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Abstract. Various models of (∞, 1)-categories, including quasi-categories, complete Se-
gal spaces, Segal categories, and naturally marked simplicial sets can be considered as
the objects of an ∞-cosmos. In a generic ∞-cosmos, whose objects we call ∞-categories,
we introduce modules (also called profunctors or correspondences) between ∞-categories,
incarnated as as spans of suitably-defined fibrations with groupoidal fibers. As the name
suggests, a module from A to B is an ∞-category equipped with a left action of A and a
right action of B, in a suitable sense. Applying the fibrational form of the Yoneda lemma,
we develop a general calculus of modules, proving that they naturally assemble into a
multicategory-like structure called a virtual equipment, which is known to be a robust
setting in which to develop formal category theory. Using the calculus of modules, it is
straightforward to define and study pointwise Kan extensions, which we relate, in the case
of cartesian closed ∞-cosmoi, to limits and colimits of diagrams valued in an ∞-category,
as introduced in previous work.
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1. Introduction

Previous work [13, 12, 14, 15] shows that the basic theory of (∞, 1)-categories — cate-
gories that are weakly enriched over ∞-groupoids, i.e., topological spaces — can be devel-
oped “model independently,” at least if one is content to work with one of the better-behaved
models: namely, quasi-categories, complete Segal spaces, Segal categories, or naturally
marked simplicial sets. More specifically, we show that a large portion of the category the-
ory of quasi-categories—one model of (∞, 1)-categories that has been studied extensively
by Joyal, Lurie, and others—can be re-developed from the abstract perspective of the
homotopy 2-category of the ∞-cosmos of quasi-categories. Each of the above-mentioned
models has its own ∞-cosmos, a quotient of which defines the homotopy 2-category. As
our development of the basic theory takes place entirely within this axiomatic framework,
the basic definitions and theorems apply simultaneously and uniformly to each of the
above-mentioned models.

An ∞-cosmos is a universe within which to develop the basic category theory of its
objects, much like a simplicial model category is a universe within which to develop the
basic homotopy theory of its objects. A simplicial model category is a model category that
is enriched as such over Quillen’s model structure on simplicial sets, whose fibrant objects,
the Kan complexes, model ∞-groupoids. By analogy, an ∞-cosmos resembles a model
category that is enriched as such over Joyal’s model structure on simplicial sets, whose
fibrant objects, the quasi-categories, model (∞, 1)-categories; more precisely an ∞-cosmos
is the simplicial subcategory spanned by the fibrant objects. The∞-cosmos axioms discard
the features of a quasi-categorically enriched model structure that are not necessary for
our proofs. We restrict to the subcategory of fibrant objects, which traditionally model the
homotopy coherent category-like structures of interest, and forget about the cofibrations,
which are not needed for our constructions. We refer to fibrations between fibrant objects
as isofibrations, as these will play a role analagous to the categorical isofibrations. Finally,
in contrast to the form of this axiomatization presented in [15], we assume that “all fibrant
objects are cofibrant,” which happens to be true of all of the examples that we will consider
in the present paper. While everything we discuss here holds in a general ∞-cosmos, this
cofibrancy restriction allows for useful didactic simplification of the arguments presented
here.

We use the term ∞-categories to refer to the objects in some ∞-cosmos; these are
the infinite-dimensional categories within the scope of our treatment. Examples include
the models of (∞, 1)-categories mentioned above, but also ordinary categories, θn-spaces,
general categories of “Rezk objects” valued in a reasonable model category, and also sliced
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(fibred) versions of the ∞-categories in any ∞-cosmos. In particular, theorems about ∞-
categories, i.e., objects in some ∞-cosmos, are not only theorems about (∞, 1)-categories.
This being said, for the present narrative, the interpretation of “∞-categories” as being
“well-behaved models of (∞, 1)-categories” might prove the least confusing.

Quillen’s model category axioms provide a well-behaved homotopy category, spanned by
the fibrant-cofibrant objects, in which the poorly behaved notion of weak equivalence is
equated with a better behaved notion of homotopy equivalence. Similarly, an ∞-cosmos
provides a well-behaved homotopy 2-category, which should be thought of as a categori-
fication of the usual homotopy category, in which the canonical 2-categorical notion of
equivalence coincides precisely with the∞-cosmos level notion of (weak) equivalence. This
means that 2-categorical equivalence-invariant definitions are appropriately “homotopical.”
Our work is largely 2-categorical, presented in terms of the ∞-categories, ∞-functors, and
∞-natural transformations that assemble into the homotopy 2-category of some∞-cosmos,
much like ordinary categorical notions can be defined in terms of categories, functors, and
natural transformations. References to [13, 12, 14, 15] will have the form I.x.x.x, II.x.x.x,
III.x.x.x, and IV.x.x.x respectively. We spare the reader the pain of extensive cross refer-
encing however, by beginning with a comprehensive survey of the necessary background in
§2.

The aim of this paper is to develop the calculus of modules between ∞-categories. In
classical 1-category theory, “modules” are our prefered name for what are also called
profunctors, correspondences, or distributors : a module E from A to B is a functor
E : Bop × A → Set. The bifunctoriality of E is expressed via “left” (covariant) actions
on the sets E(b, a) by morphisms in A and “right” (contravariant) actions by morphisms
in B. The hom bifunctor associated to any category A defines a module from A to A,
the arrow module denoted by A2. More generally, any functor f : B → A can be encoded
as a covariant represented module from B to A and as a contravariant represented module
from A to B; these modules are defined by restricting one or the other variable in the
arrow module A2. Given a second functor g : C → A, there is a module from C to B
obtained by restricting the domain variable of the arrow module A2 along f and restrict-
ing the codomain variable along g. This module can be regarded as the composite of the
contravariant module representing f with the covariant module representing g.

There are a number of equivalent 2-categorical incarnations of modules in classical 1-
category theory. Our preferred mechanism is to represent a module E from A to B as a
two-sided discrete fibration (q, p) : E � A × B. In particular, under this presentation, a
module is a category fibered over A × B; by analogy, a module between ∞-categories A
and B will be an∞-category fibred over A×B. As slices of∞-cosmoi are again∞-cosmoi,
this means that we can apply theorems from our previous work, which concern the objects
in any ∞-cosmos, to develop the theory of modules. By contrast, Lurie [9] and Barwick–
Schommer-Pries [1] represent modules as correspondences — cospans rather than spans.
Haugseng [3] uses an ∞-operadic approach to define modules for enriched ∞-categories.

In §3, we define modules between ∞-categories, the prototypical examples being the
arrow ∞-categories and comma ∞-categories that play a central role in previous work in
the series. A module E from A to B will be an ∞-category equipped with an isofibration
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(q, p) : E � A × B that has “groupoidal fibers” and satisfies two additional properties.
Firstly, (q, p) defines a cartesian fibration in the sliced ∞-cosmos over A, in the sense
introduced in §IV.4. Loosely, this says that B acts on the right of E, over A. Dually,
(q, p) defines a cocartesian fibration in the sliced ∞-cosmos over B, which says that A
acts on the left of E, over B. Applying results about cartesian and groupoidal cartesian
fibrations developed in §IV.5 and §IV.6, we prove that modules can be pulled back along
an arbitrary pair of functors, and we characterize the quasi-category of module maps out
of a represented module, this result being an application of the relative case of the Yoneda
lemma, in the form of IV.6.2.13

In §4, we develop the calculus of modules, which resembles the calculus of (bi)modules
between rings. Unital rings, ring homomorphisms, modules, and module maps assemble
into a 2-dimensional categorical structure known as a double category. Ring homomor-
phisms can be composed “vertically” while modules can be composed “horizontally,” by
tensoring. A module map, from an A-B-module to an A′-B′-module over a pair of ring
homomorphisms A→ A′ and B → B′ is an A-B-module homomorphism from the former
to the latter, where the A-B-actions on the codomain are defined by restriction of scalars.
These module maps can be represented as 2-dimensional “cells” inside squares, which can
be composed in both the “horizontal” and “vertical” directions.

Similarly, ∞-categories, ∞-functors, modules, and module maps assemble into a 2-
dimensional categorical structure. At the level of our∞-cosmos axiomatization, we are not
able to define tensor products for all modules, which would involve homotopy colimits that
are not included within this general framework. But as it turns out, this is a deficiency we
can work around for our purposed here. Modules between∞-categories naturally assemble
into a virtual double category, where module maps are allowed to have a “multi-source.”
Our main theorem in this section is that the virtual double category of modules is in fact a
virtual equipment, in the sense of Cruttwell and Shulman [2]. The proof of this result, which
appears as Theorem 4.2.6, follows easily from our work in §3, and we spend the remain-
der of this section exploring its consequences. In particular, we show that the homotopy
2-category of the ∞-cosmos embeds both covariantly and contravariantly into the virtual
equipment of modules, by sending an ∞-category to either its covariant or contravariant
represented module.

