL2f

��

Ef
δf
//

Rf

��

ELf

Rf ·RLf
��

Y Y Y

Ef

Rf

��

δf
// ELf

δLf
//

RLf

��

EL2f

RLf ·RL2f

��

Ef

Rf

��

Ef

Rf

��Y

We will show that the domain components agree by transposing both maps across
the monadic adjunction. The domain component of the transpose of the left-hand
map is E(1, δ) ·L2 = L3 = δL ·L2, which is the domain component of the transpose
of the right-hand map. Hence δ is coassociative.

Finally, we verify that the vertical composition law arising from the algebraic
weak factorization system by Lemma 4.14 agrees with the vertical composition we
started with. The key observation is that for any composable pair of R-algebras
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(f, s) and (g, t) we have the following map of R-algebras:

ELgf

RLgf

��

E(1,E(f,1))
// E(Lg · f)

R(Lg·f)
��

E(1,t)
// Ef

s //

Rf

��

X

f

��

Egf

Rgf

��

E(f,1)
// Eg

Rg

��

t // Y

g

��

Y

g

��

Z Z Z Z

Recall δgf was defined to be µgf • µLgf · E(L2gf, 1), where • is the given vertical
composition law. By contrast, we write •′ for the vertical composition given by
the algebraic weak factorization system; by [Rie11, 2.21], t •′ s is defined to be the
composite

·
E(L2gf,1)

// ·
µgf•µLgf

// ·
E(1,E(f,1))

// ·
E(1,t)

// · s // ·
Because the above pasted rectangle is a map of R-algebras, the composite of the last
four arrows is t • s ·E(s ·E(1, t) ·E(1, E(f, 1)), 1). Precomposing with E(L2gf, 1),
we have a commutative diagram

·
E(L2gf,1)

��

E(L(Lg·f),1)

&&

E(Lf,1)

''·
E(E(1,E(f,1)),1)

// ·
E(E(1,t),1)

// ·
E(s,1)

// ·
t•s

// ·

Hence t •′ s = t • s. �

4.3. The Moore paths algebraic weak factorization system. We now use
these results to show that the functorial factorization (3.4) is in fact an algebraic
weak factorization system. This was noticed independently by Garner.

To this end, we must explain how define a vertical composition law for the
category of M-algebras. An M -algebra structure is classically called a path lifting
function. The function ξ : Γf → X specifying anM -algebra structure for f : X → Y
maps a Moore path (p : [0, t]→ Y, x ∈ Xp(0)) to a point ξ(p, t, x) ∈ Xp(t). If ξ is an
M-algebra structure, then this assignment must satisfy an additional “transitivity”
condition; see Remark 4.18 below.

We might hope to use a procedure similar to the one outlined in Example 4.6.
Suppose g : Y → Z, ζ : Γg → Y is a second M -algebra. We can use ζ to lift the
endpoint of a Moore path (p : [0, t]→ Z, x ∈ Xp(0)) to Y , but we have lost too much
information to proceed any further.

The key idea is that an M -algebra structure determines a lift, displayed in the
lemma below, that might be called a parametrized path lifting function.

Lemma 4.16. There is an isomorphism, over C2, between the category AlgM and
the category of arrows f equipped with lifts

(4.17) Γf

i0
��

// X

f

��

Γf × R+ //

44

ΠY × R+
ev
// Y
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Proof. Clearly a parametrized path lifting function determines a path lifting func-
tion. For the converse, first note that for any space A, the map i0 : A → A × R+

admits the structure of an I-coalgebra: The required lift A × R+ → Γi0 sends a
point (a, t) ∈ A × R+ to the path r 7→ (a, r) of length t with fiber point a. Using
this, we define the parametrized path lifting function to be the canonical lift of the
I-coalgebra i0 against the M -algebra f obtained from the functorial factorization
(I,M), as in Lemma 3.9.

