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Abstract. This note explores the algebraic perspective on the notion of generalized Reedy
category introduced by Berger and Moerdijk [BM08]. The aim is to unify inductive argu-
ments by means of a canonical presentation of the hom bifunctor as a “generalized cell
complex.” This is analogous to the weighted (co)limits approach to strict Reedy category
theory presented in [RV14], which inspired this work. These presentations are used to
prove that various functors associated to categories of Reedy-indexed diagrams are “de-
rived” preserving pointwise weak equivalences between appropriately fibrant or cofibrant
diagrams.
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1. The algebraic perspective on Reedy categories

One aim of categorical homotopy theory is to separate categorical (up to isomorphism)
statements from homotopical (merely up to weak equivalence) ones. The point is that there
are more results of the former kind involving familiar machinery from abstract homotopy
theory than one might expect and these are more easily understood as strict point-set-level
phenomena.

The aim of this paper is to apply this approach to the theory of generalized Reedy
categories (here simply “Reedy categories”) introduced by Berger and Moerdijk [BM08].
Analogous work for ordinary (here “strict”) Reedy categories was undertaken in [RV14].
Both varieties are small categories in which the objects are assigned a natural number
degree equipped with specified “degree-decreasing” and “degree-increasing” morphisms.
The category-theoretic results for strict Reedy categories extend fairly straightforwardly
to the more general case. The main difference is that in the strict case the move from the
algebraic results to the homotopical ones is considerably simplified by the fact that a strict
Reedy category has no non-identity isomorphisms.

Date: February 15, 2017.
1



2 EMILY RIEHL

Algebraic perspectives on Reedy categories. A Reedy category is a small category in
which each object is assigned a natural number degree satisfying a few axioms that imply
that diagrams and natural transformations may be defined inductively. The algebraic per-
spective on Reedy categories unifies these inductive arguments by means of a canonical
(generalized) cell complex presentation of the hom bifunctor.

This presentation is most familiar for the strict Reedy category �op. A simplicial object
Y taking values in any cocomplete category admits a skeletal filtration

∅ → sk0Y → · · · → skn−1Y → sknY → · · · → Y

in which the step from stage n − 1 to stage n is given by a pushout

LnY × �n ∪ Yn × ∂�n Yn × �n

skn−1Y sknY
p

where LnY → Yn is the object of “degenerate n-simplices.” Considering the Yoneda em-
bedding as a simplicial object � ∈ (Set�)�

op
, this specializes to the “canonical cell complex

presentation” of the hom bifunctor:

∂�n × �n ∪ �n × ∂�n �n × �n

∅ · · · skn−1� skn� · · · �
p

In the canonical cell complex presentation for �, there is a single “cell” attached at
stage n, displayed in the pushout above. In an arbitrary strict Reedy category, there may
be multiple cells attached at stage n, collected together via a coproduct indexed by the
objects of degree n. In the non-strict case, this coproduct is replaced by a coend which
quotients over the groupoid of isomorphisms between objects of degree n. We use the term
generalized cell complex to refer to a sequential composite of pushouts of “generalized
cells,” which are constructed as groupoid-indexed coends, rather than mere coproducts, of
basic cells. The dual notion is a generalized Postnikov tower, a sequential limit of pullbacks
of “generalized layers,” constructed as groupoid-indexed ends, rather than mere products,
of basic maps. The canonical generalized cell complex presentation of the hom-bifunctor
is constructed in section 4.

Interpreting the hom bifunctor as a “weight” for a limit or a colimit, this result imme-
diately gives a pair of dual presentations for any diagram indexed by the Reedy category:
the first as a generalized cell complex built using weighted colimits and the second as a
generalized Postnikov tower built using weighted limits. The constructions can also be rel-
ativized to produce filtrations for natural transformations between Reedy category indexed
diagrams.

The “cells” appearing in the generalized cell complexes or “layers” appearing in the
generalized Postnikov presentations are built from the so-called relative latching and match-
ing maps. It is not immediately obvious that these presentations assist with homotopically
invariant inductive constructions because of the equivariance conditions imposed by the
coherence isomorphisms between the maps defining these “cells” and “layers.” Here we
present three ways around this problem — two of which are well-known and a third that we
find to be considerably more aesthetically satisfying, although it has no known applications
just yet.
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Projectivity or injectivity. One way to ensure good homotopy theoretic properties of au-
tomorphisms is to demand they act “freely” on the maps involved in the construction of
the generalized cells or the generalized layers. This is the case if the relative latching or
relative matching maps assemble, respectively, into projective cofibrant or injective fibrant
diagrams in the category indexed by the groupoid of isomorphisms in the Reedy category.
When an extra “dualizability” hypothesis is required of the Reedy category, both the pro-
jective and injective cases give rise to model structures on Reedy-indexed diagrams, first
established by Berger and Moerdijk and reviewed in Corollary 8.6 below.

To state all of our model category theoretic results most concisely, we assume that we
begin with a base model structure (C,F ,W) on a bicomplete category M that is accessible
in the sense of [HKRS15]. This means that the category M is locally presentable and the
weak factorization systems (C ∩W,F ) and (C,F ∩W) are accessible (algebraic) weak
factorization systems. We do not review this definition here. Instead, it suffices to note
that every combinatorial model category is accessible; accessible model categories include
additional model structures that are not cofibrantly generated, at least in the sense that this
is traditionally understood.1

The point of this hypothesis is to assume that arbitrary categories of groupoid-indexed
diagrams in M admit projective and injective model structures. If these model structures
are known to exist for some other reason, the category M does not have to be locally
presentable.

Algebraic model categories. A final tactic to detail with the automorphisms makes use
of an “algebraic” framework for abstract homotopy theory, a more structured extension of
Quillen’s model categories. Briefly, a model structure on a category in which certain mor-
phisms are deemed “weak equivalences” consists of a pair of interacting weak factorization
systems. A weak factorization system consists of a “left” and a “right” class of maps, the
former closed under certain colimits and the latter under the dual limits, that together sat-
isfy a lifting property. This lifting property, together with a factorization axiom, enables
many of the constructions of abstract homotopy theory.

In an algebraic weak factorization system [GT06, Gar09, Rie11, BG16i], we think of
maps in the left class as “coalgebras” and maps in the right class as “algebras.” The
(co)algebra structures determine a canonical solution to any lifting problem that is pre-
served by maps of coalgebras or algebras. These (co)algebras structures acts as “witnesses”
that the maps are members of the left or right classes. In an algebraic model category, once
these witnesses are chosen, the other constructions of abstract homotopy theory are “alge-
braically” determined.

In particular, if the relative latching and relative matching maps are, respectively, coal-
gebras and algebras for some ambient algebraic weak factorization system on the target
category, then these filtrations become sequences of coalgebras and towers of algebras, in
which case they may be used to inductive solve lifting and extension problems, precisely
as in the classical theory. This motivates the definition of the Reedy algebraic weak fac-
torization system, formalized in an epilogue that will appear in the future. The projective
and injective Reedy algebraic weak factorization systems of Berger and Moerdijk can be
thought of as “special cases” of this intermediate, symmetrically defined, functorial factor-
ization.

Outline. Before Reedy categories are introduced in §??, we review some of the necessary
background material. Section 2 reviews weighted limits and colimits and the “pushout

1See however [BG16i].
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product” and “pullback cotensor” constructions that are used to define the relative latching
and matching maps. Here the fundamental example constructs the boundary of a product
∂(A × B) by gluing together ∂A × B and A × ∂B. This boundary formula is often attributed
to Leibniz; hence we refer to this gluing as the “Leibniz construction” in this case relative
to the bifunctor ×. A second background section 3 reviews the weak factorization systems
that comprise a model structure and develops the theory of Leibniz bifunctors between
them.

In §??, we present the canonical inductive presentation of the hom bifunctor associated
to any Reedy category and derive the generalized cell complex and generalized Postnikov
presentations of any map between Reedy diagrams as an immediate corollary. Section 5
then specializes these results to the case of strict Reedy categories, reviewing the results
of [RV14] and previewing the extension of this material to the generalized case that will
follow.

The projective and injective Reedy weak factorization systems are introduced in §6 and
their associated Leibniz bifunctors are established in §7. The dualizability hypothesis is
introduced in §8 when homotopy theoretic considerations first appear. Finally, in §9, this
theory is applied to the construction of derived functors, particularly involving homotopy
limits and homotopy colimits.

Acknowledgments. The project was inspired by Peter May, who wrote to the author on
the day that [RV14] hit the arXiv to complain that generalized Reedy categories were not
included in its scope. The author gave a few talks along these lines during the fall of 2013,
but abandoned the project after failing to generate much interest in these findings.

The author would like to credit Mona Merling for inspiring her to revisit this project
and Yuri Sulyma for asking for a literature reference for the material that can now be found
in §5.

This initial phase of this project was supposed by an NSF Postdoctoral Research Fellow-
ship DMS-1103790, while the resurrection was undertaken while the author was supported
by DMS-1551129 and the Centre of Australian Category Theory, via MQRC funding from
Macquarie University.

2. Weighted limits and colimits and the Leibniz construction

The notation introduced below is largely consistent with [RV14]. In particular, through-
out we express covariant dependence on an object a ∈ Awith a superscript (−)a and denote
contravariant dependence with a subscript (−)a. For instance, we let A ∈ SetA

op×A stand
as shorthand for the two sided representable (the hom bifunctor), specializing to the con-
travariant representables Aa ∈ SetA

op
and the covariant representables Aa ∈ SetA. These

conventions dictate that �n denotes the represented n-simplex in Set�
op

, as is standard (at
least for this author).

Large categories will be assumed to be bicomplete so we need not worry whether the
limits or colimits we define below exist. The category of A-shaped diagrams in M is
denoted MA. In the special case of the category 2 = • → •, M2 is the arrow category of
maps in M and commutative squares.

Leibniz products. Given a bifunctor − ⊗ − : K × L → M, frequently arising as the left
adjoint of a two-variable adjunction

{−,−} : Kop ×M→ L hom: Lop ×M→ K,

M(K ⊗ L,M) � L(L, {K,M}) � K(K, hom(L,M)) ∀K ∈ K, L ∈ L,M ∈ M
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the “pushout-product” construction defines a bifunctor − ⊗̂ − : K2 × L2 → M2 that we
refer to as the “Leibniz tensor” (when the bifunctor ⊗ is called a “tensor”). The “Leibniz
cotensor” and “Leibniz hom”

{̂−,−} : (K2)op ×M2 → L and ĥom(−,−) : (L2)op ×M2 → K2

are defined dually, using pullbacks in L and K respectively.