Prior categorical work suggests that Theorem 4.2.6, which demonstrates that modules
between ∞-categories assemble into a virtual equipment, serves as the starting point for
many further developments in the formal category theory of ∞-categories [17, 20, 21, 18,
19, 2, 16]. Here we illustrate only a small portion of the potential applications in §5 by
introducing pointwise Kan extensions, exact squares, and final and initial functors for
∞-categories. There is a naive notion of Kan extension which can be defined in any 2-
category, in particular in the homotopy 2-category, but the universal property so-encoded
is insufficiently robust to define a good notion for ∞-functors between ∞-categories. The
correct notion is of pointwise Kan extension, which we define in two different ways that
we prove equivalent in Proposition 5.2.4. One definition, guided by Street [17], is that a
pointwise Kan extension is an ordinary extension diagram in the homotopy 2-category of
∞-categories that is stable under pasting with comma, or more generally exact, squares. A
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second definition, is that a pointwise Kan extension is a Kan extension under the covariant
embeddding into the virtual equipment of modules.

In a cartesian closed ∞-cosmos, pointwise Kan extensions along the unique functor to
the terminal ∞-category correspond exactly to the absolute lifting diagrams used in §I.5
to define limits and colimits of diagrams valued in an ∞-category. Thus, pointwise Kan
extensions can be used to extend this notion to non-cartesian closed ∞-cosmoi, such as
sliced ∞-cosmoi or the ∞-cosmoi of Rezk objects. We introduce initial and final functors
between ∞-categories, defined in terms of exact squares, which are in turn characterized
using the virtual equipment of modules. We prove that for any final functor k : C → D,
D-indexed colimits exist if and only if the restricted C-indexed colimits do, and when they
exist they coincide. We conclude by proving the Beck-Chevalley property for functorial
pointwise Kan extensions, and use it to sketch an argument that any complete and cocom-
plete quasi-category gives rise to a derivator in the sense of Heller [4] and Grothendieck.

The results contained here might appear to be specialized to the ∞-cosmoi whose ob-
jects model (∞, 1)-categories. For instance, in these ∞-cosmoi, the groupoidal objects,
which serve as the fibers for modules, will be precisely the ∞-groupoids; for other ∞-
cosmoi, the groupoidal objects will be those objects whose underlying quasi-categories are
Kan complexes. Nonetheless, broader applications of the present results are anticipated.
For instance, Paré conjectured [11] and Verity proved [18] that the flexible 2-limits, which
is the class of 2-dimensional limits that are appropriately homotopical, are captured by
the double-categorical notion of persistent limits. That is, 2-dimensional limits of dia-
grams defined internally to 2-categories can be studied by regarding those 2-categories
as vertically-discrete double categories, and using two-sided discrete fibrations (modules)
between such double categories to define the shape of the limit notion.

The flexible 2-limits mentioned here are the only 2-dimensional limits that have mean-
ingful (∞, 2)-categorical analogues. This result suggests that we should be able to apply
the calculus of modules—exactly as developed here in a general ∞-cosmos—between ∞-
categories that model (∞, 2)-categories, incarnated as Rezk objects in quasi-categories, to
define weights for 2-dimensional limit and colimits of diagrams valued inside an (∞, 2)-
category. We plan to explore this topic in a future paper.
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Science Foundation under Award No. DMS-1509016 and by the Australian Research Coun-
cil under Discovery grant number DP130101969. A substantial portion of this work was
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time he was partially supported by an NSF grant DMS-0906194 and a DARPA grant
HR0011-10-1-0054-DOD35CAP held by Mike Hopkins. We are particularly grateful for
his support. Some of the writing took place while the first-named author was in residence
at the Hausdorff Research Institute for Mathematics, with travel support provided by the
Simons Foundation through an AMS-Simons Travel Grant. Edoardo Lanari pointed out
a circularity in the interpretation of the axiomatization for an ∞-cosmos with all objects
cofibrant, now corrected.
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2. Background

In §2.1, we introduce the axiomatic framework in which we work — an ∞-cosmos and
its homotopy 2-category — first introduced in [15] but considered here in a simplified
form. The underlying 1-category of an ∞-cosmos (a simplicially enriched category) and
its homotopy 2-category (a Cat-enriched category) are identical: objects are ∞-categories
and morphisms are ∞-functors (with the prefix “∞” typically dropped).

In §2.2, we consider slices of an ∞-cosmos K over a fixed object B. In this context,
there are two closely related 2-categories: the homotopy 2-category (K/B)2 of the sliced
∞-cosmos K/B and the slice K2/B of the homotopy 2-category of K. Both 2-categories
have the same underlying 1-categories but their 2-cells do not coincide. However, there is
a canonically defined smothering 2-functor (K/B)2 → K2/B which means that, for many
practical purposes, the distinction between these slices is not so important.

In §2.3, we review the construction of comma ∞-categories, a particular simplicially
enriched limit notion permitted by the axioms of an ∞-cosmos that produces an object, a
pair of functors, and a natural transformation that enjoy a particular weak 2-dimensional
universal property in the homotopy 2-category. Comma ∞-categories are well-defined up
to equivalence of spans in the homotopy 2-category, but for the purpose of calculations we
frequently make use of a particular model, defined up to isomorphism in the ∞-cosmos.

In §2.4, we summarize the main definitions and results concerning cartesian fibrations
and groupoidal cartesian fibrations, contained in §IV.4-IV.6. These will be used in §3 to
define modules between ∞-categories, which are two-sided groupoidal cartesian fibrations
of a particular variety.

2.1. ∞-cosmoi and their homotopy 2-categories. The∞-cosmoi of principle interest
to this paper are those whose objects, the ∞-categories, model (∞, 1)-categories. These
include the ∞-cosmoi of quasi-categories, complete Segal spaces, Segal categories, and
marked simplicial sets. In each of these, all objects are cofibrant. Adding this as an
assumption to the definition of an ∞-cosmos, as presented in IV.2.1.1, we obtained a
simplified form of the axiomatization, contained in Definition 2.1.1 below. This assumption
is not required for any of the main theorems presented in this paper, but it does simplify
their proofs.

For the duration of this paper, an ∞-cosmos will refer to an ∞-cosmos with all objects
cofibrant.

2.1.1. Definition (∞-cosmos). An ∞-cosmos (with all objects cofibrant) is a simplicially
enriched category K whose mapping spaces map(A,B) are all quasi-categories that is
equipped with a specified subcategory of isofibrations satisfying the following axioms:

(a) (completeness) As a simplicially enriched category, K possesses a terminal object
1, cotensors U t A of all objects A by all finitely presented simplicial sets U , and
pullbacks of isofibrations along any functor;

(b) (isofibrations) The class of isofibrations contains the isomorphisms and all of the
functors ! : A → 1 with codomain 1; is stable under pullback along all functors;
and if p : E � B is an isofibration in K and i : U ↪→ V is an inclusion of finitely
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presented simplicial sets then the Leibniz cotensor i t̂p : V t E → U t E×UtB V t
B is an isofibration. Moreover, for any object X and isofibration p : E � B,
map(X, p) : map(X,E)� map(X,B) is an isofibration of quasi-categories.

(c) (cofibrancy) All objects are cofibrant, in the sense that they enjoy the left lifting
property with respect to all trivial fibrations in K, a class of maps that will now be
defined.

2.1.2.Definition (equivalences in an∞-cosmos). The underlying category of an∞-cosmos
K has a canonically defined class of (representably-defined) equivalences. A functor f : A→
B is an equivalence just when the induced functor map(X, f) : map(X,A) → map(X,B)
is an equivalence of quasi-categories for all objects X ∈ K.

Note that the equivalences define a subcategory and satisfy the 2-of-6 property. The triv-
ial fibrations are those functors that are both equivalences and isofibrations; immediately
it follows that the trivial fibrations define a subcategory containing the isomorphisms. We
use the symbols “�”, “ ∼−−→”, and “ ∼−�” to denote the isofibrations, equivalences, and trivial
fibrations, respectively. The trivial fibrations enjoy the following stability properties:

2.1.3. Lemma (stability properties of trivial fibrations).
(a) If p : E ∼−� B is a trivial fibration in an ∞-cosmos K, then for any object X,

map(X, f) : map(X,E) ∼−� map(X,B) is a trivial fibration of quasi-categories.
(b) The trivial fibrations are stable under pullback along any functor.
(c) The Leibniz cotensor i t̂ p : V t E → U t E ×UtB V t B of an isofibration

p : E � B in K and a monomorphism i : U ↪→ V between presented simplicial sets
is a trivial fibration when p is a trivial fibration in K or i is trivial cofibration in
the Joyal model structure on sSet.

Proof. (a) is immediate from (b) and the definitions, while (b) and (c) follow from the analo-
gous properties for isofibrations, the corresponding stability properties for quasi-categories
established in Example IV.2.1.4, and the fact that the referenced simplicially limits are
representably defined. �

2.1.4. Remark. An ∞-cosmos in the sense of Definition 2.1.1 is exactly an ∞-cosmos in
the sense of Definition IV.2.1.1 in which the weak equivalences are taken to be the class of
equivalences and in which all objects are cofibrant.