Explicitly, the diagonal arrow maps a pair consisting of a Moore path (p : [0, t]→
Y, x ∈ Xp(0)) together with a parameter s to the value of ξ on the Moore path

(p : [0, s]→ Y, x ∈ Xp(0)).
1 �

Remark 4.18. As detailed in [May75, 3.2], if ξ is an M-algebra, then the associated
map (4.17) is a transitive parametrized path lifting function, which means that the
lifted paths respect concatenation of paths in the following sense. If p and p′ are
composable paths of length t and t′, and x is in the fiber over p(0), then the lift
of the concatenated path agrees with the concatenation of the lift of the first path
followed by the lift of the second path starting at ξ(p, t, x). In this way, there is an
isomorphism between AlgM and the category of arrows equipped with transitive
parametrized path lifting functions.

Proposition 4.19. The category AlgM admits a vertical composition law.

Proof. We explain how to compose the transitive path lifting functions associated
to M-algebras (f, ξ) and (g, ζ) using the construction of Lemma 4.16, i.e., we define
a composite lift

Γ(gf)

i0

��

// X

f

��

Y

g

��

Γ(gf)× R+
ev
//

ζ•ξ

CC

99

Z

The dotted lift sends a pair consisting of a Moore path (p : [0, t] → Z, x ∈ Xp(0))
and a parameter s to the value of ζ on the Moore path (p : [0, s]→ Z, f(x) ∈ Yp(0)).
This dotted map now allows us to define a new Moore path in Y :

r 7→ ζ(p, r, f(x)) : [0, s]→ Y.

Call this path ζ(p). The point x lies in the fiber over ζ(p)(0). Hence, (ζ(p), x) ∈ Γf .
We define the dashed lift to be the map that sends our original Moore path (p, t, x)
and parameter s to the point ξ(ζ(p), s, x). The remaining details are straightforward
diagram chases, left to the reader. �

Remark 4.20. One can wonder whether this proof applies to produce model struc-
tures in more general situations, i.e., for a category equipped with some kind of
Moore path object. An indication that this is indeed possible is given in [GvdB10],
who construct factorizations on so-called path categories. By weakening their ax-
ioms, Williamson [Wil] obtains similar results in greater generality.

1If s ≤ t, this new p is the restriction of the old one; if s > t, the new p extends the old by
remaining constant at p(t) for the necessary duration.
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Remark 4.21. Note that the only non-formal ingredient in the argument given here
is the existence of a well-behaved Moore path object in topological spaces. Work in
progress by Bill Richter is aimed at showing that the obvious analogue of (3.3) in
a general category enriched, tensored, and cotensored over topological spaces has
the same good properties. Our proof would then apply verbatim to yield a trivial
cofibration – fibration factorization for a Hurewicz-type model structure.

Our motivation for presenting a different, more abstract approach in the following
sections stems mainly from its flexibility. Our algebraic methods apply to many
contexts in which the fibrations are characterized by some generic lifting problem,
but in which there exists no obvious analogue of Moore paths. For instance, this is
the case for categories enriched, tensored, and cotensored over a category with an
interval object. Examples include various model structures on dg-modules over a
commutative differential graded algebra, as investigated by Peter May.

5. Hurewicz model structures on topological categories

Let C be a topologically bicomplete category, i.e., a bicomplete category enriched,
tensored, and cotensored over some convenient category of spaces Top. We will
require one additional condition, akin to the “smallness” condition for Quillen’s
small object argument, which we will describe when we explain its purpose below.
The tensor and cotensor structure suffices to abstract the definitions of homotopy
equivalence, Hurewicz cofibration and Hurewicz fibration from Section 2.

5.1. Topological categories and Cole’s construction. In this section and the
next we describe the heart of the construction in [Col06b], set up the notation for
the rest of the chapter and state some lemmata that will turn out to be useful in
the proof of our main theorem.

Definition 5.1. A homotopy between two maps f0, f1 : X ⇒ Y in C is a map

h : X ⊗ I → Y , or equivalently, a map ĥ : X → Y I (its adjunct) such that

X

i0
��

f0

""
X ⊗ I h // Y

X

i1

OO

f1

<<
or equivalently

Y

X
ĥ //

f0

>>

f1
  

Y I

p0

OO

p1

��

Y

commutes, i0, i1 : X ⇒ X⊗ I and p0, p1 : Y I ⇒ Y being the morphisms induced by
the two endpoint inclusions ∗⇒ I.