Definition 2.1 (the Leibniz construction). Given a bifunctor −⊗− : K×L→ M, the Leibniz
tensor of a map k : I → J in K and a map ` : A→ B in L is the map k ⊗̂ ` in M induced by
the pushout diagram

(2.2)

I ⊗ A I ⊗ B

J ⊗ A •

J ⊗ B

I⊗`

k⊗A
p k⊗B

J⊗`

k⊗̂`

In the case of a bifunctor {−,−} : Kop × M → L contravariant in one of its variables, the
Leibniz cotensor of a map k : I → J in K and a map m : X → Y in M is the map {̂k,m}
induced by the pullback diagram

(2.3)

{J, X}

• {I, X}

{J,Y} {I,Y}

{k,X}

{J,m}

{̂k,m}

y
{I,m}

{k,Y}

Proposition 2.4. The Leibniz construction preserves:

(i) structural isomorphisms: a natural isomorphism

X ∗ (Y ⊗ Z) � (X × Y)�Z

between suitable composable bifunctors extends to a natural isomorphism

f ∗̂ (g ⊗̂ h) � ( f ×̂ g) �̂ h

between the corresponding Leibniz products;
(ii) adjointness: if (⊗, {, }, hom) define a two-variable adjunction, then the Leibniz

functors (⊗̂, {̂, }, ĥom) define a two-variable adjunction between the correspond-
ing arrow categories;

(iii) colimits in the arrow category: if ⊗ : K×L→ M is cocontinuous in either variable,
then so is ⊗̂ : K2 × L2 → M2;

(iv) pushouts: if ⊗ : K × L → M is cocontinuous in its second variable, and if g′ is a
pushout of g, then f ⊗̂ g′ is a pushout of f ⊗̂ g;
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(v) composition, in a sense: the Leibniz tensor f ⊗̂ (h · g) factors as a composite of a
pushout of f ⊗̂ g followed by f ⊗̂ h

I ⊗ A I ⊗ B I ⊗C

J ⊗ A • •

J ⊗ B •

J ⊗C

f⊗A

I⊗g

p

I⊗h

p f⊗C

J⊗g
f ⊗̂g

p
f ⊗̂(h·g)

J⊗h
f ⊗̂h

(vi) (generalized) cell complex structures: if f and g may be presented as (general-
ized) cell complexes with cells fα and gβ, respectively, and if ⊗ is cocontinuous in
both variables, then f ⊗̂ g may be presented as a (generalized) cell complex with
cells fα ⊗̂ gβ.

Proofs of these assertions and considerably more details are given in [RV14, §§4-5].

Weighted limits and colimits. Ordinary limits and colimits are objects representing the
Set-valued functor of cones with a given summit over or under a fixed diagram. Weighted
limits and colimits are defined analogously, except that the cones over or under a diagram
might come in exotic “shapes.” These shapes are allowed to vary with the objects indexing
the diagram. More formally, the weight (the “shape”) of a cone over a diagram of shape
A takes the form of a functor in SetA. The weight for a cone under a diagram of shapeA
takes the form of a functor in SetA

op
.

Example 2.5 (tensors and cotensors). For example, in the case of a diagram of shape 1 in
a category M, the shape of a cone might be a set S ∈ Set. Writing X ∈ M for the object in
the image of the diagram, the S -weighted limit of X is an object {S , X} ∈ M satisfying the
universal property

M(M, {S , X}) � Set(S ,M(M, X))
while the S -weighted colimit of X is an object S ∗ X ∈ M satisfying the universal property

M(S ∗ X,M) � Set(S ,M(X,M)).

For historical reasons, {S , X} is called the cotensor and S ∗ X is called the tensor of X ∈ M
by the set S .

If M has small products and coproducts, in this case guaranteed by our standing assump-
tion that the large categories under consideration are bicomplete, then {S , X} and S ∗X are,
respectively, the S -fold product and coproduct of the object X with itself, and cotensors
and tensors define bifunctors

{−,−} : Setop ×M→ M and − ∗− : Set ×M→ M.

Definition 2.6 (weighted limits and colimits, axiomatically). For a general small category
A, the weighted limit and weighted colimit define bifunctors

{−,−}A : (SetA)op ×MA → M and − ∗A− : SetA
op
×MA → M

which are characterized by the following pair of axioms.
(i) Weighted (co)limits with representable weights evaluate at the representing ob-

ject: {Aa, X}A � Xa andAa ∗A X � Xa.
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(ii) The weighted (co)limit bifunctors are cocontinuous in the weight: for any dia-
gram X ∈ MA, the functor − ∗A X preserves colimits, while the functor {−, X}A

carries colimits to limits.

We interpret axiom (ii) to mean that weights can be “made-to-order”: a weight constructed
as a colimit of representables — as all Set-valued functors are — will stipulate the expected
universal property.

Definition 2.7 (weighted limits and colimits, constructively). Equivalently, the weighted
colimit is a functor tensor product and the weighted colimit is a functor cotensor product2:

(2.8) {W, X}A �
∫

a∈A
{Wa, Xa} W ∗A X �

∫ a∈A

Wa ∗ Xa.

The limit {W, X}A of the diagram X weighted by W and the colimit W ∗A X of X weighted
by W are characterized by the universal properties:

M(M, {W, X}A) � SetA(W,M(M, X)) M(W ∗A X,M) � SetA
op

(W,M(X,M)).

Example 2.9. When W is, respectively, the constant A-diagram or Aop-diagram at the
terminal object 1 ∈ Set, we see from the defining formulae (2.8) that

{1, X}A � lim X and 1 ∗A X � colimX.

Here the weight 1 stipulates that the cones should have their ordinary “shapes” with one
leg pointing to or from each object in the diagram X.

Example 2.10. Suppose that the indexing categoryG is a one-object groupoid (i.e., a group)
and, for simplicity, that the target category is Set. The weighted colimit W∗GX, constructed
by a coequalizer

W × G × X W × X W ∗G X

takes “orbits,” identifying the actions of a left G-set X and a right G-set W. The weighted
limit {W, X}G of two left G-sets, constructed by an equalizer

{W, X}G {W, X} {G ×W, X}

is the set of G-equivariant maps from W to X. These are the G-fixed points in the set {W, X}
of all maps from W to X, with the conjugation action.

Example 2.11. Let K : A → D denote a functor between small categories, suppose M is
bicomplete, and consider a diagram X ∈ MA. The right and left Kan extensions of X along
K are the limit and colimit of X weighted by restricted hom bifunctors:

RanK X � {D(−,K−), X}A LanK X � D(K−,−) ∗A X.

In the special case where K = idA, we have

X � RanidX � {A, X}A X � LanidX � A ∗A X,

the former result generalizing the Yoneda lemma and dual one accordingly called the coY-
oneda lemma.

2Here the left-hand and right-hand “W”s must denote different functors as the weights for limits and colimits
have contrasting variance.
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Remark 2.12 (profunctorial weights). A profunctor from B toA, meaning simply a func-
tor W ∈ SetA

op×B, can serve as a weight for A-indexed colimits and B-indexed limits. In
this case, the weighted colimit and weighted limit define adjoint functors

MA MB
W∗A−

⊥

{W,−}B

In the case where W = A ∈ SetA
op×A is the hom bifunctor (the identity profunctor), this is

the identity adjunction, by the coYoneda lemma and the Yoneda lemma.

Remark 2.13. In the present unenriched context, weighted limits and colimits reduce to or-
dinary limits and colimits via the Grothendieck construction: the limit of X ∈ MA weighted

by W ∈ SetA is the limit of the composite diagram elW → A
X
−→ M which restricts the

domain of X along the functor defined by the pullback of categories

elW Set∗

A Set

y
U

W

A similar construction computes weighted colimits as ordinary colimits. Nevertheless,
the weighted framework can provide a useful conceptual simplification in Reedy category
theory, as we shall now discover.

3. Weak factorization systems and Leibniz bifunctors

In this section, we review the theory of weak factorization systems, which are pervasive
in abstract homotopy theory. The familiar factorization and lifting properties axiomatized,
for instance, in a Quillen model structure can be summarized by saying that a model cate-
gory is equipped with an interacting pair of weak factorization systems. We then develop
the basic theory of morphisms of weak factorization systems, focusing in particular on
bifunctors that satisfy a particular “Leibniz property” to be detailed below.

Weak factorization systems.

Definition 3.1. A weak factorization system on a category M is comprised of a pair of
classes of maps (L,R), referred to as left class and the right class, so that:

(i) Any morphism inM can be factored as a map in the left class followed by a map
in the right class.

• •

•

f

L3` r∈R

(ii) The morphisms in L have the left lifting property with respect to the morphisms
in R, and equivalently, the morphisms in R have the right lifting property with
respect to the morphisms in L, which is to say that any commutative square

(3.2)
• •

• •

L3` r∈R

admits a dashed diagonal lift, making both triangles commute.
The notationLlR asserts that the classesL and R have the lifting property just described.



INDUCTIVE PRESENTATIONS OF GENERALIZED REEDY CATEGORIES 9

(iii) Moreover, every morphism f with the left lifting property f lR is in the class L,
and every morphism g with the right lifting property L l g is in the class R.3

Remark 3.3. Because the left class of a weak factorization system is characterized by a
right lifting property, namely L = Rl, L is closed under coproducts, pushouts, transfinite
composition, retracts, and contains the isomorphisms. Dually, the right class R = lL

is closed under products, pullbacks, transfinite inverse limits, retracts, and contains the
isomorphisms; see [Rie14, §11.1].

Definition 3.4. A weak factorization system (L,R) is cofibrantly generated by a set of
morphisms J if

(i) its right class is comprised precisely of those maps with the right lifting property
with respect to J , i.e., if R = Jl, and if

(ii) each morphism in its left class is a retract of a cell complex whose cells are in J .
Dually, (L,R) is fibrantly generated by a set of morphisms X if L = lX and if each
morphism in R is a retract of a Postnikov tower whose cells are in X.

Axioms (ii) and (iii) implies that every weak factorization system is “class-cofibrantly
generated” by its left class and “class-fibrantly generated” by its right class.

Example 3.5. There is a weak factorization system (M,E) on Set whose left class is the
class of monomorphisms and whose right class is the class of epimorphisms. This weak
factorization system is cofibrantly generated by the single morphism {∅ ↪→ 1} from the
empty set to the singleton. Among the many potential functorial factorizations is the “co-
graph factorization” of a morphism through the coproduct of its domain and codomain.

Example 3.6. Any Quillen model structure (C,F ,W) on a category M provides two weak
factorization systems:

• (C ∩W,F ) whose left class is the class of trivial cofibrations and whose right
class is the class of fibrations, and

• (C,F ∩W) whose left class is the class of cofibrations and whose right class is
the class of trivial fibrations.

Conversely, given any category M with a classW of maps satisfying the 2-of-3 property,
to define a Quillen model structure with weak equivalencesW is to specify a class of cofi-
brations C and fibrations F defining weak factorization systems, as above [Rie14, §11.3].

Example 3.7 (projective and injective weak factorization systems). Now suppose M is lo-
cally presentable and the weak factorization system (L,R) admits an accessible functorial
factorization4, as is the case when (L,R) is cofibrantly generated.

Then for any small categoryA the following pullbacks define the projective and injec-
tive weak factorization systems, respectively:5

RAproj

��

//

y

∏
obA
R

��

mor (MA) //
∏

obA
mor M

LAinj

��

//

y

∏
obA
L

��

mor (MA) //
∏

obA
mor M

That is:

3In the presence of (i) and (ii), (iii) is equivalent to the assertion that L and R are closed under retracts.
4A functorial factorization is accessible if it preserves κ-filtered colimits for some regular cardinal κ.
5In the projective case, it suffices to assume that M is cocomplete but not necessarily locally presentable.
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• In the projective weak factorization system (LAproj,R
A
proj), the right class is com-

prised of those natural transformations whose components are in R.
• In the injective weak factorization system (LAinj,R

A
inj), the left class is comprised

of those natural transformations whose components are in L.
When (L,R) is cofibrantly generated by J , the projective weak factorization system is

cofibrantly generated by the set

Aop × J = {Aa ∗ j | a ∈ A, j ∈ J}

of tensors of maps in J with covariant representables.

Left and right Leibniz bifunctors.

Definition 3.8. Let K and M be categories equipped with weak factorization systems
(M,E) and (L,R) respectively. An adjunction of weak factorization systems is an ad-
junction

K M
F
⊥
U

so that the following equivalent conditions are satisfied
(i) The left adjoint preserves the left classes, i.e., the diagram

M L

mor K mor M

F

F

commutes.
(ii) The right adjoint preserves the left classes, i.e., the diagram

R E

mor M mor K

U

U

commutes.

The equivalence of (i) and (ii) is a consequence of the equivalence between lifting prob-
lems F f lg in M and f lUg in K and the fact that the left and right classes are characterized
by such lifting properties.