2.1.5. Definition (cartesian closed ∞-cosmoi). An ∞-cosmos is cartesian closed if the
product bifunctor − × − : K × K → K extends to a simplicially enriched two-variable
adjunction

map(A×B,C) ∼= map(A,CB) ∼= map(B,CA).

Examples IV.2.1.4, IV.2.2.4, IV.2.2.5, IV.2.2.7, and IV.2.2.8 establish ∞-cosmoi for
quasi-categories, ordinary categories, complete Segal spaces, Segal categories, and marked
simplicial sets, respectively. All of these examples are cartesian closed.

Example IV.2.1.11 proves that there exist sliced ∞-cosmoi defined as follows:
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2.1.6. Definition (sliced ∞-cosmoi). If K is an ∞-cosmos and B is a fixed object, then
there is an ∞-cosmos K/B in which the:
• objects are isofibrations p : E � B with codomain B;
• mapping quasi-category from p : E � B to q : F � B is defined by taking the pullback

mapB(p, q) //

����

map(E,F )

map(E,q)
����

∆0
p
// map(E,B)

(2.1.7)

in simplicial sets;
• isofibrations, equivalences, and trivial fibrations are created by the forgetful functor
K/B → K;
• the terminal object is idB : B � B;
• pullbacks are created by the forgetful functor K/B → K;
• the cotensor of an object p : E � B of K/B by a finitely presented simplicial set U is
the left-hand vertical arrow in the following pullback in K:

U tp E //

����

U t E
Utp
����

B
∆
// U t B

where the arrow ∆ appearing along the bottom is the adjoint transpose of the constant
map U → ∆0 idB−−→ map(B,B) at the identity for B.

2.1.8. Definition. A functor of ∞-cosmoi F : K → L is a simplicial functor that preserves
isofibrations and the limits listed in 2.1.1(a).

Note that simplicial functoriality implies that a functor of∞-cosmoi also preserves equiv-
alences and hence also trivial fibrations.

2.1.9. Example (functors of ∞-cosmoi). The following define functors of ∞-cosmoi:
• map(X,−) : K → qCat for any object X ∈ K (see Proposition IV.2.1.10). The special
case map(1,−) : K → qCat is the underlying quasi-category functor.
• U t − : K → K for any finitely presented simplicial set U (by 2.1.1(c) and the fact that
simplicially enriched limits commute with each other).
• The pullback functor f ∗ : K/B → K/A for any functor f : A → B ∈ K (see Proposi-
tion IV.2.1.13).
• The underlying quasi-category functor map(1,−) : CSS → qCat that takes a complete
Segal space to its 0th row (see Example IV.2.2.5).
• The functor t! : qCat→ CSS defined in Example IV.2.2.6.
• The underlying quasi-category functor map(1,−) : Segal → qCat that takes a Segal
category to its 0th row (see Example IV.2.2.7).
• The underlying quasi-category functor that carries a naturally marked simplicial set to
its underlying quasi-category (see Example IV.2.2.8).
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• The inclusion Cat→ qCat of categories into quasi-categories that identifies a category
with its nerve (see Example IV.2.2.4).

2.1.10. Definition (the homotopy 2-category of ∞-cosmos). A quotient of an ∞-cosmos
K defines the homotopy 2-category, a strict 2-category K2 with the same objects and 1-
morphisms and whose hom-categories are defined by hom(A,B) := h(map(A,B)) to be
the homotopy categories of the mapping quasi-categories in K.

Put concisely, the homotopy 2-category is the 2-category K2 := h∗K defined by applying
the homotopy category functor h : qCat→ Cat to the mapping quasi-categories of the ∞-
cosmos. By the same construction, a functor F : K → L of ∞-cosmoi induces a 2-functor
F2 := h∗F : K2 → L2 between their homotopy 2-categories.

Isofibrations and trivial fibrations in the∞-cosmos define representable isofibrations and
representable surjective equivalences in the homotopy 2-category:

IV.3.1.4. Lemma. For all objects X in an ∞-cosmos:
(i) If E � B is an isofibration, then hom(X,E)� hom(X,B) is an isofibration.
(ii) If E ∼−� B is a trivial fibration, then hom(X,E) ∼−� hom(X,B) is a surjective

equivalence.

Importantly:

IV.3.1.8. Proposition. A functor f : A → B is an equivalence in the ∞-cosmos if and
only if it is an equivalence in the homotopy 2-category.

The upshot is that any categorical notion defined up to equivalence in the homotopy
2-category is characterized up to (weak) equivalence in the ∞-cosmos.

Axioms 2.1.1(a) and (b) imply that an ∞-cosmos has finite products satisfying a sim-
plicially enriched universal property. Consequently:

2.1.11. Proposition. The homotopy 2-category of an ∞-cosmos has finite products. If the
∞-cosmos is cartesian closed, then so is its homotopy 2-category.

Proof. The homotopy category functor h : qCat→ Cat preserves finite products. Applying
this to the defining isomorphisms map(X, 1) ∼= 1 and map(X,A × B) ∼= map(X,A) ×
map(X,B) for the simplicially enriched terminal object and binary products of K yields
isomorphisms hom(X, 1) ∼= 1 and hom(X,A × B) ∼= hom(X,A) × hom(X,B). These
demonstrate that 1 and A×B are also the 2-categorical terminal object and binary products
in K2.

In this case where K is cartesian closed, as defined in 2.1.5, applying the homotopy cate-
gory functor to the defining isomorphisms on mapping quasi-categories yields the required
natural isomorphisms

hom(A×B,C) ∼= hom(A,CB) ∼= hom(B,CA)

of hom-categories. �

2.1.12. Definition. We say an object E in an∞-cosmos K is groupoidal if it is groupoidal
in the homotopy 2-category K2, that is, if every 2-cell with codomain E is invertible.
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This says exactly that for each X ∈ K, the hom-category hom(X,E) is a groupoid. By
a well-known result of Joyal [5, 1.4], this is equivalent to postulating that each mapping
quasi-category map(X,E) is a Kan complex.

2.1.13. Remark. In the ∞-cosmoi whose objects model (∞, 1)-categories, we posit that
the groupoidal objects are precisely the corresponding ∞-groupoids. For instance, in the
∞-cosmos for quasi-categories, an object is groupoidal if and only if it is a Kan complex.
In the ∞-cosmos for marked simplicial sets, an object is groupoidal if and only if it is a
Kan complex with every edge marked. For general ∞-cosmoi, it is always the case that
the underlying quasi-category of a groupoidal object is a Kan complex.

2.2. Sliced homotopy 2-categories. For any∞-cosmosK and any objectB, 2.1.6 recalls
the definition of the sliced ∞-cosmos K/B. In this section, we reprise the relationship
between the homotopy 2-category (K/B)2 of the sliced ∞-cosmos and the slice K2/B of
the homotopy 2-category of K.

2.2.1. Definition. The objects of (K/B)2 and K2/B are the isofibrations with codomain
B. The hom-category between p : E � B and q : F � B in (K/B)2 is defined by applying
the homotopy category functor qCat → Cat to the mapping quasi-category defined by
the left-hand pullback of simplicial sets, while the corresponding hom-category in K2/B is
defined by the right-hand pullback of categories

mapB(p, q)

����

// map(E,F )

map(E,q)
����

homB(p, q) //

����

hom(E,F )

hom(E,q)
����

∆0
p

// map(E,A) 1 p
// hom(E,A)

The vertices of mapB(p, q) and the objects of homB(p, q) are exactly the functors from p
to q in K/B, i.e., commutative triangles over B. In particular, (K/B)2 and K2/B have the
same underlying 1-category. However, their 2-cells differ.

Given a parallel pair of 1-cells

E

p     

f
++

g
33 F

q~~~~

B

a 2-cell from f to g in
• K2/B is a homotopy class of 1-simplices f → g in map(E,F ) that whisker with q to
the homotopy class of the degenerate 1-simplex on p in map(E,B).
• (K/B)2 is a homotopy class of 1-simplices f → g in the fibre of map(E, q) : map(E,F )�

map(E,B) over the vertex p ∈ map(E,B) under homotopies which are also constrained
to that fibre.

The distinction is that the notion of homotopy involved in the description of 2-cells in
(K/B)2 is more refined (identifies fewer simplices) than that given for 2-cells in K2/B.
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Each homotopy class representing a 2-cell in K2/B may actually split into a number of
distinct homotopy classes representing 2-cells in (K/B)2.

For any object B in an ∞-cosmos K there exists a canonical comparison 2-functor
(K/B)2 → K2/B. This acts identically on objects p : E � B and q : F � B, while its
action h(mapB(p, q)) → homB(p, q) on hom-categories is induced by applying the univer-
sal property of the defining pullback square for the hom-category homB(p, q) of K2/B to
the square obtained by applying the homotopy category functor h to the defining pull-
back square for the mapping quasi-category mapB(p, q) of K/B. The arguments leading
to Proposition I.3.4.7 generalise immediately to the ∞-cosmos K to demonstrate that
(K/B)2 → K2/B is a smothering 2-functor : a functor that is surjective on objects and
locally smothering (see Definition I.3.4.6).