In particular, we have a notion of homotopy equivalence in C.

Definition 5.2. A map f in C is an h-cofibration if it has the left lifting property
with respect to p0 : ZI → Z for all objects Z ∈ C. Dually, f is an h-fibration if
it has the right lifting property with respect to all cylinder inclusions of the form
i0 : Z → Z ⊗ I.

Here the “h” stands for Hurewicz and also for homotopy. We would ideally
like to construct a model structure on C whose cofibrations are the h-cofibrations,
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whose fibrations are the h-fibrations, and whose weak equivalences are the homo-
topy equivalences. However, similarly to Section 2, this is not possible because
only some of the h-cofibrations lift against the class of h-fibrations that are also
homotopy equivalences.

This motivates the following definition:

Definition 5.3. The class of strong cofibrations is the class of maps that have
the left lifting property with respect to the h-fibrations that are also homotopy
equivalences.

Because the maps p0 : ZI → Z are homotopy equivalences and h-fibrations, cf.
[SV02], strong cofibrations are in particular h-cofibrations. An immediate corollary
of our main theorem, Theorem 5.22 below, establishes a so-called h-model structure,
whose weak equivalences are homotopy equivalences, fibrations are h-fibrations,
and cofibrations are the strong cofibrations. Henceforth, we use “cofibrations” and
“fibrations” in the model structure sense, in particular dropping the “h”.

It is possible to describe these right and left lifting classes using relative lifting
properties [MS06, 4.2.2], but all we need is the following result.

Lemma 5.4.

(i) The natural map i0 : A→ A⊗I is a trivial cofibration for all objects A ∈ C.
(ii) The class of (trivial) cofibrations is closed under retracts, pushouts and

sequential colimits.

Proof. The proofs can be found in [SV02] and [MS06]. Part (ii) is immediate from
the closure properties of any collection of arrows defined by a lifting property. �

Cole’s construction 5.5. Cole’s construction attempts to factor an arbitrary map
f : X → Y in C into a trivial cofibration followed by a fibration. To this end, start
by forming the mapping path object Nf of f , in precise analogy with Definition
2.5. A new object Ef is constructed by pushing out one of the projections from
the pullback φf : Nf → X along the natural map i0 : Nf → Nf ⊗ I. Using the
morphisms f and χ̂f , the adjoint to the other projection χf , we obtain an induced
map Rf : Ef → Y as shown in the following diagram.

(5.6) Y I
p0 // Y

Nf
φf

//

i0

��

χf

OO

X

f

OO

Lf

��
f

��

Nf ⊗ I
ψf
//

χ̂f
))

Ef

Rf

  

Y

In this way, we have factored f as Rf ◦ Lf and furthermore, by Lemma 5.4,
the map Lf : X → Ef is a trivial cofibration. If the map Rf were a fibration,
we would be done. However, this fails in general, so Cole proposes to iterate this
construction, replacing f by Rf , and applying the functorial factorization (L,R) to
the right factor. The eventual right factor of f is defined by passing to the colimit
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Rωf = colim(Rf → R2f → R3f → · · · ). The left factor of f is then the composite

X
Lf−−→ Ef

LRf−−−→ ERf
LR2f−−−→ ER2f → · · · → ERωf .

Because each map in the image of L is a trivial cofibration, the left factor is a
trivial cofibration. It remains to show that Rωf is a fibration, which by [Col06b, 5.2]
is equivalent to finding a lift in

NRωf
φRωf

//

i0

��

ERωf

Rωf

��

NRωf ⊗ I
χ̂f

//

88

Y

To this end, [Col06b] asserts that the required lift is given by ψRωf ; however, the
maps ψRnf do not glue to induce a map NRωf ⊗ I → ERωf , cf. Section 6.1.

We will see that there is a natural modification of the iterative part of Cole’s
construction that produces an algebraic weak factorization system with the appro-
priate homotopical properties.