Definition 3.9. Let K, L, and M be cocomplete categories each equipped with weak fac-
torization systems (M,E), (C,F ), and (L,R), respectively. A left Leibniz bifunctor is a
bifunctor

⊗ : K × L→ M
that is

(i) cocontinuous in each variable separately, and
(ii) has the Leibniz property: ⊗-pushout products (2.2) of a map inM with a map

in C are in L, i.e., the diagram

M×C L

mor K ×mor L mor M

⊗̂

⊗̂

commutes.
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Dually, a bifunctor between complete categories equipped with weak factorization sys-
tems is a right Leibniz bifunctor if it is continuous in each variable separately and if
pullback cotensors (2.3) of maps in the right classes land in the right class. We most fre-
quently apply this definition in the case of a bifunctor

{−,−} : Kop ×M→ L

that is contravariant in one of its variables, in which we case the relevant hypothesis is that
K is cocomplete and colimits in the first variable are carried to limits in L. The nature of
the duality between left and right Leibniz bifunctors is somewhat subtle to articulate. We
leave this as a puzzle for the reader, with the hint to see [CGR14].

Lemma 3.10. If the bifunctors

K × L
⊗
−→ M, Kop ×M

{−,−}
−−−−→ L, and Lop ×M

hom
−−−→ K

define a two-variable adjunction, and (M,E), (C,F ), and (L,R) are three weak factoriza-
tion systems on K, L, and M respectively, then the following are equivalent

(i) ⊗ : K × L→ M defines a left Leibniz bifunctor.
(ii) {−,−} : Kop ×M→ L defines a right Leibniz bifunctor.

(iii) hom: Lop ×M→ K defines a right Leibniz bifunctor.

When these conditions are satisfied, we say that (⊗, {, }, hom) defines a Leibniz two-variable
adjunction.

Proof. The presence of the adjoints ensures that each of the bifunctors satisfy the required
(co)continuity hypotheses. Note that, for instance,M ⊗̂ C ⊂ L if and only ifM ⊗̂ C l R.
Now the equivalence of (i), (ii), and (iii) follows from Proposition 2.4(ii), which implies
that the following lifting problems are adjunct:

M ⊗̂ C l R ⇔ C l ̂{M,R} ⇔ M l ĥom(C,R). �

Remark 3.11. By Proposition 2.4(vi) and Remark 3.3, to show that a cocontinuous bifunc-
tor ⊗ satisfies the Leibniz property, it suffices to show that ⊗-Leibniz products of generating
morphisms are in the left class of the codomain weak factorization system.

Example 3.12. If K, L, and M are model categories, a left Quillen bifunctor is no more
and no less than a bifunctor ⊗ : K × L → M that is left Leibniz with respect to all possible
choices of constituent weak factorization systems, with the exception of choosing the trivial
cofibrations only for M.

Lemma 3.13. For any category M with a wfs (L,R) the set-tensor, set-cotensor, and hom

∗ : Set ×M→ M, {−,−} : Setop ×M→ M, and hom: Mop ×M→ Set

respectively define a Leibniz two-variable adjunction relative to the mono-epi weak factor-
ization system (M,E) on Set.

Proof. By Lemma 3.10, it suffices to prove any one of these bifunctors is Leibniz. We
focus on the left case because this sort of analysis will reappear later. When A ↪→ B is a
monomorphism in Set, the Leibniz tensor with f : X → Y decomposes as a coproduct of
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maps that are manifestly in L.

(3.14)

A ∗ X B ∗ X � A ∗ X
∐

B\A ∗ X

A ∗ Y A ∗ Y
∐

B\A ∗ X

B ∗ Y � A ∗ Y
∐

B\A ∗ Y

A∗ f
p

A∗ f
∐

id
B∗ f

id
∐

B\A∗ f

A slicker proof is also possible. By Remark 3.11 and Example 3.5, it suffices to consider
Leibniz tensor with the generating monomorphism ∅ ↪→ 1. But note that the functor

M2 (∅↪→1)∗̂−
−−−−−−→ M2

is naturally isomorphic to the identity, which certainly preserves the left class L. �

Remark 3.15. To prove that hom: Mop ×M → Set is right Leibniz is to show that for any
` ∈ L and r ∈ R, the morphism

M(cod `, dom r)
r◦−◦`
−−−−→ M(dom `, dom r) ×

M(dom `,cod r)
M(cod `, cod r)

is an epimorphism. The target of this map is the set of commutative squares in M of the
form (3.2), while the fiber over any element is the set of solutions to the lifting problem
so-presented. The fact that this is an epimorphism follows from the lifting property LlR.

Proposition 3.16. When (⊗, {, }, hom): K × L→ M defines a Leibniz two-variable adjunc-
tionM ⊗̂ C ⊂ L then the functor tensor product, functor cotensor product, and hom

KA
op×B × LA

⊗A
−−→ MB, (KA

op×B)op ×MB
{−,−}B

−−−−−→ LA, and (LA)op ×MB
hom
−−−→ KA

op×B

define a Leibniz two-variable adjunction with respect to either:
(i) the weak factorization systems

(MA
op×B

proj ,EA
op×B

proj ), (CAinj,F
A

inj ), and (LBproj,R
B
proj),

or
(ii) the weak factorization systems

(MA
op×B

inj ,EA
op×B

inj ), (CAproj,F
A

proj), and (LBinj,R
B
inj).

Proof. For (i), note that for j• ∈ LA and p• ∈ MB, ĥom( j•, p•) ∈ KA
op×B is the bifunctor

with components ĥom( ja, pb). If each ja ∈ C and each pb ∈ R, then since hom is right
Leibniz it follows that ĥom( ja, pb) ∈ E, which tells us that if j• ∈ CAinj and p• ∈ RBproj then

ĥom( j•, p•) ∈ EA
op×B

proj , as claimed.

For (ii), we wish to show that if i•• ∈ MA
op×B

inj and p• ∈ RBinj, then ̂{i••, p•}
B
∈ F Aproj. That

is, for each a ∈ A, we must show that if i•a ∈ MBinj and p• ∈ RBinj, then ̂{i•a, p•}
B
∈ F .

By adjunction, it suffices to show that MBinj ⊗̂ C ⊂ L
B
inj, which follows directly from the

inclusionM ⊗̂ C ⊂ L, because both injective left classes are defined pointwise. �

TakingA or B to be the terminal category, Proposition 3.16 specializes to the following
results:
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Corollary 3.17. When (⊗, {, }, hom): K×L→ M defines a Leibniz two-variable adjunction
M ⊗̂ C ⊂ L then

(i) The functor tensor product (⊗A, {, }, hom): KA
op
× LA → M defines a Leibniz

two-variable adjunction relative to
(a) the injective and projective weak factorization systems on KA

op
and LA, and

(b) the projective and injective weak factorization systems on KA
op

and LA.
(ii) The functor cotensor product {−,−}A : (KA)op × MA → L defines a Leibniz two-

variable adjunction relative to
(a) the projective weak factorization systems on KA and MA, and
(b) the injective weak factorization systems on KA and MA.

(iii) The functor cotensor product homA : (LA)op × MA → K defines a Leibniz two-
variable adjunction relative to
(a) the projective weak factorization systems on LA and MA, and
(b) the injective weak factorization systems on LA and MA.

Proof. The six statements are dual; we prove (i)(a). By adjunction

MA
op

inj ⊗̂ C
A
proj l R ⇔ CAproj l

̂{MA
op

inj ,R}.

The right adjoint here is the Leibniz cotensor

(KA
op

)op ×M LA

(i•, p) {̂i•, p}

{̂−,−}

To say that i• ∈ MA
op

inj is to say that ia ∈ M for each a ∈ A. Since {−,−} is right Leibniz,

this says that the components {̂ia, p} are in F , i.e., that {̂i•, p} ∈ F Aproj. Thus, the adjunct
lifting problems have a solution. �

Remark 3.18. Applying Proposition 3.16 or Corollary 3.17 to Leibniz two-variable ad-
junction of Lemma 3.13, it follows that the weighted colimit defines a left Leibniz bi-
functor and the weighted limit defines a right Leibniz bifunctor relative to appropriately
chosen pairs of projective and injective weak factorization systems defined relatively to
the monomorphism–epimorphism weak factorization system on Set and an arbitrary weak
factorization system (L,R) on a bicomplete category M. Analogous results hold if M is
tensored, cotensored, and enriched over a monoidal category V. For instance, the implica-
tions of this result for the theory of homotopy limits and homotopy colimits in a simplicial
model category is discussed in [Rie14, §11.5].

4. Reedy categories and cell complexes

The following definition relaxes the Berger-Moerdijk notion of Reedy structure, omit-
ting their axioms (iv) and (iv)’. This last pair of axioms, which we refer to somewhat
unfaithfully as “dualizability,” will reappear in section 8, where we first turn to homotopy
theoretic, as opposed to algebraic, considerations.

Definition 4.1. A Reedy structure on a small categoryA consists of a degree function6

deg: obA → ω together with a pair of wide subcategories
−→
A and

←−
A of degree-increasing

and degree-decreasing arrows respectively so that

6The degree function can take values in a different ordinal with no substantial effect on the mathematics.
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(i) Isomorphisms preserve the degree, whereas non-invertible morphisms in
−→
A or

←−
A

strictly raise and lower the degree, respectively.
(ii)
−→
A∩

←−
A = isoA.

(iii) Every f ∈ morA may be factored as

(4.2)
• •

•

f

←−
A3
←−
f

−→
f ∈
−→
A

and this factorization is unique up to isomorphism.

A strict (or classical) Reedy category is a Reedy category in which the subgroupoid
G ⊂ A of isomorphisms consists only of identities.

Remark 4.3. If A is a Reedy category, then so is Aop: its Reedy structure has the same
degree function but has the degree-increasing and degree-decreasing arrows interchanged.

Reedy factorizations. Call any factorization of the form (4.2) a Reedy factorization of
the map f . The degree of the object cod

←−
f = dom

−→
f will be called the degree of f . From

axioms (i) and (iii), it is clear that the degree is well-defined. Moreover:
(i) It is the minimal degree of an object through which f factors.

(ii) Any factorization of f with this degree is a Reedy factorization.
To prove these assertions, consider the category fact f whose objects are factorizations

a
g
−→ c

h
−→ b of f and whose morphisms h · g → h′ · g′ are maps k : c → c′ so that the

triangles
c

a b

c′

k

hg

g′ h′

commute. Write factn f ⊂ fact f for the subcategory of factorizations through an object of
degree at most n.

Lemma 4.4. The category fact f is connected, and each subcategory factn f is either empty
or connected. The minimal n with factn f non-empty is the degree of f , and each object in
factn f is a Reedy factorization.

Proof. Consider h · g ∈ fact f and choose Reedy factorizations:

(4.5) •
g

//

←−g ��

•
h //

←−
h ��

•

•

−→g

??

←−
k ��

k=
←−
h ·−→g

// •

−→
h

??

•

−→
k

??

In this way, we define a zig-zag of morphisms in fact f connecting h · g to a Reedy factor-
ization

−→
h
−→
k ·
←−
k←−g . By (iii), this shows that fact f is connected. Moreover, (4.5) and axiom

(i) imply that the degree of cod (g) = dom (h) is at least the degree of f . If these degrees
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coincide, then −→g and
←−
h must be isomorphisms, from which we deduce that g ∈

←−
A and

h ∈
−→
A: i.e., that h · g is a Reedy factorization.