2.2.2. Proposition. The canonical 2-functor (K/B)2 → K2/B that acts identically on
underlying 1-categories and acts via the quotient map hmapB(p, q)→ homB(p, q) on hom-
categories is a smothering 2-functor. �

The ramifications of Proposition 2.2.2 are that for many purposes it makes no difference
whether we work in (K/B)2 or in K2/B. The following corollary summaries a few particular
instantiations of this principle.

2.2.3. Corollary. Fix an ∞-cosmos K and an object B.
(i) A pair of isofibrations over B are equivalent as objects in (K/B)2 if and only if

they are equivalent in K2/B.
(ii) A functor over B is an equivalence in (K/B)2 if and only if it is an equivalence

in K2/B if and only if it is an equivalence in K.
(iii) A parallel pair of functors over B are isomorphic in (K/B)2 if and only if they

are isomorphic in K2/B.
(iv) An object p : E � B is groupoidal, in the sense that any 2-cell with codomain p is

invertible, in (K/B)2 if and only if it is groupoidal in K2/B.
(v) A functor over B admits a right or left adjoint in (K/B)2 if and only if it admits

the corresponding adjoint in K2/B.

Proof. The canonical identity-on-underlying-1-categories 2-functor (K/B)2 → K2/B pre-
serves equivalences, isomorphic 2-cells, and adjunctions. The “reflection” part of these
assertions follows in each case from the fact that (K/B)2 → K2/B is a smothering 2-
functor: smothering 2-functors reflect equivalence and equivalences and reflect and create
2-cell isomorphisms. A proof of the final assertion in (ii), that a functor over B defines an
equivalence in the slice 2-categories if and only if it defines an equivalence in K2, can be
found in Lemma I.3.4.10, and a proof of (v) can be found in Lemma I.4.5.2. �

2.2.4. Definition (fibred equivalence). In an ∞-cosmos K, we say that two isofibrations
with codomain B are equivalent over B if the equivalent conditions of Corollary 2.2.3(ii) are
satisfied. By Proposition IV.3.1.8 this is equivalent to asking that there is an equivalence
between them as objects in the sliced ∞-cosmos K/B.
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2.2.5. Definition (fibred adjunction). In [13], we reserved the term fibred adjunction for
an adjunction in the homotopy 2-category (K/B)2 of a sliced ∞-cosmos. However, on
account of Corollary 2.2.3(v) we also apply this appellation to adjunctions in K2/B, as the
unit and counit 2-cells in here can always be lifted to unit and counit 2-cells in (K/B)2.

2.2.6. Remark. In particular, a functor f : A → B induces a functor of sliced ∞-cosmoi
f ∗ : K/B → K/A that carries an isofibration over B to its (simplicial) pullback, an isofibra-
tion over A. The induced 2-functor f ∗ : (K/B)2 → (K/A)2, like any 2-functor, preserves
adjunctions. By contrast, there is no “pullback 2-functor” f ∗ : K2/B → K2/A. However,
on account of Corollary 2.2.3(v) we can say nonetheless assert that fibred adjunctions may
be pulled back along any functor. For a discussion of this point at the level of homotopy
2-categories, without reference to the simplicially enriched universal property of pullbacks,
see §IV.3.6.

2.3. Simplicial limits modeling comma ∞-categories. The homotopy 2-categories of
an∞-cosmos and of its slices are abstract homotopy 2-categories : that is, strict 2-categories
admitting comma objects and iso-comma objects of a particular weak variety. At the level
of the ∞-cosmos, these weak 2-limits are constructed as particular weighted limits, an up-
to-isomorphism limit notion. The constructions resemble familiar homotopy limits but the
term “weighted limit” is more precise: for instance, the difference between the construction
of the comma object and of the iso-comma object is the choice of a non-invertible or
invertible interval.

Our development of the theory of cartesian fibrations in [15] is entirely 2-categorical,
taking place in an abstract homotopy 2-category. Here, for simplicity, we frequently take
advantage of extra strictness provided by ∞-cosmos-level models of weak 2-limit con-
structions, which commute up to isomorphism (rather than simply isomorphic 2-cell) and
preserve the chosen class of isofibrations. In the present paper, we can do without iso-
commas entirely. As noted in §IV.3.5, iso-commas formed from a cospan in which at least
one leg is an isofibration are equivalent to the pullbacks of 2.1.1(a). As we won’t make
use of the weak 2-universal properties of these pullbacks (which are somewhat less well
behaved than the closely related iso-commas), we will typically refer to them as simplicial
pullbacks here, to avoid confusion with the terminology used in previous papers in this
series. Our aim here is to achieve an expository simplification: simplicial pullbacks, i.e.,
ordinary strict pullbacks satisfying a simplicially enriched version of the usual universal
property, are quite familiar.

2.3.1. Recall (comma ∞-categories). Given a pair of functors f : B → A and g : C → A
in an ∞-cosmos K, their comma object may be constructed by the following simplicial
pullback, formed in K:

f ↓ g //

(p1,p0)

����

∆1 t A

(p1,p0)

����

C ×B
g×f

// A× A

(2.3.2)
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The data of the simplicial pullback defines a canonical square

f ↓ g
p1

{{

p0

##φ⇐C

g ##

B

f{{
A

(2.3.3)

in the homotopy 2-category K2 with the property that for any object X, the induced
comparison functor of hom-categories

hom(X, f ↓ g) −→ hom(X, f) ↓ hom(X, g)

is smothering : surjective on objects, locally surjective on arrows, and conservative.
Explicitly, this weak universal property supplies us with three operations in the homo-

topy 2-category.
(i) (1-cell induction) Given a comma cone α : fb⇒ gc

X
c
~~

b
  

α⇐C

g   

B

f~~

A

=

X
a�� b

��

c



f ↓ g
p1

{{

p0

##φ⇐C

g ##

B

f{{
A

over the pair of functors f and g, there exists a 1-cell a : X → f ↓g so that p0a = b,
p1a = c, and α = φa.

(ii) (2-cell induction) Given a pair of functors a, a′ : X → f ↓ g and a pair of 2-
cells τ0 : p0a ⇒ p0a

′ and τ1 : p1a ⇒ p1a
′ which are compatible in the sense that

φa′ ·fτ0 = gτ1 ·φa, then there exists a 2-cell τ : a⇒ a′ with p0τ = τ0 and p1τ = τ1.
(iii) (conservativity) Any 2-cell τ : a ⇒ a′ : X → f ↓ g with the property that the

whiskered 2-cells p0τ and p1τ are both isomorphisms is also an isomorphism.

We refer to (2.3.3) as a comma square and C
p1←− f ↓ g p0−→ B as a comma span. Note

that, by construction, the map (p1, p0) : f ↓ g � C ×B is an isofibration.

2.3.4. Recall. As discussed in §3.5 of [13], a parallel pair of functors a, a′ : X → f ↓ g are
isomorphic over C × B if and only if a and a′ both enjoy the same defining properties
as 1-cells induced by the weak 2-universal property of f ↓ g, i.e., they satisfy p0a = p0a

′,
p1a = p1a

′, and φa = φa′. That is, 2-cells of the form displayed on the left

X
c
~~

b
  

α⇐C

g   

B

f~~

A

!

X

a

��

b
##

c

{{
C B

f ↓ g
p1

cccc

p0

;; ;;

stand in bijection with isomorphism classes of maps of spans, as displayed on the right.
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2.3.5. Recall (special cases of commas). When f or g is an identity, we write A↓ g or f ↓A,
respectively, for the comma object. In the case where both f and g are identities, we write
A2 for A ↓ A because this object is a weak 2-cotensor, in the sense introduced in §I.3.3.

Their weak universal properties in the homotopy 2-category only characterize these ob-
jects up to equivalence, but we frequently make use of the preferred construction of A2 as
the cotensor ∆1 t A. This allows us to make use of the fact that ∆1 t − : K → K is a
functor of ∞-cosmoi, preserving isofibrations and simplicial limits.

2.3.6. Lemma. Given a pair of cospans connected by equivalences

C ′
g′
//

c ∼
��

A′

a ∼

��

B′
f ′
oo

b∼

��

C g
// A B

f
oo

the induced functor f ′ ↓ g′ ∼−−→ f ↓ g between the comma constructions is an equivalence,
commuting, via the legs of the comma spans, with the equivalence c×b : C ′×B′ ∼−−→ C×B.