5.2. Algebraic characterization of fibrations. The first key observation is that,
even though the right factor Rf fails to be an h-fibration, algebras for the pointed
endofunctor R are precisely h-fibrations. The proof follows easily once we under-
stand the universal property of the mapping space Nf .

Fix a morphism f : X → Y and let Sqf : Cop → Set be the functor that maps
an object A to the set of commutative squares of the form

A //

i0
��

X

f

��

A⊗ I // Y

These squares correspond to lifting problems that test whether f is an h-fibration.

Lemma 5.7. The functor Sqf is represented by the mapping path object Nf .

Proof. By the defining universal property of Nf , a map α : A → Nf classifies a
commutative square

(5.8)

A

i0
��

u // X

f

��

A⊗ I
v
// Y

!

A

α

  

v̂

##

u

��

Nf
χf
//

φf

��

Y I

p0

��

X
f
// Y

�
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In particular, the identity map at Nf classifies the right hand square in

(5.9) A

u

++

i0

��

α
// Nf

i0

��

φf

// X

f

��

A⊗ I α⊗I
//

v

33Nf ⊗ I
χ̂f
// Y

which features prominently in the construction of the factorization (5.6). By the
Yoneda lemma, or alternatively by adjointness, a square (5.8) factors uniquely as
the above diagram (5.9), where α : A→ Nf is the classifying map.

It is now easy to prove that the h-fibrations are precisely those objects in the
image of the forgetful functor AlgR → C2; in fact:

Proposition 5.10. The category AlgR is isomorphic to the category I� over C2,
where I is the class {i0 : A→ A⊗ I | A ∈ C}. In particular, the class of R-algebras
coincides with the class of h-fibrations.

Proof. By definition, a fibration f has the right lifting property against all trivial
cofibrations, so there exists, in particular, a lift in the following diagram

X

Lf

��

X

f

��

Ef
Rf
//

s

>>

Y

which makes (f, s) an R-algebra.
Conversely, suppose (f, s) ∈ AlgR. To solve a lifting problem

A

i0
��

u // X

f

��

A⊗ I
v
// Y

we first factor it as displayed in (5.9) and then factor the right hand square in (5.9)
through the pushout of (5.6). This yields:

A //

i0

��

u

**Nf

i0

��

φf

// X

Lf

��

X

f

��

A⊗ I //

v

77Nf ⊗ I
ψf
//

χ̂f

44Ef
Rf
//

s
>>

Y

The map s defines an evident solution to the original lifting problem.
The fact that maps in AlgR agree with maps in I� follows easily from comparing

the definitions (4.2) and (4.9) with the diagram above. �
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Remark 5.11. This argument shows that f is an h-fibration if and only if there is
a lift

Nf
φf

//

i0

��

X

f

��

Nf ⊗ I

;;

χ̂f

// Y

as observed in [Col06b, 5.2]. We think of this square as presenting a “generic lifting
problem” which detects fibrations. This is analogous to the lifting problem given
by (4.7) in the cofibrantly generated case.

At this point we are confronted with a problem: the algebras for the functor R
are precisely the fibrations, but because R is not a monad, the maps Rf are not
themselves R-algebras. One idea is to try and replace the functor R by its “free
monad” F, which is characterized by the property that the category of F-algebras
is isomorphic over C2 to the category of R-algebras (so in particular F-algebras are
precisely fibrations). There are two obstacles to implementing this idea. The first is
set-theoretical. By an easy application of the monadicity theorem, the free monad
F is equivalently specified by a left adjoint to the forgetful functor AlgR → C2.
However, it is not quite enough to simply know that an adjoint exists: the resulting
monad on C2 might not be a monad over cod and thus not define the right factor
in a functorial factorization. A theorem of Kelly, described in the next section,
exhibits a certain smallness condition on R under which the free monad “exists
constructively”; in this case, a functorial factorization is produced.

A second obstacle remains. Supposing that the free monad F exists construc-
tively, it is not clear a priori that the left factor will still be a trivial cofibration
because this construction involves quotienting. However, we can show that the
factorization produced by this procedure has the structure of an algebraic weak
factorization system; in particular, the left factor is a free C-coalgebra, therefore
lifts against the F-algebras and is hence a trivial cofibration.