Now if h · g ∈ factn f , each of the factorizations in (4.5) is as well, proving that factn f is
connected if it is non-empty. This diagram also shows that each non-empty category factn f
contains a Reedy factorization. Hence, the minimal such n is the degree of f . �

A cellular decomposition for two-sided representables. Lemma 4.4 will be used to es-
tablish a “cellular decomposition” for the hom bifunctor A ∈ SetA

op×A. That is, we shall
use the Reedy structure to present the bifunctor A as a generalized cell complex: a se-
quential composite of pushouts of groupoid-indexed coends7 of basic “cells” that have a
particular form.

Lemma 4.4 implies that the subset of arrows of degree at most n assembles into a
subfunctor of the hom-bifunctor.

Definition 4.6 (n-skeleton of the hom bifunctor). For any Reedy categoryA, the n-skeleton
is the subfunctor

sknA ↪→ A ∈ SetA
op×A

of arrows of degree at most n. Equivalently, sknA is the left Kan extension of the restriction
of the hom bifunctor from A to the full subcategory A≤n spanned by objects of degree at
most n.

Aop ×A

(A≤n)op ×A≤n Aop ×A Set

sknA
⇑�

A

There are obvious inclusions skn−1A ↪→ sknA. The colimit of the sequence

∅ sk0A · · · skn−1A sknA · · · colim � A

isA. The morphisms of degree n first appear in sknA. It remains to express each inclusion
skn−1A ↪→ sknA as a pushout of a coend of basic “cells.”

The external (pointwise) product defines a bifunctor SetA × SetA
op −×−

−−−→ SetA
op×A. For

any a ∈ A, there is a natural “composition” map whose domain is the external product of
the contravariant and covariant representables

(4.7) Aa×A
a ◦
−→ A.

Its image is the subfunctor of arrows inA that factor through a, but (4.7) is not in general a
monomorphism: e.g., this fails to be the case whenever a has non-identity automorphisms.

Notation 4.8. For any n ∈ ω and Reedy category A, let G(n) denote the subgroupoid of
isomorphisms between objects of degree n. Write

An : G(n)op → SetA and An : G(n)→ SetA
op

for the restricted Yoneda embeddings, i.e., for the G(n)-indexed diagrams of covariant and
contravariant representable functors Aa and Aa spanned by the objects a of degree n.
Finally, write

An×G(n)A
n B

∫ a∈G(n)

Aa×A
a ∈ SetA

op×A

for the functor tensor product ofAn andAn, a coend indexed by the groupoid G(n).

7The coends in a generalized cell complex take the place of coproducts in an ordinary cell complex, as defined
in [RV14, 5.3].
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The morphisms (4.7) assemble to define a map∐
a∈G(n)

Aa×A
a ◦ //

)) ))

sknA

An×G(n)A
n

◦

77

which factors through the regular epimorphism defining the coend as a quotient of the
coproduct. The quotient map ◦ again fails to be a monomorphism though Lemma 4.4
implies that it is one-to-one on the subset of arrows with degree n (and not less).

Definition 4.9 (boundaries of representable functors). If a ∈ A has degree n, write

∂Aa B skn−1Aa ∈ SetA and

∂Aa B skn−1A
a ∈ SetA

op
.

Remark 4.10. Any isomorphism inA restricts in the obvious way to a natural isomorphism
between the boundaries of the corresponding representable functors, which thus assemble
into functors

∂An ↪→ An : G(n)op → SetA and ∂An ↪→ An : G(n)→ SetA
op

indexed by the groupoid G(n).

Lemma 4.11. The complements of the inclusions

∂Aa ↪→ Aa and ∂Aa ↪→ Aa

are the functors

Aa\∂Aa =
−→
Aa and Aa\∂Aa =

←−
Aa

of degree-increasing morphisms with domain a and degree-decreasing morphisms with
codomain a, respectively.

Proof. We prove the second of these dual statements. If f : a→ a is not in ∂Aa its Reedy
factorization must have degree deg(a). The morphism

−→
f then preserves degrees and so

must be an isomorphism, which implies that f ∈
←−
Aa. Conversely, if f ∈

←−
Aa, then ida · f is

a Reedy factorization, so the degree of f equals the degree of a, and f is not in ∂Aa. �

In particular, the exterior Leibniz product

(4.12) Aa×∂A
a ∪ ∂Aa×A

a Aa×A
a(∂Aa↪→Aa)×̂(∂Aa↪→Aa)

defines the subfunctor of pairs of morphisms h · g with dom h = cod g = a in which at least
one of the morphisms g and h has degree less than the degree of a.

Proposition 4.13. The square

(4.14)

∂An×G(n)A
n ∪An×G(n)∂A

n An×G(n)A
n

skn−1A sknA

◦ ◦

is both a pullback and a pushout in SetA
op×A.

The fact that (4.14) is a pullback is used to facilitate the proof that it is also a pushout.
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Proof. We first argue that the top horizontal map, a colimit of a diagram in the category
of arrows in SetA

op×A, is a pointwise monomorphism. We find this easiest to prove us-
ing the theory of algebraic weak factorization systems introduced in §??; the reader is
invited to supply their own argument or take this result on faith. By Remark ??, the ob-
jects in this diagram, the exterior Leibniz products (4.12), are pointwise monomorphisms
and hence coalgebras for the comonad M of the monomorphism–epimorphism algebraic
weak factorization system on Set. The maps in this diagram are isomorphisms and hence
M-coalgebra maps, because any commutative square of monomorphisms in which two
opposite sides are isomorphisms is a pullback; see Example 3.5. Because the forgetful
functor M-coalg → Set2 creates colimits, it follows that the top horizontal map of (4.14)
is a pointwiseM-coalgebra and in particular a monomorphism.

An element of the pullback consists of f ∈ skn−1A together with a factorization f = h ·g
through an object a of degree n. If both h and g have degree n, then Lemma 4.4 tells us
that h · g is a Reedy factorization, contradicting the fact that f has degree at most n− 1. So
we must have either h ∈ ∂Aa or g ∈ ∂Aa, which tells us that the map from the upper left
corner of (4.14) surjects onto the pullback. Because the top-horizontal map is monic, the
comparison is therefore an isomorphism; i.e., (4.14) is a pullback square.

To see that it is a pushout, it suffices now to show that the right-hand vertical is one-
to-one on the complement of skn−1A ↪→ sknA. This follows from the connectedness of
factn f established in Lemma 4.4. �

As a corollary of Proposition 4.13, the two-sided representable A has a canonical pre-
sentation as a generalized cell complex.

Theorem 4.15. The inclusion ∅ ↪→ A has a canonical presentation as a generalized cell
complex:

∂An×G(n)A
n ∪An×G(n)∂A

n An×G(n)A
n

∅ sk0A skn−1A sknA colimnsknA � A
p

◦ ◦

i.e., a composite of pushouts of cells constructed as coends of exterior Leibniz products

(∂An ↪→ An) ×̂
G(n) (∂An ↪→ An) B

∫ a∈G(n)

(∂Aa ↪→ Aa) ×̂ (∂Aa ↪→ Aa),

attached at stage n.

Remark 4.16. One meaning of “canonical” should be “functorial.” Indeed, a morphism of
Reedy categories—a functor preserving degree and the subcategories of degree-increasing
and degree-decreasing maps—induces a morphism of generalized cell complexes: given
a morphism A → A′ of Reedy categories, there is a natural transformation in SetA

op×A

between the generalized cell complex presentation forA and the restriction the generalized
cell complex presentation forA′.

As a corollary of Theorem 4.15, any morphism f ∈ MA is itself a generalized cell
complex: the cellular decomposition of A is translated into a cellular decomposition for
f by taking weighted colimits. Taking weighted limits instead transforms the cellular
decomposition of A into a “generalized Postnikov presentation” for f as the limit of a
countable tower of pullbacks of ends of a particular form. This sort of result is exemplary
of the slogan of [RV14] that “it’s all in the weights.” Before proving this corollary, let us
introduce notation for the maps appearing as the generalized cells.
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Definition 4.17 (latching and matching objects). Let a ∈ A. The latching and matching
objects of diagram X ∈ MA are defined to be the colimits and limits, respectively, weighted
by the boundary representables of appropriate variance:

LaX := ∂Aa ∗A X MaX := {∂Aa, X}A.

The boundary inclusions ∂Aa ↪→ Aa and ∂Aa ↪→ Aa induce the latching and matching
maps LaX → Xa and Xa → MaX, on account of the isomorphisms Aa ∗A X � Xa �
{Aa, X}A.

Definition 4.18 (relative latching and matching maps). The relative latching and relative
matching maps of a natural transformation f : X → Y ∈ MA are defined to be the Leibniz
weighted colimits and limitŝ̀a f := (∂Aa ↪→ Aa) ∗̂A f m̂a f := ̂{∂Aa ↪→ Aa, f }A,

i.e., by the pullbacks and pushouts:

LaX Xa Xa

LaY `a f ma f MaX

Ya Ya MaY

La f
p f a m̂a f

f ầa f
y

Ma f

of the maps La f := ∂Aa ∗A f and Ma f := {∂Aa, f }A.

Remark 4.19. The functoriality observed in Remark 4.10 extends to the relative latching
and matching maps, which thus assemble into functorŝ̀n f : G(n)→ M and m̂n f : G(n)→ M.

Notation 4.20. For any diagram X ∈ MA let

sknX B sknA ∗A X and cosknX B {sknA, X}A

denote the results of applying the weighted colimit and weighted limit bifunctors

− ∗A − : SetA
op×A ×MA → MA and (SetA

op×A)op ×MA → MA

to the diagram X with weight sknA.

Corollary 4.21. Let A be a Reedy category and let M be bicomplete. Any morphism
f : X → Y ∈ MA is a generalized cell complex

X → X ∪
sk0X

sk0Y → · · · → X ∪
skn−1X

skn−1Y → X ∪
sknX

sknY → · · · → colim � Y

with the generalized cell

(4.22) (∂An ↪→ An) ∗̂G(n) ̂̀n f

attached at stage n and a generalized Postnikov tower

X � lim→ · · · → cosknX ×
cosknY

Y → coskn−1X ×
coskn−1Y

Y → · · · → cosk0X ×
cosk0Y

Y → Y

whose n-th layer is

(4.23) ̂{∂An ↪→ An, m̂n f }G(n).
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Proof. These dual results follow immediately by applying the weighted colimit and weighted
limit bifunctors

− ∗A − : SetA
op×A ×MA → MA and (SetA

op×A)op ×MA → MA

to the generalized cell complex presentations of Theorem 4.15; recall both bifunctors are
cocontinuous in the weight.

To see that the generalized cell complex presentation for f has the asserted form, note
that for any diagram X ∈ MA and weight defined by an exterior product of U ∈ SetA and
V ∈ SetA

op
, there is a natural isomorphism

(U×V) ∗A X � U ∗ (V ∗A X),

which extends to a natural isomorphism between Leibniz products (Proposition 2.4(i)).
By the coYoneda lemma, f � A ∗A f � (∅ ↪→ A) ∗̂A f . By cocontinuity, − ∗̂A

f preserves generalized cell structures (Proposition 2.4(vi)). It follows that f admits a
canonical presentation as a generalized cell complex with cells

[(∂An ↪→ An) ×̂
G(n) (∂An ↪→ An)] ∗̂A f � (∂An ↪→ An) ∗̂G(n) [(∂An ↪→ An) ∗̂A f ]

� (∂An ↪→ An) ∗̂G(n) ̂̀n f . �

In summary, Corollary 4.21 tells us that we may express a generic natural transformation
between diagrams of shapeA as

(i) a generalized cell complex whose cells are Leibniz tensors built from boundary
inclusions of covariant representables and relative latching maps,

(ii) and dually as a generalized Postnikov tower whose layers are Leibniz cotensors
built from boundary inclusions of contravariant representables and relative match-
ing maps.

This explains the importance of these maps to Reedy category theory, as we shall soon
discover.