Proof. Lemma I.3.3.17 shows that if the maps a, b, and c are trivial fibrations, then so
is the functor f ′ ↓ g′ ∼−� f ↓ g induced between the pullbacks (2.3.2). The general result
follows from Ken Brown’s lemma. Lemma IV.2.1.6 shows that any map can be factored
as a fibration preceded by an equivalence that defines a section of a trivial fibration; of
course, if the original map is an equivalence, then the right factor is a trivial fibration.
This construction, making use of various simplicial limits, is functorial, and so induces a
corresponding factorization of the induced functor f ′ ↓ g′ → f ↓ g. Lemma I.3.3.17 implies
that the right factor in this factorization is a trivial fibration, and so, by the 2-of-3 property,
the composite functor is an equivalence. �

2.3.7. Lemma. Consider functors f : B → A, g : C → A, h : B′ → B, and k : C ′ → C in
an ∞-cosmos. Then the preferred simplicial models of comma ∞-categories are related by
the following simplicial pullbacks.

f ↓ gk
p1
����

// f ↓ g
p1
����

fh ↓ g
p0
����

// f ↓ h
p0
����

C ′
k
// C B′

h
// B

Proof. This follows easily from the standard composition and cancellation results for sim-
plicial pullback squares and rectangles. Compare with Lemma IV.3.4.12. �

It is easy to show that any isofibration (q, p) : E � C×B equipped with a 2-cell satisfying
the weak universal property of the comma ∞-category for the cospan C g−→ A

f←− B must
be equivalent over C×B to the object f ↓g constructed in (2.3.2); see Lemma I.3.3.5. The
following lemma proves the converse: that any ∞-category that is equivalent to a comma
∞-category via an equivalence that commutes with the legs of the comma span must enjoy
the same weak universal property in the homotopy 2-category.
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2.3.8. Lemma. Suppose (q, p) : E � C×B is an isofibration and C g−→ A
f←− B is a pair of

functors so that E is equivalent to f ↓ g over C×B. Then the composite of the equivalence
E → f ↓ g with the canonical comma 2-cell displays E as a weak comma object for the
functors f and g.

Proof. For any X, the canonical functor
hom(X,E)→ hom(X, f ↓ g)→ hom(X, f) ↓ hom(X, g)

is the composite of an equivalence with a smothering functor, and as such is immediately full
and conservative. It remains only to show that the composite, which is clearly essentially
surjective on objects, is in fact surjective on objects.

To this end, observe that any object in hom(X, f) ↓ hom(X, g) has a preimage in
hom(X, f ↓ g), which is isomorphic, via some isomorphism projecting to an identity in
hom(X,C × B) to an object in the image of hom(X,E) → hom(X, f ↓ g). This follows
from Corollary 2.2.3(ii) which tells us that any equivalence between the domains of isofi-
brations over a common base can be promoted to an equivalence in the slice 2-category
over that base, provided at least one of the maps is fibred. But any pair of objects in
hom(X, f ↓ g), which are isomorphic over an identity in hom(X,C × B), have the same
image in hom(X, f) ↓ hom(X, g). Thus hom(X,E)→ hom(X, f) ↓ hom(X, g) is surjective
on objects, as desired. �

2.3.9. Example. For any pair of finitely presented simplicial sets X and Y , Proposi-
tion I.2.4.11 supplies a map X � Y → X ? Y , under X

∐
Y , that is a weak equivalence

in the Joyal model structure. It follows that for any object A in an ∞-cosmos K, the
induced map (X ? Y ) t A→ (X � Y ) t A on cotensors is an equivalence of ∞-categories
over (X t A) × (Y t A). As observed in the proof of Lemma I.5.2.7, (X � ∆0) t A is
isomorphic to (X t A) ↓∆, where ∆: A → (X t A) is the constant diagram functor, as
both of these objects are defined by the same pullback in K. Using the common notation
X. := X ?∆0 and X/ := ∆0 ? X, Lemma 2.3.8 supplies comma squares

X. t A
π

yy

π
''

⇐

X/ t A
π
ww

π

%%
⇐A

∆ %%

X t A X t A A

∆yy

X t A X t A

under the spans defined by restricting to the diagrams on X or on the cone point.
In the case where the indexing simplicial set X is (the nerve of) a small category, these

comma squares arise from the cocomma squares

X

!
��

⇓

X

��

X
! //

⇓

1

��

1 // X. X // X/

upon application of the 2-functor (−) t A : Catop
2 → K2.
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2.3.10. Proposition. A functor F : K → L of ∞-cosmoi induces a 2-functor F2 : K2 → L2

between their homotopy 2-categories that preserves adjunctions, equivalences, isofibrations,
trivial fibrations, products, and comma objects.

Proof. Any 2-functor preserves adjunctions and equivalences. Preservation of isofibrations
and products are direct consequences of the hypotheses in Definition 2.1.8; recall that the
class of trivial fibrations in this intersection of the classes of isofibrations and equivalences.
Preservation of commas follows from the construction of (2.3.2), which is preserved by a
functor of∞-cosmoi, and the observation made before Lemma 2.3.8 that all comma objects
over the same cospan are equivalent. �

2.4. Cartesian fibrations and groupoidal cartesian fibrations. Cartesian fibrations
and groupoidal cartesian fibrations are defined in §IV.4 to be certain isofibrations in an
abstract homotopy 2-category. Here we consider only cartesian fibrations and groupoidal
cartesian fibrations in the homotopy 2-category K2 of an∞-cosmos, which we may as well
refer to as cartesian fibrations and groupoidal cartesian fibrations in K.

2.4.1. Definition (cartesian 2-cells). A 2-cell χ : e′ ⇒ e : A→ E in K2 is cartesian for an
isofibration p : E � B if and only if

(i) (induction) for any pair of 2-cells τ : e′′ ⇒ e and γ : pe′′ ⇒ pe′ with pτ = pχ·γ there
is some γ : e′′ ⇒ e′ with pγ = γ (γ̄ lies over γ) and the property that τ = χ · γ̄.

(ii) (conservativity) for any 2-cell γ : e′ ⇒ e′ if χ · γ = χ and pγ is an identity then γ
is an isomorphism.

All isomorphisms with codomain E are p-cartesian. The class of p-cartesian 2-cells is
stable under composition and left cancelation (Lemmas IV.5.1.8 and IV.5.1.9).

2.4.2. Definition (cartesian fibration). An isofibration p : E � B is a cartesian fibration
if and only if:

(i) Every 2-cell α : b⇒ pe has a p-cartesian lift χα : e′ ⇒ e:

⇑α

E

p

����

A

e

??

b
// B

=

E

p

����

A

e

66

e′

GG

⇑χα

b
// B

(2.4.3)

(ii) The class of p-cartesian 2-cells for p is closed under pre-composition by all 1-cells.

Any functor p : E → B induces functors between comma ∞-categories

E
i
��

B ↓ p
p1

}}}}

p0

!! !!

E p
// B

⇐φ

=

E
p
�� ��

E p
// B

=

E2

k
��

B ↓ p
p1

}}}}

p0

!! !!

E p
// B

⇐φ

=

E2
q1
����

pq0
�� ��

E p
// B

⇐pψ
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that are well-defined up to isomorphism over E × B. These functors are used to provide
an alternate characterization of cartesian fibrations:

IV.4.1.10. Theorem. For an isofibration p : E � B, the following are equivalent:
(i) p is a cartesian fibration.
(ii) The functor i : E → B ↓ p admits a right adjoint which is fibred over B.

B ↓ p

p0
$$ $$

r

33 E

p
{{{{

i
ss ⊥

B

(iii) The functor k : E2 → B ↓ p admits a right adjoint right inverse, i.e., with isomor-
phic counit.

B ↓ p
r̄

55 E2
k

uu ⊥

2.4.4. Definition (groupoidal cartesian fibrations). An isofibration p : E � B is a group-
oidal cartesian fibration if and only it is a cartesian fibration and it is groupoidal as an
object of the slice K2/B.

A groupoidal cartesian fibration is a cartesian fibration whose fibers are groupoidal ∞-
categories. As a consequence of Theorem 2.4.5(ii) below, if p : E � B is a groupoidal
cartesian fibration, then all 2-cells with codomain E are p-cartesian.

Propositions IV.4.2.5 and IV.4.2.7 combine to give the following alternate characteriza-
tions of groupoidal cartesian fibrations.

2.4.5. Theorem. For an isofibration p : E � B, the following are equivalent:
(i) p is a groupoidal cartesian fibration.
(ii) Every 2-cell α : b⇒ pe : X → B has an essentially unique lift χ : e′ ⇒ e : X → E,

where the uniqueness is up to an isomorphic 2-cell over an identity.
(iii) The functor k : E2 → B ↓ p is an equivalence.

Theorems IV.4.1.10 and 2.4.5 have an important corollary:

2.4.6. Corollary.
(i) Any isofibration that is equivalent to a (groupoidal) cartesian fibration is a (group-

oidal) cartesian fibration.
(ii) Cartesian fibrations and groupoidal cartesian fibrations are preserved by functors

of ∞-cosmoi.

Proof. For (i), it follows easily from Lemma 2.3.6 that the functors k : E2 → B ↓ p induced
from equivalent isofibrations p : E � B are equivalent. By the 2-of-3 property, the notion
of equivalence is equivalence invariant, and so Theorem 2.4.5(iii) proves this result in the
groupoidal case. For general cartesian fibrations, the existence of adjoints in a 2-category
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is invariant under equivalence, and so Theorem IV.5.1.4.(iii) implies that an isofibration
that is equivalent to a cartesian fibration is a cartesian fibration.

The claim in (ii) follows easily from a combination of Proposition 2.3.10 and Theo-
rem IV.4.1.10 or Theorem 2.4.5, as appropriate. �

Cartesian fibrations are stable under composition (Proposition IV.4.1.7) and groupoidal
cartesian fibrations are additionally stable under left cancelation (Lemma IV.4.2.6).