5.3. The free monad on a pointed endofunctor. We now explain what pre-
cisely we mean by “free monad” and state Kelly’s abstract existence result. In the
next section, we then verify that the functor R satisfies his conditions under certain
set-theoretical assumptions on the underlying category C.

Let R be a pointed endofunctor on a category C. The algebraically free monad
on R is a monad F together with an isomorphism AlgF

∼= AlgR over C. When C
is locally small and complete, algebraically free monads coincide with so-called free
monads, which are defined in [Kel80, 22.2-4]. We use the terminology “free monad”
because it is shorter.

Furthermore, under good conditions, there is a canonical construction that pro-
duces the free monad on R, in which case we say the free monad exists construc-
tively. The construction is via a colimit defined using transfinite induction; the
“good conditions” guarantee that this construction converges.2

Remark 5.12. A näıve approach might be to try and define F to be the colimit of

id→ R→ R2 → R3 → · · ·
2Compare with Quillen’s small object argument, which never converges, but must be termi-

nated artificially.
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This works in the case where R is well-pointed, meaning ηR = Rη : R→ R2, but not
otherwise. Interestingly, the failure of Cole’s functor R to be well-pointed precisely
highlights the subtle point at which his argument breaks down. We’ll say more
about this in the appendix, cf. Section 6.2.

The correct construction is due to Kelly, the first few stages of which we will
describe explicitly in the appendix. We make use of only a special case of his
theorem [Kel80, 22.3].

In order to state it, we need to introduce a little bit of terminology. An orthogonal
factorization system (E ,M) on a category C is a weak factorization system for which
both the factorizations and the liftings are unique. It is called well-copowered if
every object in C has a mere set of E-quotients, up to isomorphism. When C is
cocomplete it follows that the maps in E are epimorphisms [Kel80, 1.3].

Remark 5.13. Note that any category that is cocomplete and so that each object
has only a sets worth of epimorphism-quotients — a condition satisfied by all cate-
gories one meets in practice — has a functorial factorization where the left factor is
an epimorphism and the right factor is a strong monomorphism, see [Bor94, 4.4.3].
The dual hypotheses are equally common in our setting. In practice this means that
there are always at least two choices for (E ,M): (epimorphisms, strong monomor-
phisms) and (strong epimorphisms, monomorphisms).

A cocone in C all of whose legs are elements of M is called an M-cocone or an
M-colimit in the case it is a colimit cocone. It follows from the right cancelation
property ofM that the morphisms in the diagram also lie inM, but our condition
is stronger. In what follows, we will implicitly identify a regular cardinal α with
its initial ordinal, such that α indexes a (transfinite) sequence whose objects are
β < α.

We are now ready to state Kelly’s theorem.

Theorem 5.14 (Kelly). Suppose C is complete, cocomplete, and locally small. If
a pointed endofunctor R on C satisfies the following “smallness” condition:

(†) there is a well-copowered orthogonal factorization system (E ,M) on C and
a regular cardinal α so that R sends α-indexed M-colimits to colimits,

then the free monad F on R exists constructively.

If R is a pointed endofunctor on C2 over cod, then each functor and natural trans-
formation in the free monad construction is constant on its codomain component.
It follows that F is a monad over cod and hence gives rise to a functorial factor-
ization. Furthermore, this observation allows us to weaken the smallness condition
for such R: It suffices to show that R preserves M-colimits of the form

(5.15) X0

f0
((

m0 // X1

f1

!!

m1 // · · ·
mβ−1

// Xβ

mβ
//

fβ

}}

· · · // Xα

colimβ<α fβ=fα
ttY

See [Gar07, p. 31].

5.4. Smallness. The functor R of (5.6) is constructed by means of various topo-
logically enriched limits and colimits in C. In this section, we will show that if C
satisfies a set-theoretical condition, then Cole’s functor R satisfies the necessary
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smallness condition to guarantee convergence of the free monad sequence. This
condition is very similar to Cole’s “cofibration hypothesis” [Col06b, 4.1]. Indeed,
as explained there, work of Lewis [Lew78] shows that many topologically bicomplete
categories of interest satisfy our condition.