Remark 4.24 (on the cells). By Corollary 4.21, f is the composite of maps

∂An ∗G(n) Yn ∪An ∗G(n) `
n f

��

(∂An↪→∂An)∗̂G(n)̂̀n f
//

p

An ∗G(n) Yn

��

X ∪
skn−1X

skn−1Y // X ∪
sknX

sknY

The lower right corner is the domain of the Leibniz weighted colimit (sknA ↪→ A) ∗̂A f .
The top horizontal map—the cell attached at step n—is the map defined by the pushout:

∂An ∗G(n) `
n f An ∗G(n) `

n f

∂An ∗G(n) Yn •

An ∗G(n) Yn

p
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5. Cell complex presentations of strict Reedy categories

In this section, we explore the homotopical implications of Theorem 4.15 and its corol-
lary in the case where A is a strict Reedy category. In this case, the coend (4.22) and end
(4.23) reduce to ordinary coproducts and products∐

a∈G(n)

(∂Aa ↪→ Aa) ∗̂ ̂̀a f and
∏

a∈G(n)

̂{∂Aa ↪→ Aa, m̂a f }

indexed by the objects inA of degree n, and Corollary 4.21 filters any f : X → Y in MA as
an ordinary cell complex and Postnikov tower. Our presentation follows [RV14], though
Theorem 5.9 was unfortunately omitted from that work, and serves as an outline for the
extension of these results to the Reedy categories of Berger–Moerdijk in the sections that
follow.

We first explain how any weak factorization system on M gives rise to a Reedy weak
factorization system on MA. We then prove an inductive result that allows us to prove
that the Reedy weak factorization systems associated to a model structure on M define the
Reedy model structure on MA. Finally, we prove that the weighted limit and weighted
colimit bifunctors define Quillen bifunctors, as a consequence of a more general algebraic
result, and discuss the consequences of this result for the theory of homotopy limits and
homotopy colimits indexed by strict Reedy categories.

Reedy weak factorization systems. Let M be a category with a weak factorization system
(L,R), comprised of a left and right class of maps, both closed under retracts, that satisfy
the factorization and lifting properties recalled in Definition 3.1. Let A be a strict Reedy
category.

Definition 5.1. The Reedy weak factorization system (L[A],R[A]) on MA defined rel-
ative to the weak factorization system (L,R) on M has:

• as left class L[A] those maps f : X → Y ∈ MA whose relative latching mapŝ̀a f : `a f → Ya ∈ M are in L, and
• as right class R[A] those maps f : X → Y ∈ MA whose relative matching maps

m̂a f : Xa → ma f ∈ M are in R.

We say a map f : X → Y ∈ MA is Reedy in L or Reedy in R if its relative latching or
relative matching maps are in L or R, respectively. The following pair of lemmas, which
are proven in the general case as Lemmas 6.8 and 6.9, imply that these two classes indeed
define a weak factorization system on the category of Reedy diagrams in M.

Lemma 5.2 ([RV14, 7.3]). The maps i ∈ L[A] have the left lifting property with respect
to the maps p ∈ R[A].

A K

B L

i p

Lemma 5.3 ([RV14, 7.4]). Every map f : X → Y ∈ MA can be factored as a map in L[A]
followed by a map in R[A].

Proposition 5.4.
(i) If f : X → Y ∈ MA is Reedy in L, that is, if the relative latching maps ̂̀a f are

in L, then each of the components f a : Xa → Ya and each of the latching maps
La f : LaX → LaY are also in L.
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(ii) If f : X → Y ∈ MA is Reedy in R, that is, if the relative matching maps m̂a f are
in L, then each of the components f a : Xa → Ya and each of the matching maps
Ma f : MaX → MaY are also in R.

Proof. We prove the first of these dual statements. The maps f a and La f are the Leibniz
weighted colimits of f with the maps ∅ ↪→ Aa and ∅ ↪→ ∂Aa respectively. Evaluating the
covariant variable of the cell complex presentation of Theorem 4.15 at a ∈ A, we see that
∅ ↪→ Aa is a cell complex whose cells have the form

(5.5) ((∂Ax)a ↪→ Aa
x) ×̂ (∂Ax ↪→ Ax),

indexed by the objects x ∈ A. In fact, it suffices to consider those objects with deg(x) ≤
deg(a); when deg(x) > deg(a) the inclusion (∂Ax)a ↪→ Aa

x, and hence the cell (5.5), is an
isomorphism. Similarly, since ∂Aa = skdeg(a)−1A

a, Theorem 4.15 implies that ∅ ↪→ ∂Aa

is a cell complex whose cells have the form (5.5) with deg(x) < deg(a).
By Proposition 2.4(vi), the maps f a and La f are then cell complexes whose cells, in-

dexed by the objects x ∈ A with the degree bounds just discussed, have the form

(5.6)
(
((∂Ax)a ↪→ Aa

x) ×̂ (∂Ax ↪→ Ax)
)
∗̂A f � ((∂Ax)a ↪→ Aa

x) ∗̂ ̂̀x f ,

the isomorphism arising from Proposition 2.4(i). By Lemma 3.13, the Leibniz tensor of a
monomorphism with a map in the left class of a weak factorization system is again in the
left class. Thus, since (∂Ax)a ↪→ Aa

x) is a monomorphism and ̂̀x f is in L, these cells, and
thus the maps f a and La f are in L as well. �

The Reedy model structure. Recall that a model structure on a category M with a class
of weak equivalencesW satisfying the 2-of-3 property is given by two classes of maps C
and F so that (C ∩W,F ) and (C,F ∩W) define weak factorization systems. To show
that the Reedy weak factorization systems on MA relative to a model structure on M define
a model structure on MA with the weak equivalences defined pointwise, one lemma is
needed.

Lemma 5.7. Let (W,C,F ) define a model structure on M. Then a map f : X → Y ∈ MA

(i) is Reedy in C∩W if and only if f is Reedy in C and a pointwise weak equivalence,
and

(ii) is Reedy in F ∩W if and only if f is Reedy in F and a pointwise weak equiva-
lence.

Proof. We prove the first of these dual statements. If f is Reedy in C ∩ W, then it is
obviously Reedy inC, and Proposition 5.4 implies that its components f a are also inC∩W.
Thus f is a pointwise weak equivalence.

For the converse, we make use of the diagram

LaX LaY

Xa •

Ya

p

La f

f a

̂̀a f

which relates the maps La f , ̂̀a f , and f a for any a ∈ A; this is an instance of Proposition
2.4(v) applied to (∅ ↪→ ∂Aa ↪→ Aa) ∗̂A f . Suppose that f is Reedy in C and a pointwise
weak equivalence. By Proposition 5.4, it follows that La f is in C. We will show that La f
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is in fact in C∩W and then apply pushout stability of the left class of a weak factorization
system and the 2-of-3 property, to conclude that ̂̀a f ∈ W and hence that f is Reedy in
C ∩W. We argue by induction. If a has degree zero, then La f is the identity at the initial
object, which is certainly a weak equivalence, and ̂̀a f = f a is in C ∩W. If a has degree
n, we may now assume that ̂̀x f ∈ C ∩W for any x with degree less than the degree of a.
By the proof of Proposition 5.4, La f may be presented as a cell complex whose cells (5.6)
are Leibniz tensors of monomorphisms with maps in C∩W, and thus lie in C∩W. Thus,
we conclude that La f ∈ C ∩W, completing the proof. �

Lemmas 5.2, 5.3, and 5.7 assemble to prove:

Theorem 5.8. If A is a strict Reedy category and (W,C,F ) define a model structure on
M, then the Reedy weak factorization systems (C∩W[A],F [A]) and (C[A],F ∩W[A])
define a model structure on MA with pointwise weak equivalences.

Reedy diagrams and Leibniz bifunctors.

Theorem 5.9. Let A be a strict Reedy category and let ⊗ : K × L → M be a left Leibniz
bifunctor with respect to weak factorization systems (M,E), (C,F ), and (L,R). Then the
functor tensor product

⊗A : KA
op
× LA → M

is left Leibniz with respect to the Reedy weak factorization systems (M[Aop],E[Aop]) and
(C[A],F [A]) and (L,R).

Proof. The reasons for the cocontinuity of the functor tensor product are well-understood.
We argue that ⊗A has the Leibniz property. Corollary 4.21 asserts that the maps f ∈ KA

op

can be built as cell complexes whose cells are Leibniz products

(∂Aa ↪→ Aa) ∗̂ ̂̀a f ,

and the maps g ∈ LA can be built as cell complexes whose cells are Leibniz products

(∂Ab ↪→ Ab) ∗̂ ̂̀bg.

By Proposition 2.4(vi), f ⊗̂A g is then a cell complex whose cells have the form(
(∂Aa ↪→ Aa) ∗̂ ̂̀a f

)
⊗̂A

(
(∂Ab ↪→ Ab) ∗̂ ̂̀bg

)
�

(
(∂Aa ↪→ Aa) ×̂A (∂Ab ↪→ Ab)

)
∗̂ (̂`a f ⊗̂ ̂̀bg)

To say that f is Reedy in M and g is Reedy in C means that ̂̀a f ∈ M and ̂̀bg ∈ C.
Since ⊗ is left Leibniz, it follows that ̂̀a f ⊗̂ ̂̀bg ∈ L. The Leibniz functor tensor product

(∂Ab ↪→ Ab) ×̂A (∂Aa ↪→ Aa)

of the maps in SetA
op

and in SetA amounts to the inclusion into the hom-setAa
b = A(b, a)

of the subset of morphisms from b to a that factor through an object of degree strictly less
than a or strictly less than b; in particular, this map is a monomorphism. Now Lemma 3.13
applies to the weak factorization system (L,R) on M to prove that the Leibniz tensor of
this monomorphism with ̂̀a f ⊗̂ ̂̀bg remains in L, completing the proof. �
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Homotopy limits and colimits of Reedy shape. Applying Theorem 5.9 to Lemma 3.13,
with (monomorphism, epimorphism) taken as the default weak factorization system on
Set, we conclude:

Corollary 5.10. For any bicomplete category M with a weak factorization system (L,R)
and any strict Reedy category, the weighted colimit and weighted limit

∗A : SetA
op
×MA → M and {−,−}A : (SetA)op ×MA → M

define left and right Leibniz bifunctors relative to the Reedy weak factorization systems.

In the setting of a model category, a monoidal model category, or a V-model category
(which subsumes the previous two cases by taking V to be Set or the model category itself),
Corollary 5.10 specializes to the following result.

Corollary 5.11. Let M be a V-model category and letA be a strict Reedy category. Then
for any weight W in MA

op
or MA as appropriate that is Reedy cofibrant8, the weighted

colimit and weighted limit functors

W ∗A − : MA → M and {W,−}A : MA → M

are respectively left and right Quillen with respect to the Reedy model structure on MA.

Example 5.12 (geometric realization and totalization). The Yoneda embedding defines a
Reedy cofibrant weight �• ∈ sSet�. The weighted colimit and weighted limit functors

�• ∗�op − : M�op
→ M and {�•,−}� : M� → M

typically go by the names of geometric realization and totalization. Corollary 5.11
proves that if M is a simplicial model category, then these functors are left and right Quillen.

Example 5.13 (homotopy limits and colimits). Taking the terminal weight 1 in SetA, the
weighted limit reduces to the ordinary limit functor. The functor 1 ∈ SetA is Reedy
monomorphic just when, for each a ∈ A, the category of elements for the weight ∂Aa

is either empty or connected. This is the case if and only if A has cofibrant constants,
meaning that the constantA-indexed diagram at any cofibrant object in any model category
is Reedy cofibrant. Thus, we conclude that if A has cofibrant constants, then the limit
functor lim: MA → M is right Quillen.