2.4.7. Definition. A commutative square

F
g
//

q
����

E

p
����

A
f
// B

between a pair of cartesian fibrations q : F � A and defines a cartesian functor if and
only if g preserves cartesian 2-cells: i.e., if whiskering with g carries q-cartesian 2-cells to
p-cartesian 2-cells.

2.4.8. Proposition (IV.5.2.1 and IV.5.2.2). Consider a simplicial pullback

F

q
����

g
// E

p
����

A
f
// B

in K. If p : E � B is a (groupoidal) cartesian fibration, then q : F � A is a (groupoidal)
cartesian fibration and the pullback square defines a cartesian functor.

Proof. The simplicial pullbacks in K are examples of the pullbacks in the homotopy 2-
category K2 of the sort considered in Proposition IV.5.2.1 and Corollary IV.5.2.2. �

2.4.9. Example. Example IV.4.1.16 shows that the domain-projection functor p0 : A2 � A
from an arrow ∞-category is a cartesian fibration. It follows from Proposition 2.4.8 that
the domain-projection p0 : f ↓A� B defines a cartesian fibration. Interpreting the theory
just developed in the dual 2-category Kco

2 , reversing the 2-cells but not the 1-cells, we see
also that the codomain projection functors p1 : E2 � E and p1 : A↓ g � C are cocartesian
fibrations. Indeed, in the next section we shall show that the projection p0 : f ↓ g � B
(resp. p1 : f ↓ g � C) from any comma is a cartesian (resp. cocartesian) fibration.

For any point b : 1→ B of B, Example IV.4.2.11 shows that p0 : B↓b� B is a groupoidal
cartesian fibration. Dually, p1 : b ↓B � B is a groupoidal cocartesian fibration.

The Yoneda lemma, Theorem IV.6.0.1, supplies an equivalence between the underlying
quasi-category mapB(b : 1 → B, p : E � B) of the fiber of a cartesian fibration p over a
point b, and the quasi-category of functors between the cartesian fibration represented by
b and p. In this paper, we’ll require only the special case where p is a groupoidal cartesian
fibration.
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IV.6.2.13. Corollary (Yoneda lemma). Given any groupoidal cartesian fibration p : E � B
and any point b : 1 → B, restriction along the terminal object t : 1 → B ↓ b induces an
equivalence of quasi-categories

mapB(p0 : B ↓ b� B, p : E � B) ' mapB(b : 1→ B, p : E � B).

3. Modules between ∞-categories

As the name suggests, a module from an ∞-category A to an ∞-category B is an ∞-
category E equipped with an isofibration E � A×B with groupoidal fibers that satisfies
conditions that can be informally summarized by saying that A acts on the left and B acts
on the right. The paradigmatic example is given by the arrow ∞-category construction
(p1, p0) : A2 � A × A, which defines a module from A to itself. We have shown that the
domain projection functor p0 : A2 � A is a cartesian fibration and that the codomain
projection functor p1 : A2 � A is a cocartesian; this is the sense in which A acts on the left
and on the right of A2. But really more is true: as observed in IV.4.1.17, p0-cartesian lifts
can be chosen to lie in the fibers of p1 and similarly that p1-cartesian lifts can be chosen
to live in the fibers of p0. The fact that (p1, p0) : A2 � A × A has groupoidal fibers, or
more precisely, is a groupoidal object in the slice ∞-cosmos over A× A, is a consequence
of conservativity of 2-cell induction.

3.1. Modules between ∞-categories. Fix an ambient ∞-cosmos K.

3.1.1. Definition. A module E from A to B is given by an isofibration (q, p) : E � A×B
to the product of A and B so that:

(i) (q, p) : E � A×B is a cartesian fibration in (K/A)2.
(ii) (q, p) : E � A×B is a cocartesian fibration in (K/B)2.
(iii) (q, p) : E � A×B is groupoidal as an object in K/A×B.

3.1.2. Remark. By Definition 2.1.12, condition (iii) asks that (q, p) : E → A×B is groupoidal
as an object of (K/A×B)2 or equivalently, by Corollary 2.2.3(iv), is groupoidal in K2/A×B.

Condition (i) asserts that the isofibration (q, p) : E � A× B is a cartesian fibration on
the right, while condition (ii) asserts that it is a cocartesian fibration on the left. Condition
(iii) implies that these sliced map define, respectively, a groupoidal cartesian fibration in
(K/A)2 and groupoidal cocartesian fibration in (K/B)2. However, the condition of being
groupoidal in both slices is weaker than being groupoidal in the slice over the product.

Our first task is to demonstrate that the motivating example, the arrow ∞-category
(p1, p0) : A2 � A× A, defines a module from A to A.

3.1.3. Lemma.

A2 (p1,p0)
//

p1     

A× A

π1
||||

A

is a groupoidal cartesian fibration in (K/A)2.
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Proof. Applying Theorem 2.4.5(iii), this is the case if and only if the induced functor
in (K/A)2 from the 2-cotensor of p1 : A2 � A to the comma object π1 ↓ (p1, p0) is an
equivalence. Applying the forgetful 2-functor (K/A)2 → K2, by Corollary 2.2.3(ii), it
suffices to show that the map between the domains defines an equivalence in K2. Of course,
the notion of equivalence is equivalence invariant, so we are free to use our preferred models
of the 2-cotensor and comma constructions, defined using simplicial pullbacks (2.3.2) in
K.

As recalled in 2.1.6, the 2-cotensor of p1 : ∆1 t A � A in (K/A)2 is defined to be the
left-hand map formed by the simplicial pullback

A′

����

// ∆1 t (∆1 t A)

∆1tp1
����

A
∆

// ∆1 t A

Up to equivalence over A, A′ � A is ev{2} : ∆2 t A� A.
Similarly, the 2-cotensor of π1 : A×A� A in (K/A)2 is defined to be the left-hand map

defined by the simplicial pullback:

A× (∆1 t A)

����

// ∆1 t (A× A)

∆1tπ1
����

A
∆

// ∆1 t A

Using this, the domain of the comma construction π1 ↓ (p1, p0) in (K/A)2 is defined by the
simplicial pullback

Λ2,1 t A

����

// A× (∆1 t A)

1×p1
����

∆1 t A
(p1,p0)

// A× A

and the projection ev{2} : Λ2,1 t A → A from the comma construction to A is again
evaluation at the vertex {2} in Λ2,1.

In this way, we see that, up to equivalence, the map considered by Theorem 2.4.5(iii) is
the map

∆2 t A ∼ // //

ev{2}
## ##

Λ2,1 t A

ev{2}
zzzz

A

Lemma 2.1.3(c) implies that this is a trivial fibration, which indeed is an equivalence. �

3.1.4. Proposition. The arrow ∞-category (p1, p0) : A2 � A × A defines a module from
A to A.
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Proof. Lemma 3.1.3 and its dual imply in particular that (p1, p0) : A2 � A×A is cartesian
on the left and cocartesian on the right. Conservativity of 2-cell induction implies that it
is groupoidal. �

More generally, given any functors f : B → A and g : C → A, the comma ∞-category
(p1, p0) : f ↓ g � C × B encodes a module from C to B. The proof makes use of a few
intermediate results, which are of interest in their own right.

3.1.5. Lemma. An isofibration (q, p) : E � A× B is cartesian on the right if and only if
any of the following equivalent conditions are satisfied:

(i) (q, p) : E � A×B is a cartesian fibration in (K/A)2.
(ii) The functor i : E → B ↓ p induced by idp admits a right adjoint in (K/A×B)2.
(iii) The functor i : E → B ↓ p induced by idp admits a right adjoint in K2/A×B.

Proof. Corollary 2.2.3(v) implies that conditions (ii) and (iii) are equivalent.
The equivalence with (i) is an application of Theorem IV.4.1.10.(i)⇔(ii) to the cartesian

fibration (q, p) : E � A×B in the slice 2-category (K/A)2. This tells us that (q, p) : E �
A × B is a cartesian fibration if and only if a certain functor admits a right adjoint in
(K/A)2/(π1 : A × B � A). There is a commutative square of forgetful 2-functors, all of
which are isomorphisms on underlying 1-categories:

(K/A×B)2
//

��

(K/A)2/(π1 : A×B � A)

��

K2/A×B
∼= // (K2/A)/(π1 : A×B � A)

The left-hand map is a smothering 2-functor and the bottom functor is an isomorphism. It
follows, then, from surjectivity on objects and 1-cells of the top functor that the right-hand
functor is a smothering 2-functor. Hence, it suffices by Lemma I.4.5.2 to demonstrate the
adjunction in K2/A×B.

So we have argued, using IV.4.1.10(i)⇔(ii), that (q, p) : E � A× B is cartesian on the
right if and only if a certain functor admits a right adjoint in K2/A× B. This proves the
equivalence of the stated conditions (i) and (iii) because the certain functor turns out to be
i : E → B ↓ p. The following computation, included for diligence sake, justifies this claim.