Definition 5.16. Suppose (E ,M) is a well-copowered orthogonal factorization sys-
tem on a topologically bicomplete category C. We say C satisfies the monomorphism
hypothesis if there is some regular cardinal α so that the mapping path space func-
tor N : C2 → C preserves M-colimits of diagrams of the form (5.15), in the sense
that the natural map

colimβ<αNfβ → N(colimβ<α fβ) = Nfα

is an isomorphism.

Lemma 5.17. If C is a topologically bicomplete category satisfying the monomor-
phism hypothesis, then the functor R constructed in 5.5 satisfies condition (†) of
Theorem 5.14. Therefore, the free monad F on R exists constructively.

Proof. By the remarks made at the end of §5.3, we need to check that R sends an
M-colimit diagram of the form (5.15) to a colimit cone in C2. Clearly, it is enough
to verify this for dom◦R : f 7→ Ef . By the monomorphism hypothesis and the fact
that −⊗ I is a left adjoint, the colimits of the top and left corners of the following
diagram

Nf1 //

��

??

X1

��

??

Nf0

��

//

??

X0

??

��

Nf1 ⊗ I //

??

Ef1

??

Nf0 ⊗ I

??

// Ef0

??

are Nfα, Xα, and Nfα ⊗ I. The pushout of these objects is, by definition, Efα.
Because colimits commute with colimits, the canonical map

colimβ<αEfβ → E(colimβ<α fβ) = Efα

is thus an isomorphism, and we conclude that R preserves M-colimits, as desired.
�

Example 5.18. The category Top satisfies the monomorphism hypothesis for the
orthogonal factorization system in which E is the surjections andM is the subspace
inclusions. This is a consequence of an observation made by Lewis [Lew78], sum-
marized in [Col06b, §4], about pullbacks of countable sequential M-colimits. The
orthogonal factorization system (E ,M) lifts to Top∗. Because pullbacks, sequential
colimits, and mapping path objects coincide with those of spaces, this category also
satisfies the monomorphism hypothesis. Similarly, (E ,M) lifts to G-spaces, where
G is a topologically group, or indeed to any space-valued diagram category. Limits
and colimits in such categories are computed pointwise, so again the monomorphism
hypothesis is satisfied.
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Example 5.19. Other interesting examples are given by various categories of topo-
logical spectra. To illustrate how the condition of Definition 5.16 might be checked,
we include a sketch in the case of diagram spectra [MMSS01].

To this end, let D be a small based topological category. Let R be a monoid in
the closed symmetric monoidal category of continuous functors from D to Top∗.
Following [MMSS01, 1.10], the category of D-spectra over R is isomorphic to the
category of R-modules. The orthogonal factorization system (E ,M) on Top∗ de-

fines an orthogonal factorization system on the functor category TopD∗ with the
classes and factorizations defined pointwise. In any category with an orthogonal
factorization system (E ,M) and monad T , if T preserves the class E then the
orthogonal factorization system lifts to the category of T -algebras [Coc09, 2.3.7].

In our situation, the monad R ∧ − is defined via a colimit, which is ultimately
computed pointwise in Top∗. Because smash products preserve surjections in Top∗
and the left class of any orthogonal factorization system is stable under colimits
in the arrow category, this orthogonal factorization system lifts to the category of
R-modules. The forgetful functor from R-modules to TopD∗ preserves both limits
and colimits; hence this category satisfies the monomorphism hypothesis.

Remark 5.20. We should remark that any locally presentable topologically bicom-
plete category C also satisfies our hypothesis. Even though local presentability
doesn’t seem to be a reasonable assumption in the topological context, it might be
in adaptations of our methods to other situations, e.g., categories enriched, ten-
sored, and cotensored in appropriate categories other than Top. Furthermore, this
observation highlights the set-theoretical nature of the monomorphism hypothesis.
To prove the claim, note that in a locally α-presentable category C there exists
a set of generators g so that the associated representable functors C(g,−) detect
isomorphisms and preserve α-filtered colimits. This, together with the fact that
filtered colimits and finite limits commute in Set, can be used to prove that any lo-
cally α-presentable category satisfies the monomorphism hypothesis for the (strong
epimorphism, monomorphism) orthogonal factorization system and for the cardinal
α. We leave the remaining details to the reader.