Dually, the colimit functor is a special case of the weighted colimit functor with the
terminal weight 1 ∈ SetA

op
. This is Reedy monomorphic just when each category of

elements for the weights ∂Aa is either empty or connected, which is the case if and only
if A has fibrant objects, meaning that the constant A-indexed diagram at any fibrant
object in any model category is Reedy fibrant. Thus, we conclude that if A has fibrant
constants, then the colimit functor colim: MA → M is left Quillen. See [RV14, §9] for
more discussion.

6. Projective and injective Reedy weak factorization systems

Corollary 4.21 states that f is canonically:
• the colimit of a countable sequence of pushouts of functor tensor products

(∂An ↪→ An) ∗̂G(n) ̂̀n f ,

and also

8In the case of V = Set, “Reedy cofibrant” should be read as “Reedy monomorphic.”
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• the limit of a countable tower of pullbacks of functor cotensor products

̂{∂An ↪→ An, m̂n f }
G(n)

,

built from the relative latching and relative matching maps and the covariant and con-
travariant boundary inclusions,

Aa ↪→ Aa ∈ SetA and Aa ↪→ Aa ∈ SetA
op

defined for each object a ∈ A.
In this section, we pay close attention to the bifunctoriality of these boundary functors,

in both the domain and codomain variables, as first discussed in Remark 4.19. For this
reason we add an extra decoration to our notation so we may write simply

←−
∂Ax

a B (∂Aa)x and
−→
∂Aa

x B (∂Aa)x

for the functors of morphisms from a → x and x → a, respectively, that have degree less
than the degree of a.

The natural pre- and post-composition actions of the hom bifunctor A ∈ SetA
op×A

restrict to the boundary functors
←−
∂A and

−→
∂A in the case where the morphism being com-

posed into the contravariant and covariant variables, respectively, is an isomorphism. This
observation motivates consideration of the following weights.

Notation 6.1 (groupoid of isomorphisms). For any Reedy category A, let G ⊂ A denote
the groupoid of isomorphisms. SinceA is a Reedy category, its groupoid of isomorphisms
decomposes as a direct sum:

G �
∐
n≥0

G(n),

that is to say, there are no isomorphisms between objects of differing degrees.

Definition 6.2.
←−
W :
←−
∂A ↪→ A ∈ SetG

op×A and
−→
W :
−→
∂A ↪→ A ∈ SetA

op×G

for the covariant and contravariant boundary inclusions, respectively.

Remark 6.3 (latching and matching functoriality, revisited). The weighted limit and weighted
colimit weighted by

←−
∂A and

−→
∂A respectively define functors

MA MG MA MG

X L•X X M•X

−→
∂A∗A− {

←−
∂A,−}A

Hence, the Leibniz weighted colimit weighted by
−→
W and the Leibniz weighted limit weighted

by
←−
W respectively define functors

(MA)2 (MG)2 (MA)2 (MG)2

f ̂̀• f f m̂• f

−→
W ∗̂A−

̂
{
←−
W,−}

A

Composition defines the components of a natural transformation

(6.4)
←−
∂A ∗G

−→
∂A

◦
−→ A ∈ SetA

op×A.
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Lemma 6.5. The composition map ◦ :
←−
∂A ∗G

−→
∂A → A induces canonical natural trans-

formations

L•X → R•X ∈ MG and ̂̀• f → m̂• f ∈ (MG)2

between the latching and matching functors and relative latching and relative matching
functors of Remark 6.3.

Proof. The second statement follows from the first by the functoriality of the Leibniz con-
struction. To prove the first, observe that the

←−
∂A-weighted limit functor admits a left adjoint

MA MG⊥

{
←−
∂A,−}A

←−
∂A∗G−

Hence, to define a natural transformation

L•X B
−→
∂A ∗A X → {

←−
∂A, X}A C R•X ∈ MG

is to define a natural transformation

(
←−
∂A ∗G

−→
∂A) ∗A X �

←−
∂A ∗G (

−→
∂A ∗A X)→ X ∈ MA.

By the Yoneda lemma, X � A ∗A X, so the map of weights ◦ :
←−
∂A ∗G

−→
∂A → A induces

the desired natural transformation. �

Remark 6.6. The map (6.4) is an instance of what Shulman [Shu06] calls abstract bigluing
data fromA toG: a triple comprised of a profunctor

−→
∂A : G −7−→ A, a profunctor

←−
∂A : A −7−→

G, and a natural transformation ◦ :
←−
∂A∗A

−→
∂A → A from their functor tensor product to the

hom-bifunctor. Such data equivalently defines a functor from G into the Isbell envelope
of A, a category that combines both the covariant and contravariant Yoneda embeddings
[Is66].

Definition 6.7 (projective and injective Reedy weak factorization systems). For any acces-
sible weak factorization system (L,R) on a locally presentable category M and any Reedy
categoryA, the projective Reedy weak factorization system is defined by the pullbacks:

R[A]proj R
G

proj
∏

obA
R R[A]proj

∏
obA
R

mor (MA) mor (MG)
∏

obA
morM mor (MA)

∏
obA

morM

y y
=

y

̂
{
←−
W,−}

A

m̂•

and

L[A]proj L
G

proj

mor (MA) mor (MG)

y

̂̀•
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Dually, the injective Reedy weak factorization system is defined by the pullback:

L[A]inj L
G

inj
∏

obA
L L[A]inj

∏
obA
L

mor (MA) mor (MG)
∏

obA
mor M mor (MA)

∏
obA

mor M

y y
=

y

−→
W ∗̂A− ̂̀•

and
R[A]inj R

G

inj

mor (MA) mor (MG)

y

m̂•

The first of each pair of pullbacks characterize the projective Reedy right maps and the
injective Reedy left maps: these are exactly the pointwise right and left maps, respectively.
The second of each of pullbacks then characterize the projective Reedy left maps and the
injective Reedy right maps: these are the diagrams whose relative latching and relative
matching maps assemble into projective and injective G-indexed diagrams of left and right
maps, respectively.

It remains to argue that the four classes of maps introduced in Definition 6.7 assemble
into a pair of weak factorization systems

(L[A]proj,R[A]proj) and (L[A]inj,R[A]inj).

This is accomplished by the following pair of lemmas.

Lemma 6.8 (lifting). Let A be a Reedy category with groupoid of isomorphisms G �∐
n G(n). Let (L(n),R(n)) denote any weak factorization system on MG(n), assembling into

a weak factorization system (L(•),R(•)) on MG �
∏

n MG(n). Define a pair of class of maps
by the pullbacks

L† L(•) R† R(•)

mor (MA) mor (MG) mor (MA) mor (MG)

y y

̂̀• m̂•

Then L† l R†.

Proof. By Corollary 4.21, to show that f l g for any pair of morphisms f , g ∈ MA, it
suffices to solve the lifting problems

• •

• •

(∂An↪→An)∗̂G(n)̂̀n f g

in MA for each n. By adjunction, it suffices to solve the transposed lifting problem

• •

• •

̂̀n f ̂{∂An↪→An,g}
A
�m̂ng

in MG(n) for each n. If f ∈ L† and g ∈ R†, then by definition ̂̀n f ∈ L(n) and m̂ng ∈ R(n),
so a solution exists. �
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Lemma 6.9 (factorization). Any morphism f ∈ MA can be factored as a map in L[A]proj
followed by a map in R[A]proj, or as a map in L[A]inj followed by a map in R[A]inj.

Proof. The constructions are the same mutatis mutandis. We discuss the first. The map
f ∈ MA restricts to f 0 ∈ MG(0), which we factor using the projective weak factorization
system (LG(0)

proj ,R
G(0)
proj ). We denote this factorization by

X0 f 0
//

`0 %%

Y0 ∈ MG(0)

Z0
r0

99

As for classical Reedy categories, f 0 = ̂̀0 f = m̂0 f . In particular, the 0-th relative latching
maps of the left factor and relative matching maps of the right factor are in the classesLG(0)

proj

and RG(0)
proj respectively.

Continuing inductively, suppose we have factored the restriction f <n ∈ MA<n as

X<n f <n
//

`<n &&

Y<n ∈ MA<n

Z<n
r<n

88

with ̂̀k`<n ∈ L
G(k)
proj and m̂kr<n ∈ R

G(k)
proj .

By Lemma 6.5, this data assembles into the following solid-arrow diagram in MG(n):

LnX //

��

p

LnZ //

~~

LnY

��

Xn ∪
LnX

LnZ

&&
Xn

��

66

`n
// Zn

&&

rn
// Yn

��

MnZ ×
MnY

Yn

}}

55

y

MnX // MnZ // MnY

We factor the diagonal map from the pushout to the pullback using (LG(n)
proj ,R

G(n)
proj ). The di-

agonal factors become the n-th relative latching map and matching map of the composite
morphisms `n and rn so-defined, and in particular lie in the classes LG(n)

proj and RG(n)
proj , re-

spectively. It follows from the universal properties of the pushout and the pullback that
f n = rn · `n. As in [BM08], these definitions extend the natural transformations ` and r to
degree n. �

Lemma 6.10. If the weak factorization system (L,R) on M is cofibrantly generated by a
set of arrows J , then the projective Reedy weak factorization system (L[A]proj,R[A]proj)
on MA is cofibrantly generated by the set of arrows

B ∗̂ J B {(∂Aa ↪→ Aa) ∗̂ j | a ∈ obA, j ∈ J}.
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Proof. Recall from Example 3.7 that the projective weak factorization system (LGproj,R
G

proj)
is cofibrantly generated by the set of arrows

{(∂Ga ↪→ Ga) ∗̂ j | a ∈ obG = obA, j ∈ J}.

Since the right class of the projective Reedy weak factorization system is created from
R
G

proj by applying a right adjoint, it follows that the Reedy weak factorization system is
also cofibrantly generated, by the set of arrows obtained by applying the left adjoint to the
generators for (LGproj,R

G

proj). By Remark 2.12, the adjunction in question is

MA MG

m̂•�
̂

{
←−
∂A↪→A,−}

A

⊥

(
←−
∂A↪→A)∗̂G−

By the coYoneda lemma

(
←−
∂A ↪→ A) ∗̂G ((∂Ga ↪→ Ga) ∗̂ j) � (∂Aa ↪→ Aa) ∗̂ j. �

This result appears as [BM08, 7.5] under the hypotheses that A is a dualizable “EZ”
Reedy category. In the cofibrantly generated case, the generalized cell complex presen-
tations of Corollary 4.21 reduce to ordinary cell complexes on account of the following
computation.

Lemma 6.11. If ̂̀n f ∈ (MG(n))2 is a cell complex built from tensors of representables with
maps in L, then the generalized cell

(6.12) (∂Aa ↪→ Aa) ∗̂G(n) ̂̀a f ∈ (MA)2

is a cell complex whose cells are Leibniz tensors of boundary inclusions ofA-representables
with maps in L.

Proof. By hypothesis, ̂̀n f is a composite of pushouts of coproducts of cells of the form
G(n)g ∗ j, with j : A → B in L and g ∈ G(n). Suppose, as a base case, that ̂̀n f is just
comprised of a single one these cells, i.e., that ̂̀a f = G(n)a

g ∗ j. By the coYoneda lemma,

(∂Aa ↪→ Aa) ∗̂G(n) (G(n)a
g ∗ j) � (∂Aa×G(n)G(n)a

g ↪→ Aa×G(n)G(n)a
g) ∗̂ j � (∂Ag ↪→ Ag) ∗̂ j.

Now given a composite of pushouts of coproducts of cells like G(n)g ∗̂ j, [RV14, 5.6]
implies that the cell (6.12) obtained by applying

∫ a∈G(n)
(∂Aa ↪→ Aa) ∗̂ − is a cell complex

whose cells are the maps (∂Ag ↪→ Ag) ∗̂ j. �

Example 6.13. Specializing to the strict Reedy category �op and the weak factorization
system (M,E) of Example 3.5 on Set, observe that

{∂∆n ↪→ ∆n} ∗̂ {∅ → ∗} = {∂∆n ↪→ ∆n}.