The 2-cotensor of π1 : A× B � A in (K/A)2 is computed by the simplicial pullback in
K:

A×B2

π1
����

// (A×B)2

π2
1����

A
∆

// A2
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Then the comma object π1 ↓ (q, p) in (K/A)2 is defined by the left-hand simplicial pullback
square in K, which we recognize as the pullback of the composite rectangle:

B ↓ p

����

// A×B2

A×p1
����

π0 // B2

p1
����

E
(q,p)

// A×B π0
// B

We leave it to the reader to verify that the induced map from q : E � A to qp1 : B↓p→ A
is i : E → B ↓ p. �

3.1.6. Proposition. Suppose (q, p) : E � A×B is cartesian on the right, and consider the
simplicial pullback (q′, p′) : E ′ � A′×B′ of (q, p) along a pair of maps a×b : A′×B′ → A×B.
Then (q′, p′) is again cartesian on the right. In particular, the pullback of a module is a
module.

Proof. We factor the simplicial pullback rectangle:

E ′

(q′,p′)
����

// Ē

(q,p′)
����

// E

(q,p)
����

A′ ×B′
a×1
// A×B′

1×b
// A×B

The right-hand square is also a simplicial pullback in K/A. Applying Proposition 2.4.8 in
K/A, (q, p′) : Ē � A × B′ is cartesian on the right. The general result now follows from
the special case where b = idB:

E ′

(q′,pe)
����

e // E

(q,p)
����

A′ ×B
a×1
// A×B

and accordingly, we simplify our notation by dropping the now-superfluous primes.
The composite rectangle

E ′

(q′,pe)
����

e // E

(q,p)
����

A′ ×B
a×1
//

π1
����

A×B
π1
����

A′ a
// A

 

E ′ ×B
q′×1
����

e×1
// E ×B

q×1
����

A′ ×B
a×1
// A×B
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defines a pullback in K, and thus, so does the right-hand square. Composing this with the
pullback square

B ↓ pe
(p1,p0)

����

// B ↓ p
(p1,p0)
����

E ′ ×B
e×1
// E ×B

we see that (qp1, p0) : B ↓ p� A×B pulls back along a× 1 to (q′p1, p0) : B ↓ pe� A′×B.
Thus, the map i : E → B↓p in K/A×B pulls back to the corresponding map i : E ′ → B↓pe
in K/A′×B. Applying Lemma 3.1.5 and Remark 2.2.6, the adjunction that demonstrates
that (q, p) is cartesian on the right also pulls back, proving that (q′, pe) is also cartesian on
the right, as required.

To conclude that the pullback of a module is a module, it remains only to observe that
the pullback of a groupoidal object is a groupoidal object. This follows directly from the
fact that simplicial pullbacks in K define weak pullbacks in the homotopy 2-category K2

satisfying the universal property described in Definition IV.3.5.4, which includes the usual
2-cell conservativity. �

Combining Propositions 3.1.4 and 3.1.6, we have:

3.1.7. Corollary. For any pair of functors f : B → A and g : C → A, the comma con-
struction f ↓ g � C ×B defines a module from C to B. �

3.1.8. Definition. Given a functor f : A → B, Corollary 3.1.7 implies that B ↓ f defines
a module from A to B and f ↓ B defines a module from B to A, which we refer to,
respectively, as the covariant and contravariant representable modules associated to the
functor f : A→ B.

3.1.9. Lemma. If (q, p) : E � A×B is cartesian on the right, then p is a cartesian fibration.
Moreover, a p-cartesian 2-cell λ : e′ ⇒ e : X → E must have qλ an isomorphism, and if
(q, p) is groupoidal cartesian on the right, the converse holds: if qλ is an isomorphism,
then λ is p-cartesian.

Proof. Lemma 3.1.5 tells us that i : E → B ↓p admits a right adjoint in the slice 2-category
K2/A×B. Composition with the projection πB : A×B � B induces a forgetful 2-functor
K2/A × B → K2/B. The image of this sliced adjunction tells us, via Theorem IV.4.1.10,
that p is a cartesian fibration in K2. Via Observation IV.4.1.14, any p-cartesian 2-cell is
isomorphic to one defined to be a whiskered composite of the counit ε of the adjunction
i a r. As this adjunction lifts to K2/A × B, these 2-cells project along q to an identity.
Thus, for any p-cartesian 2-cell λ, we must have qλ an isomorphism.

Finally, suppose that (q, p) : E � A × B is a groupoidal cartesian fibration in (K/A)2.
Consider a 2-cell λ : e′ ⇒ e : X → E has qλ an isomorphism. Lifting (qλ)−1 along the
isofibration q : E � A, we see that λ is isomorphic in K2 to a 2-cell λ′ with qλ an identity.
Now λ′ is a 2-cell in K2/A with codomain q : E � A. By local fullness of the smothering
2-functor (K/A)2 → K2/A, it can be lifted to a 2-cell of the same kind in (K/A)2. Since
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(q, p) is groupoidal, any 2-cell of this form is (q, p)-cartesian. So λ′ is also p-cartesian and
λ, which is isomorphic to a p-cartesian 2-cell, is itself p-cartesian. �

As the motivating example (p1, p0) : A2 � A× A shows, the legs of a module need not
be groupoidal fibrations when considered separately in K2.

3.1.10. Definition (horizontal composition of isofibrations over products). Consider a pair
of isofibrations (q, p) : E � A × B and (s, r) : F � B × C in an ∞-cosmos K. This data
defines a composable pair of spans of isofibrations. Their horizontal composite will define
a span of isofibrations from A to C whose summit is formed by the simplicial pullback

E ×B F
π1
����

π0
�� ��

E
q
����

p
�� ��

F
s
����

r
�� ��

A B C

Up to isomorphism, this span is constructed as the composite of the left-hand vertical in
the simplicial pullback

E ×B F
(qπ1,π0)

����

π1 // // E

(q,p)
����

A× F
A×s
// // A×B

with A× r : A×F � A×C. In particular, the projection map E ×B F � A×C is again
an isofibration.

3.1.11. Remark. In an abstract homotopy 2-category C with finite 2-products, isofibrations
(q, p) : E � A×B over a product correspond bijectively to two-sided isofibrations A

q
�−−

E
p
−−� B introduced in Definition IV.3.4.1. Indeed, the 2-category SpanC(A,B) of two-

sided isofibrations from A to B is isomorphic to the slice 2-category C/A×B of isofibrations
over the product.

At that level of generality, the horizontal composition of two-sided isofibrations is con-
structed via an iso-comma:

E
∼×B F

∼=

π1
����

π0
�� ��

E
q
����

p
�� ��

F
s
����

r
�� ��

A B C

Using Lemma IV.3.4.2 it is easy to see that the composite span is again a two-sided
isofibration, and hence defines an isofibration E ∼×B F � A × C. This construction, via
weak 2-limits, is well defined up to equivalence in C/A × C. In the case where C is the
homotopy 2-category of an ∞-cosmos, this construction is equivalent to the horizontal
composition operation defined via simplicial pullback in Definition 3.1.10.
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3.1.12. Lemma. If (q, p) : E � A × B and (s, r) : F � B × C are each cartesian on the
right then the horizontal composite E ×B F � A× C is again cartesian on the right.

Proof. We have the following simplicial pullback in K/A, created from the simplicial pull-
back in K:

E ×B F
(qπ1,π0)

����

π1 // // E

(q,p)
����

A× F
A×s
// // A×B

Proposition 2.4.8 demonstrates that (qπ1, π0) : E ×B F � A× F is cartesian on the right.
By Lemma 3.1.9, r : F � C is a cartesian fibration, and thus (!, r) : F � 1 × C is

cartesian on the right. Pulling back along ! × C : A × C → 1 × C, Proposition 3.1.6
provides a cartesian fibration A× r : A×F � A×C in (K/A)2. Proposition IV.4.1.7 now
implies that the composite (qπ1, rπ0) : E×B F � A×C is a cartesian fibration in (K/A)2,
as claimed. �

3.1.13. Example. It is not, however, generally the case that the pullback of a pair of
modules is again a module. Consider

Λ2,1 t A
π1 ����

π0�� ��

A2
p1
����

p0
�� ��

A2
p1
����

p0
�� ��

A A A

The composite projections A � Λ2,1 t A � A are induced by the inclusions of the
endpoints {0} and {2} into the horn Λ2,1. By Lemma I.2.3.10, a 2-cell into Λ2,1 t A is
an isomorphism if and only if it projects to an isomorphism when evaluated at all three
vertices of Λ2,1, and thus this span is not a groupoidal object of K/A× A.

3.2. Module maps. In this section we study maps between modules. For a pair of mod-
ules E and F from A to B, a module map from E to F will be an isomorphism class of
functors over A×B; Corollary 2.2.3(iii) implies that it will not matter whether this notion
is defined in the 2-category (K/A×B)2 or in K2/A×B. In §4, we will see that the module
maps define 2-cells in a 2-dimensional categorical structure to be introduced there.