5.5. The main theorem. Our main result is the following theorem, which asserts
that for a very general class of topologically bicomplete categories, applying the
free monad construction to Cole’s step-one right functor R yields an algebraic weak
factorization system.

Theorem 5.21. If C is topologically bicomplete category satisfying the monomor-
phism hypothesis, the functor R of (5.6) satisfies the condition (†) and furthermore
the functorial factorization (C,F ) constructed by the free monad sequence is an
algebraic weak factorization system.

In particular, the right factor Ff is a (free) F-algebra and hence an R-algebra,
and hence a fibration. The left factor Cf is a (free) C-coalgebra, and in particular
lifts against all F-algebras by Lemma 3.9. It follows that Cf is a trivial cofibration.
Thus, it follows that:

Theorem 5.22. On any topologically bicomplete category C satisfying the monomor-
phism hypothesis there exists an algebraic weak factorization system (C,F) whose
right class consists precisely of the h-fibrations, while the left class is the class of
strong h-cofibrations that are homotopy equivalences.
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By work of [SV02], nicely summarized in [MS06, 4.3.1 and 4.3.3], we have an
immediate corollary:

Corollary 5.23. Any topologically bicomplete category C satisfying the monomor-
phism hypothesis admits an h-model structure.

Proof of Theorem 5.21. Using Lemma 5.17, Cole’s step-one right functor R satisfies
the smallness condition (†) required to construct the free monad F. By Propositions
5.10 and 4.10, AlgF

∼= AlgR
∼= I� admits a vertical composition law. We conclude

that the resulting free monad is part of an algebraic weak factorization system by
applying Theorem 4.15. �

Remark 5.24. An alternative proof of the main theorem avoids Theorem 4.15. In-
stead, one can show that the pointed endofunctor L carries a natural comonad
structure, where the comultiplication δ is constructed as follows: First note that,
by Lemma 5.7, the commutative square

Nf
φf

//

i0

��

X

Lf

��

Nf ⊗ I
ψf

// Ef

is classified by a map δ̃f : Nf → NLf . Pushing out, we obtain a map δf : Ef →
ELf . This defines (the codomain component of) a natural transformation ~δ : L→
L2 making L into a comonad.

Garner shows [Gar09, 4.21-22] that the free monad can be constructed in the
category of functorial factorizations whose left factors is a comonad. Hence, this
extra structure is enough to guarantee the existence of an appropriate algebraic
weak factorization system, thereby providing another proof of Theorem 5.21.

These arguments emphasize the versatility of the theory of algebraic weak fac-
torization systems. While Garner shows that cofibrantly generated algebraic weak
factorization systems are produced by Kelly’s free monad construction, we demon-
strate that these techniques also work in non-cofibrantly generated cases.

6. Appendix

6.1. Cole’s construction, explicitly. In the light of Remark 5.12, Cole’s con-
struction does not produce the free monad on the pointed endofunctor R because
R is not well-pointed. In this appendix we explain in detail why the maps ψRnf
don’t glue to give a lift in the diagram

(6.1) NRωf
φRωf

//

i0

��

Z

Rωf

��

NRωf ⊗ I
χ̂Rωf

//

::

Y

the existence of which is equivalent to Rωf being a fibration by Remark 5.11. To
this end, we will explicitly describe the underlying sets of the objects of the first two
iterations of Cole’s construction [Col06b, Ch. 5] applied in the case of topological
spaces.