So the Reedy weak factorization system (M[�op],E[�op]) on simplicial sets is the familiar
weak factorization system, generated by the inclusions of boundaries of simplices, whose
left class is the monomorphisms. The latching map LnX ↪→ Xn for a simplicial set is
the inclusion of the set of degenerate n-simplices, while the matching map Xn → MnX =

{∂�n → X} is the function that sends an n-simplex to its boundary sphere.

The following result proves that projective Reedy left maps are pointwise left maps.
Dual remarks apply to injective Reedy right maps.

Proposition 6.14. Let (L,R) be a weak factorization system on M and let A be a Reedy
category.
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(i) Let f : X → Y ∈ MA be a projective Reedy left map. Then for each a ∈ A, the
component f a, the latching map La f , and the relative latching map ̂̀a f are in the
left class L.

(ii) Dually, let f : X → Y ∈ MA be an injective Reedy right map. Then for each
a ∈ A, the component f a, the matching map Ma f , and the relative matching map
m̂a f are in the right class R.

Proof. We prove the first of these dual statements. Note that the hypothesis that f is
projective Reedy in L implies in particular that its relative latching maps ̂̀a f are in L,
this being a strictly weaker hypothesis than the hypothesis that the diagram ̂̀n f is a G(n)-
projective L-map for each n.

The maps f a and La f are the Leibniz weighted colimits of f with the maps ∅ ↪→ Aa

and ∅ ↪→ ∂Aa in SetA
op

respectively. Fixing the covariant variable of the cell complex
presentation of Theorem 4.15 at a, we see that ∅ ↪→ Aa is a cell complex whose cells have
the form

(6.15) ((∂Ak)a ↪→ Aa
k) ×̂

G(k) (∂Ak ↪→ Ak),

indexed by the degrees k ∈ ω. In fact, it suffices to consider those degrees k ≤ deg(a);
when k > deg(a) the inclusion (∂Ak)a ↪→ Aa

k , and hence the cell (6.15), is an isomorphism.
Similarly, since ∂Aa = skdeg(a)−1A

a, Theorem 4.15 implies that ∅ ↪→ ∂Aa is a cell complex
whose cells have the form (5.5) with k < deg(a).

By Proposition 2.4(vi), the maps f a and La f are then generalized cell complexes whose
cells, indexed by the degrees with the bounds just discussed, have the form

(6.16)
(
((∂Ak)a ↪→ Aa

k) ×̂
G(k) (∂Ak ↪→ Ak)

)
∗̂A f � ((∂Ak)a ↪→ Aa

k) ∗̂G(k) ̂̀k f ,

the isomorphism arising from Proposition 2.4(i).
The inclusions (∂Ak)a ↪→ Aa

k define a pointwise monomorphism, i.e., an element in
M
G(k)op

inj . By hypothesis, ̂̀k f ∈ MG(k) is in LG(k)
proj , so Proposition 3.16(ii) implies that

the Leibniz weighted colimit (6.16) is an injective (i.e., pointwise) L-map, as claimed.
Pushouts and transfinite composites of maps in L are again in L, so since f a and La f are
cell complexes build from the cells (6.16), the maps f a and La f are in L as well. �

By contrast, additional hypotheses will be needed on the Reedy category to ensure that
the generalized Postnikov tower of a projective Reedy right map has good properties, e.g.,
that its layers are pointwise in R; dual remarks apply to the generalized cell complex
presentation of an injective Reedy left map. This result appears as Proposition 8.3, making
use of hypotheses that will be introduced in section 8.

7. Leibniz functors of Reedy weak factorization systems

Theorem 7.1. When (⊗, {, }, hom): K × L → M defines a Leibniz two-variable adjunction
M ⊗̂ C ⊂ L, and A and B are Reedy categories, then the functor tensor product, functor
cotensor product, and hom

KA
op×B × LA

⊗A
−−→ MB, (KA

op×B)op ×MB
{−,−}B

−−−−−→ LA, and (LA)op ×MB
hom
−−−→ KA

op×B

define a Leibniz two-variable adjunction with respect to either:
(i) the Reedy weak factorization systems

(M[Aop × B]proj,E[Aop × B]proj), (C[A]inj,F [A]inj), and (L[B]proj,R[B]proj),

or
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(ii) the Reedy weak factorization systems

(M[Aop × B]inj,E[Aop × B]inj), (C[A]proj,F [A]proj), and (L[B]inj,R[B]inj).

Proof. For (i), we must show that if the relative latching maps of j• ∈ LA are in C and
the relative matching maps of p• ∈ MB are in R, then the relative matching maps of
ĥom( j•, p•) ∈ KA

op×B are in E. The relative matching map at an object (a, b) ∈ Aop × B

is the Leibniz weighted colimit with the inclusion of the covariant boundary of the repre-
sentable (Aop × B)(a,b) � A

a×Bb associated to this object. A quick computation reveals
that this boundary inclusion is isomorphic to the Leibniz external product

(7.2) ∂(Aop × B)(a,b) ↪→ (Aop × B)(a,b) � (∂Aa ↪→ Aa) ×̂ (∂Bb ↪→ Bb).

Applying Proposition 2.4(i),(iii), the relative matching map is then

̂
{(∂Aa ↪→ Aa) ×̂ (∂Bb ↪→ Bb), ĥom( j•, p•)}

Aop×B

� ĥom
(
(∂Aa ↪→ Aa) ∗̂A j•, ̂{∂Bb ↪→ Bb, p•}

B
)

� ĥom(̂`a j, m̂b p).

Since hom is right Leibniz, the fact that ̂̀a j ∈ C and m̂b p ∈ R implies that ĥom(̂`a j, m̂b p) ∈
E as claimed.

For (ii), we first observe that the dual of the isomorphism (7.2) implies that the diagram
commutes:

KA
op×B KB

K

̂̀a

̂̀(a,b) ̂̀b

It follows that the Leibniz weighted colimit ̂̀a− � (∂Aa ↪→ Aa) ∗̂Aop − carries the class
M[Aop×B]inj into the the classM[B]inj, which is created fromM ⊂ mor K by the relative
latching maps for each b ∈ B.

Now we are asked to show that if i•• ∈ M[Aop × B]inj and p• ∈ R[B]inj, then ̂{i••, p•}
B
∈

F [A]proj, i.e., that the relative matching map

̂
{∂Aa ↪→ Aa, ̂{i••, p•}

B
}

A

�
̂
{̂`ai•, p•}

B

∈ F .

By hypothesis, ̂̀ai• ∈ M[B]inj and p• ∈ R[B]inj. By adjunction, it suffices to show that
M[B]inj ⊗̂ C ⊂ L[B]inj, which follows from the inclusionM⊗̂C ⊂ L and the commutative
diagram (a consequence of the fact that ⊗ preserves colimits in each variable):

(KB)2 × L2 (MB)2

K2 × L2 M2

⊗̂

̂̀b×1 ̂̀b

⊗̂

because both injective left classes are defined pointwise. �

As before, taking A or B to be the terminal category, Theorem 7.1 specializes to the
Reedy analogous of the weak factorization systems enumerated in Corollary 3.17. In par-
ticular:
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Theorem 7.3. For any Reedy category A and any weak factorization system (L,R) on a
bicomplete category M, the weighted colimit bifunctor − ∗A − : SetA

op
×MA → M defines

Leibniz two-variable adjunctions

(M[Aop]proj,E[Aop]proj) × (L[A]inj,R[A]inj)
−∗̂A−
−−−−→ (L,R), and

(M[Aop]inj,E[Aop]inj) × (L[A]proj,R[A]proj)
−∗̂A−
−−−−→ (L,R).

Dually, the weighted limit bifunctor {−,−}A : (SetA)op × MA → M defines Leibniz two-
variable adjunctions

(M[Aop]proj,E[Aop]proj) × (L[A]proj,R[A]proj)
{̂−,−}

A

−−−−−→ (L,R), and

(M[Aop]inj,E[Aop]inj) × (L[A]inj,R[A]inj)
{̂−,−}

A

−−−−−→ (L,R).

8. Homotopy invariance and the Reedy model structure

In this section we expose the Berger–Moerdijk proof of the existence of the Reedy
model structure on MA associated to an accessible model structure on M. Definition 6.7
supplies the candidate weak factorization systems: the projective Reedy model structure
will be comprised of the projective Reedy weak factorization systems associated to the
weak factorization systems defining the model structure on M; an injective Reedy model
structure is defined similarly. One detail remains: to prove the analogue of Lemma 5.7,
which shows that a map that is a projective Reedy cofibration and a pointwise weak equiv-
alence is a projective Reedy trivial cofibration: i.e., its relative latching maps are define
groupoid-indexed diagrams of projective trivial cofibrations. This argument, and its dual
in the injective Reedy case, will require a more detailed analysis of the cellular and Post-
nikov presentations of Corollary 4.21 and an additional hypothesis which we somewhat
unfaithfully call “dualizablity” — subjects to which we now turn.

Remark 8.1 (back to the cells). Recall any morphism f : X → Y ∈ MA is a generalized
cell complex

∂An ∗G(n) Yn ∪An ∗G(n) `
n f An ∗G(n) Yn

X X ∪
sk0X

sk0Y X ∪
skn−1X

skn−1Y X ∪
sknX

sknY Y
p

(∂An↪→An)∗̂G(n)̂̀n f

where the generalized cell attached at stage n is the map defined by the pushout

∂An ∗G(n) `
n f An ∗G(n) `

n f

∂An ∗G(n) Yn •

An ∗G(n) Yn

p

Pointwise at x ∈ A, we have a coproduct decomposition Ax
n �
←−
∂Ax

n
∐−→
Ax

n which is
respected by pre-composition with the groupoidG(n) of automorphisms between objects of
degree n. Note, however, that this splitting is not respected by composition in the covariant
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variable.9 Nevertheless, as in (3.14), the component at x of the attached cell decomposes
as

(
←−
∂Ax

n ↪→ A
x
n) ∗̂G(n) ̂̀n f � id←−

∂Ax
n∗G(n)Yn

∐−→
Ax

n ∗G(n) ̂̀n f .

The identity term contributes nothing to the pushout. The way in which the remaining
term

−→
Ax

n ∗G(n) ̂̀n f attached cell contributes to the filtration of f x : Xx → Y x depends on the
degree of x relative to n:

• When deg(x) < n,
−→
Ax

n = ∅ and the component of the attached cell is an identity,
which contributes nothing to the pushout.

• When deg(x) = n,
−→
Ax

n = G(n)x
n and so

−→
Ax

n ∗G(n) ̂̀n f � ̂̀x f , by the coYoneda
lemma.

• When deg(x) > n, an additional hypothesis introduced in Definition 8.2 will en-
able a simplified description of the attached cell.

The notion of Reedy category defined by Berger and Moerdijk in [BM08, 1.2] is stronger
than our Definition 4.1, including condition (i) of Definition 8.2 below. If both conditions
are included, then they refer to the categories of Definition 8.2 as “dualizable” Reedy cat-
egories, which inspires the name we adopt here.

Definition 8.2. A Reedy category is dualizable if

(i) If θ f = f for f ∈
←−
A and θ an isomorphism, then θ = idcod f .

(ii) If f θ = f for f ∈
−→
A and θ an isomorphism, then θ = iddom f .

We know of no Reedy categories that fail to be dualizable. A prototypical example is
Fin or Fin∗: the symmetric group Σn acts freely on the set of monomorphisms with domain
n and on the set of epimorphisms with codomain n. Note, however, that symmetric groups
do not act freely on general domains or codomains of morphisms between finite sets.