ON THE CONSTRUCTION OF FUNCTORIAL FACTORIZATIONS 25

Let f : X → Y be a morphism of topological spaces. The points of Nf are
pairs (x, p) with x ∈ X and p : I → Y a path in Y starting at f(x). The map
φf : Nf → X simply forgets the path, i.e., (x, p) 7→ x, from which we deduce that,
as a set, the pushout3 Ef consists of two kinds of elements:

(i) (x, cf(x), 0) ∈ Ef , with x ∈ X and cf(x) being the constant path at f(x)
(ii) (x, p, t) ∈ Ef with (p, x) ∈ Nf , t ∈ (0, 1].

The induced map Rf : Ef → Y sends an element (x, p, t) ∈ Ef to the point p(t).
Similarly, we can describe the space ERf as a set. Points in NRf are pairs

consisting of (x, p, t) ∈ Ef together with a path p′ : I → Y starting at p(t). Points
in ERf are of the general form (x, p, t, p′, t′) with x ∈ X, t, t′ ∈ I, p : I → Y a path
starting at f(x), and p′ : I → Y a path starting at p(t). There are four types:

(1) (x, cf(x), 0, cf(x), 0)
(2) (x, p, t, cp(t), 0) with t ∈ (0, 1]
(3) (x, cf(x), 0, p

′, t′) with t′ ∈ (0, 1]
(4) (x, p, t, p′, t′), with t, t′ ∈ (0, 1]

Recall that the object Z in Cole’s proposed factorization X
j−→ Z

Rωf−−−→ Y is defined
to be the colimit of the Zn+1 = ERnf with respect to the maps LRnf . Since all
the LRnf are closed embeddings, in order for the maps ψRnf to glue, the following
square has to commute

(6.2) NRnf ⊗ I
ψRnf

//

N(LRnf,id)⊗I
��

ERnf

LRn+1f
��

NRn+1f ⊗ I
ψRn+1f

// ERn+1f

the left vertical map being the one with respect to which the colimit object NRωf
is formed. Observe that, by construction, this square commutes if the right ver-
tical map LRn+1f is replaced by E(LRnf, id). Using the notation (R, ~η) for the
pointed endofunctor, the map LRn+1f is the domain component of ~ηRn+1f while
E(LRnf, id) is the domain component of R~ηRnf .

But specializing to n = 0, we see that the LRf sends points in Ef of type (ii) to
points of type (2) in ERf , while E(Lf, id) maps those points to elements of type
(3). Therefore, the diagram (6.2) does not commute and the maps ψRnf do not
glue to give a lift in (6.1).

Remark 6.3. We should note that this argument can’t rule out the possibility that
the map Rωf is a fibration; however, this seems very difficult to check, as the
crafted candidate fails to provide a lift in the colimit.

6.2. Our construction, explicitly. The free monad construction is described
in [Gar09, 4.16]. For the reader’s convenience, we describe the first few stages of
the construction of the functorial factorization whose right factor is the free monad
on the pointed endofunctor of (L,R).

3denoted by Z1 in [Col06b]
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Let C1 = L and let F 1 = R. Define C2 and F 2 using the coequalizer ω2
f

X

Lf

��

X

LRf ·Lf
��

X

C2f
��

Ef
LRf
//

E(Lf,id)
//

Rf

��

ERf
ω2
f

//

R2f

��

E2f

F 2f

��

Y Y Y

Specializing to the category of topological spaces, in the notation of the previous
section, the quotient map ω2

f identifies points of types (2) and (3) in the obvious
way.

Continuing, define C3 and F 3 using the coequalizer ω3
f

X

LRf ·Lf
��

X

LF 2f ·C2f
��

X

C3f
��

ERf //
//

R2f

��

EF 2f

RF 2f

��

ω3
f
// E3f

F 3f

��

Y Y Y

of the following parallel pair of morphisms

X

LRf ·Lf
��

X

C2f
��

X

LF 2f ·C2f
��

ERf

R2f

��

ω2
f
// E2f

F 2f

��

LF 2f
// EF 2f

RF 2f

��

Y Y Y

X

LRf ·Lf
��

X

LR2f ·LRf ·Lf
��

X

LF 2f ·C2f
��

ERf
E(LR,id)

//

R2f

��

ER3f

R3f

��

E(ω2f,id)

// EF 2f

RF 2f

��

Y Y Y

The remaining details are left as an exercise.
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