Our first use of dualizability is to extend Proposition 6.14 to injective Reedy left maps
and projective Reedy right maps.

Proposition 8.3. Let (L,R) be a weak factorization system on M and letA be a dualizable
Reedy category.

(i) Let f : X → Y ∈ MA be an injective Reedy left map. Then for each a ∈ A, the
component f a, the latching map La f , and the relative latching map ̂̀a f are in the
left class L.

(ii) Dually, let f : X → Y ∈ MA be a projective Reedy right map. Then for each
a ∈ A, the component f a, the matching map Ma f , and the relative matching map
m̂a f are in the right class R.

Proof. We prove the first of these dual statements using the condition 8.2(ii). As argued in
the proof of Proposition 6.14, the maps f a and La f are generalized cell complexes whose
cells, indexed by the degrees with the bounds just discussed, have the form(

(
←−
∂Aa

k ↪→ A
a
k) ×̂

G(k) (∂Ak ↪→ Ak)
)
∗̂A f � (

←−
∂Aa

k ↪→ A
a
k) ∗̂G(k) ̂̀k f ,

with k ≤ deg(a) in the case of f a and k < deg(a) in the case of La f .

9In the special case of a generalized Reedy category such as FI, of finite sets and injections, which hasA =
−→
A,

this coproduct decomposition is preserved. If the maps in A are monomorphisms, then “orbits” with respect to
G(n) are also respected.
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Remark 8.1 implies that this cell splits as a coproduct of an identity term, which con-
tributes nothing to the pushout and the weighted colimit

−→
Aa

k ∗G(k) ̂̀k f .

When A is dualizable, the groupoid G(k) acts freely on
−→
Aa

k by precomposition into the

domain variable. So we may decompose
−→
Aa

k into G(k)-orbits, each represented by some
strictly degree-increasing map mi : ai → a. The contributing cell is now

(8.4)
−→
Aa

k ∗G(k) ̂̀k f �
∐

mi : ai→a

̂̀ai f .

By hypothesis, each ̂̀ai f ∈ L, so this coproduct, and its pushout, and thus the cell complex
defining f a and La f are as well. �

A similar argument establishes the missing ingredient in the proof of the Reedy model
structure.

Proposition 8.5. Let (W,C,F ) define a model structure on M and supposeA is a dualiz-
able Reedy category. Then a map f : X → Y ∈ MA

(i) is projective or injective Reedy in C∩W if and only if f is projective or injective
Reedy in C and a pointwise weak equivalence, and

(ii) is projective or injective Reedy in F ∩W if and only if f is projective or injective
Reedy in F and a pointwise weak equivalence.

Proof. We prove both parts of the first of these dual statements. If f is projective or
injective Reedy in C ∩ W, this means that the diagrams ̂̀n f ∈ MG(n) are projective or
injective trivial cofibrations. Using the projective or injective model structure on MG(n),
it is clear that this implies that ̂̀n f ∈ MG(n) is then a projective or injective cofibration,
and thus that f is projective or injective Reedy in C. Propositions 6.14 or8.3, applied in
the projective or injective cases respectively to the weak factorization system (C ∩W,F )
implies further that its components f a are also in C ∩ W. Thus f is a pointwise weak
equivalence.

For the converse, we assume that f is a projective or injective Reedy cofibration and
a pointwise weak equivalence. In the first case, our hypothesis is that ̂̀n f ∈ MG(n) is a
projective cofibration. If we can show that each component ̂̀a f is a weak equivalence, then
the projective model structure on MG(n) implies that ̂̀n f is a projective trivial cofibration,
and thus f is a projective Reedy trivial cofibration, as desired. In the injective case, our
hypothesis is that ̂̀a f is a cofibration. If we can show that ̂̀a f is a weak equivalence, then
f is an injective Reedy trivial cofibration, as desired. So, in summary, we wish in both
cases to prove that ̂̀a f is a weak equivalence, and we may as well assume only the weaker
hypothesis: that f is an injective Reedy cofibration and pointwise weak equivalence.

We make use of the diagram

LaX LaY

Xa •

Ya

p

La f

f a

̂̀a f
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which relates the maps La f , ̂̀a f , and f a for any a ∈ A. Since we have assumed that f
is an injective Reedy cofibration, Proposition 8.3 implies that La f is in C. We will show
that La f is in fact in C ∩W and then apply pushout stability of the left class of a weak
factorization system and the 2-of-3 property, to conclude that ̂̀a f ∈ W and hence that f is
Reedy in C∩W. We argue by induction. If a has degree zero, then La f is the identity at the
initial object, which is certainly a weak equivalence, and ̂̀a f = f a is in C ∩W, as f was
assumed to be a pointwise weak equivalence. If a has degree n, we may now assume that̂̀x f ∈ C ∩W for any x with degree less than the degree of a. By the proof of Proposition
8.3, La f may be presented as a generalized cell complex whose contributing cells, by the
dualizability hypothesis (ii), reduce to coproducts (8.4) of relative latching maps indexed
by objects of strictly smaller degree than the degree of a. By induction, these maps lie in
C ∩W. Thus, we conclude that La f ∈ C ∩W, completing the proof. �

As an immediate corollary.

Corollary 8.6. SupposeA is a dualizable Reedy category and (C,F ,W) is an accessible
model structure on M. Then the category MA admits model structures where the weak
equivalences are defined pointwise and:

(i) the cofibrations, trivial cofibrations, fibrations, and trivial fibrations are defined
by the projective Reedy weak factorization systems, or

(ii) the cofibrations, trivial cofibrations, fibrations, and trivial fibrations are defined
by the injective Reedy weak factorization systems.

9. Derived limit and colimit functors

In this final section, we combine the algebraic results of §7 with the homotopical results
of §8 to conclude that the weighted limit and colimit define Quillen bifunctors relative to
various Reedy model structures associated with a dualizable Reedy category. Note that
the underlying “algebraic” statements, that these constructions define Leibniz bifunctors
relative to the Reedy weak factorization systems, do not require the dualizability hypoth-
esis. However, it is necessary to construct derived functors from these Leibniz bifunctors.
By Ken Brown’s lemma, a functor that preserves cofibrations and trivial cofibrations will
preserve all weak equivalences between cofibrant objects, but this argument makes use of
the fact that a cofibration that is also a weak equivalence is a trivial cofibration—hence in
the Reedy context the model structures of Theorem 8.6 will be needed.

Homotopy limits and colimits of Reedy shape. All of the results in this section are corol-
laries of Theorem 7.1, establishing the basic Reedy Leibniz two-variable adjunctions, and
Corollary 8.6, establishing the projective and injective Reedy model structures. We begin
by stating the model category version of Theorem 7.3, which is one of

Theorem 9.1. For any dualizable Reedy categoryA and accessible model category M, the
weighted colimit

MA
W∗A−
−−−−→ M

defines a left Quillen adjoint relative to

(i) the injective Reedy model structure on MA, assuming W ∈ SetA
op

is projective
Reedy monomorphic, and

(ii) the projective Reedy model structure on MA, assuming W ∈ SetA
op

is injective
Reedy monomorphic.
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Dually, the weighted limit

MA
{W,−}A
−−−−−→ M

defines a right Quillen adjoint relative to
(i) the projective Reedy model structure on MA, assuming W ∈ SetA is projective

Reedy monomorphic, and
(ii) the injective Reedy model structure on MA, assuming W ∈ SetA is injective Reedy

monomorphic.

Proof. Specialize Theorem 7.1 to the weak factorization systems of Corollary 8.6 and the
Leibniz two-variable adjunction of Lemma 3.13. �

In the setting of a model category, a monoidal model category, or a V-model category
(which subsumes the previous two cases by taking V to be Set or the model category itself),
Theorem 7.1 specializes to the following result.

Theorem 9.2. Let M be an accessible V-model category and let A be a dualizable Reedy
category. Then the weighted colimit

VA
op
×MA

−⊗A−
−−−−→ M

defines a Quillen two-variable adjunction relative to
(i) the projective Reedy model structure on VA

op
and the injective Reedy model struc-

ture on MA, and
(ii) the injective Reedy model structure on VA

op
and the projective Reedy model struc-

ture on MA.
Dually, the weighted limit

(VA)op ×MA
{−,−}A

−−−−−→ M

defines a Quillen two-variable adjunction relative to
(i) the projective Reedy model structures on VA and MA, and

(ii) the injective Reedy model structures on VA and MA.

Proof. Specialize Theorem 7.1 to the weak factorization systems of Corollary 8.6 and the
Leibniz two-variable adjunction

V ×M
⊗
−→ M, Vop ×M

{−,−}
−−−−→ M, and Mop ×M

hom
−−−→ V

defining the tensor, cotensor, and hom of a V-model category. �

Derived functors. Quillen bifunctors are a fertile source of derived functors. For instance:

Corollary 9.3. Let M be an accessible V-model category and letA be a dualizable Reedy
category.

(i) When W ∈ VA
op

is projective Reedy cofibrant, the weighted colimit W⊗A− : MA →
M preserves pointwise weak equivalences between injective Reedy cofibrant dia-
grams.

(ii) When W ∈ VA
op

is injective Reedy cofibrant, the weighted colimit W⊗A− : MA →
M preserves pointwise weak equivalences between projective Reedy cofibrant di-
agrams.

(iii) When W ∈ VA is projective Reedy cofibrant, the weighted limit {W,−}A : MA →
M preserves pointwise weak equivalences between projective Reedy cofibrant di-
agrams.
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(iv) When W ∈ VA is injective Reedy cofibrant, the weighted limit {W,−}A : MA → M
preserves pointwise weak equivalences between injective Reedy cofibrant dia-
grams.

In the case where V = Set, the condition on the weights is that W is projective or in-
jective Reedy monomorphic, meaning the relative latching maps are projective or injective
monomorphisms.

Example 9.4. Corollary 9.3 suggests a natural question: when is 1 ∈ SetA
op

, the weight for
the ordinary colimit functor, projective or injective Reedy monomorphic? The argument in
the injective case proceeds as in Example 5.13. In the projective case, this is so just when
the latching maps (∂An ↪→ An) ∗A 1 define a projective monomorphism in SetG(n) for
each n. As in [RV14, §9], the codomains of the latching maps are the constant diagrams
at 1, so these maps are pointwise monomorphisms if and only if each el∂An is connected
(see Example 2.9 and Remark 2.13). The monomorphism is 1 ↪→ 1 if el∂An is connected
and non-empty and ∅ ↪→ 1 if el∂An = ∅. Unless the objects of G(n) have no non-identity
automorphisms, only the former is a projective monomorphism. So, in summary, 1 ∈
SetA

op
is projective Reedy monomorphic if and only if for each a ∈ A, the category el∂Aa

is connected and moreover either
• it is non-empty, or
• a admits no non-identity automorphisms.

This is the case, for instance, when A has a terminal object with degree zero, e.g., for
A = Fin∗ or Finop

∗ . A non-example is Finop: the boundary of the contravariant functor
represented by the two-element set is not connected.

Example 9.5. Let A ∈ V be a cofibrant object and consider the functor

A• : Finop
∗ → V

defined by sending the based finite set n+ = {∗, 1, . . . , n} to the n-fold power An.10 The
latching object LnA → An is the “fat diagonal,” informally the subspace in which some
coordinate equals the basepoint or some pair of coordinates are duplicated. To say that A•

is injective Reedy cofibrant is to say that this map LnA → An is a cofibrant in V, in which
case the weighted colimit

MFin∗
A•⊗Fin∗−

−−−−−−→ M
would define a left Quillen functor for any V-model category M. Note that A• is never
projective Reedy cofibrant because Σn does not act freely on the fat diagonal.
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