3.2.1. Lemma. A commutative square

E

(q,p)
����

e // Ē

(q̄,p̄)
����

A×B
a×b
// Ā× B̄

(3.2.2)
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in which the vertical isofibrations define modules, induces a pair of cartesian functors

E
e //

q
����

Ē

q̄
����

E

p
����

e // Ē

p̄
����

A a
// Ā B

b
// B̄

Proof. By Lemma 3.1.9, any p-cartesian 2-cell is isomorphic to one that projects to an
identity upon applying q. By commutativity of the left-hand square, the image of such
a 2-cell under e likewise projects to an identity under q̄, whence it defines a p̄-cartesian
2-cell. �

3.2.3.Definition. For a fixed pair of objects A,B in an∞-cosmos K, we write ModK(A,B)
for the full quasi-categorically enriched subcategory of K/A×B whose objects are modules
(q, p) : E � A × B from A to B. The quasi-category of maps from (q, p) to a module
(s, r) : F � A×B is defined by the simplicial pullback

mapA×B((q, p), (r, s))

��

// map(E,F )

map(E,(r,s)∗)

��

∆0

(p,q)
// map(E,A×B)

which we abbreviate to mapA×B(E,F ) whenever possible.

As in previous similar situations, when considering mapping quasi-categories between
spans we frequently allow the domain object to be an arbitrary span from A to B that
is not necessarily a module and whose legs might not be isofibrations. In such situations
we continue to insist that codomain spans are modules. The Yoneda lemma provides the
following characterization of the quasi-category of maps from a representable module to a
generic module.

3.2.4. Proposition. Consider any functor f : A→ B and the induced map

A
t
��

B ↓ f
p1

}}}}

p0

!! !!

A
f

// B
⇐φ

=

A
f

��

A
f
// B

=

over A × B. Then for any module E from A to B, precomposition with t : A → B ↓ f
induces an equivalence of quasi-categories

mapA×B(B ↓ f, E) ' mapA×B(A,E).

Proof. We apply Corollary IV.6.2.13 to the groupoidal cartesian fibration (q, p) : E � A×B
and the point (1, f) : A → A × B in K/A. The module represented by (1, f) in K/A is
(p1, p0) : B ↓ f � A×B and the map t is induced, as usual, by the identity 2-cell in K. �
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We know, from Recollection 2.3.4 for example, that 2-cells of the following form

X
c
~~

b
  χ

⇐C

g   

B

f~~

A

in the homotopy 2-category K2 correspond bijectively to isomorphism classes of functors
X → f ↓ g over C × B. With this correspondence in mind, we will define a module map,
between a pair of modules from A to B, to be an isomorphism class of functors over A×B.
The module maps form the morphisms in a 1-category mod(A,B), defined as a quotient
of ModK(A,B). Its definition makes use of the product-preserving functor τ0 : qCat→ Set
that sends a quasi-category to the set of isomorphism classes of its objects that carries
an equivalence of quasi-categories to a bijection between sets of isomorphism classes of
objects.

3.2.5. Definition. In an ∞-cosmos K, define a 1-category mod(A,B) whose:
• objects are modules from A to B, and
• whose morphisms are module maps.

The hom-set between a pair of modules E and F from A to B is τ0 mapA×B(E,F ). On
account of the factorization

τ0 : qCat h−→ Cat τ0−→ Set,
the category mod(A,B) could also be regarded as a quotient of the full sub 2-category of
(K/A × B)2 spanned by the modules. Isomorphism classes of vertices in mapA×B(E,F )
coincide exactly with isomorphism classes of functors over A×B, in either (K/A×B)2 or
K2/A×B by Corollary 2.2.3(iii).

A module map from E to F will be denoted by E ⇒ F because these will be the
2-morphisms in a 2-dimensional categorical structure to be introduced in section 4.

Note that two modules E and F from A to B are equivalent as objects in K/A×B if and
only if they are isomorphic in mod(A,B). A special case of Proposition 3.2.4 allows us to
define fully-faithful embeddings hom(A,B)→ mod(A,B) and hom(A,B)op → mod(B,A)
whose images are the full subcategories spanned by the covariant and contravariant repre-
sentables, respectively.

3.2.6. Lemma. There is a fully-faithful embedding hom(A,B) → mod(A,B) defined on
objects by mapping a functor f : A → B to the covariant representable module B ↓ f . On
morphisms, this functor carries a 2-cell α : f ⇒ g : A→ B to the module map representing
the unique isomorphism class of functors B ↓ f → B ↓ g over A × B defined by 1-cell
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induction from the left-hand pasting diagram:

B ↓ f
p1

}}}}

p0

!! !!

A f //

g

⇓α :: B
⇐φ

=

B ↓ f

p1

����

p0

�� ��

��

B ↓ g
p1
}}}}

p0
!! !!

A g
// B

⇐φ

g ↓B
p1

}}}}

p0

!! !!
B Agoo

f

⇑αdd

⇐φ
=

g ↓B

p1

����

p0

�� ��

��

f ↓B
p1
}}}}

p0
!! !!

B A
f

oo

⇐φ

A dual construction defines a fully-faithful embedding hom(A,B)op → mod(B,A) that
carries f to the contravariant represented module f ↓ B and carries the 2-cell α to the
unique isomorphism class of functors g ↓B → f ↓B over B × A.

Proof. For any pair of functors f, g : A → B, Proposition 3.2.4 provides an equivalence of
quasi-categories

mapA×B(B ↓ f,B ↓ g) ' mapA×B((1, f), B ↓ g).

Passing to isomorphism classes of objects, the left-hand side is the set of module maps
B ↓ f ⇒ B ↓ g, i.e., the set of isomorphism classes of functors B ↓ f → B ↓ g over A× B.
The right-hand side is the set of 1-cells

A
f

""��

A B ↓ gp1
oooo

p0
// // B

up to a 2-cell isomorphism over A×B. By Recollection 2.3.4, this is isomorphic to the set
of 2-cells f ⇒ g : A→ B. �

We can extend our definition of module map to include maps between modules between
different pairs of objects, such as displayed in (3.2.2).

3.2.7. Definition. Given modules (q, p) : E � A×B and (q̄, p̄) : Ē � Ā× B̄ and a pair of
functors a : A→ Ā and b : B → B̄ a module map from E to Ē over a× b is an isomorphism
class of objects in the quasi-category defined by the simplicial pullback

mapĀ×B̄((aq, bp), (q̄, p̄))

��

// map(E, Ē)

map(E,(q̄,p̄)∗)
��

∆0

(ap,bq)
// map(E, Ā× B̄)

which we abbreviate to mapa×b(E, Ē).

The following lemma shows that this new definition amounts to no substantial general-
ization.
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3.2.8. Lemma. Given modules (q, p) : E � A × B and (q̄, p̄) : Ē � Ā × B̄ and a pair of
functors a : A→ Ā and b : B → B̄, there is an equivalence of quasi-categories

mapA×B(E, Ē(b, a))
' // mapa×b(E, Ē),

where Ē(b, a) is the module defined by the simplicial pullback

Ē(b, a)

����

// Ē

(q̄,p̄)
����

A×B
a×b
// Ā× B̄

(3.2.9)

In particular, there is a bijection between module maps E ⇒ Ē(b, a) and module maps from
E to Ē over a× b.

Proof. The simplicial pullback defining mapa×b(E, Ē) factors as follows

mapa×b(E, Ē)

��

// map(E, Ē(b, a))

��

// map(E, Ē)

map(E,(q̄,p̄)∗)
��

∆0

(p,q)
// map(E,A×B)

a×b
// map(E, Ā× B̄)

where the right-hand pullback is the image of (3.2.9) under the functor map(E,−) : K →
qCat. The left-hand pullback, which defines mapA×B(E, Ē(b, a)), demonstrates that this
hom-quasi-category is isomorphic to mapa×b(E, Ē). �

3.3. Equivalence of modules. The following lemma defines a suitable notion of equiva-
lence between modules.

3.3.1. Lemma. Given a pair of modules (q, p) : E � A × B and (s, r) : F � A × B the
following are equivalent:

(i) There exists a functor f : E → F over A×B that is an equivalence in K.
(ii) The isofibrations E and F are equivalent as objects in (K/A×B)2 or of K2/A×B.
(iii) The modules E and F are isomorphic as objects in mod(A,B).

Proof. Corollary 2.2.3(ii) establishes the equivalence (i)⇔(ii). The implication (ii)⇒(iii)
follows by applying τ0 : Cat → Set to the hom-categories, which carries an equivalence in
the sub 2-category of (K/A × B)2 spanned by the modules to an isomorphism in the 1-
category mod(A,B). Conversely, the data of an isomorphism and its inverse in mod(A,B)
provides an equivalence in (K/A×B)2, proving that (iii)⇒(ii). �

The following result provides a criterion for recognizing when a module E � A × B is
covariantly represented, that is to say when it is equivalent to the representable module
B↓f associated with some functor f : A→ B. By Lemma I.4.1.6, the codomain-projection
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functor p1 : B ↓ f → A associated to a covariant representable admits a right adjoint right
inverse t induced by the identity 2-cell associated to f .

A
f

  

A
f
// B

= =

A
t�� f

��

B ↓ f
p1
{{

p0
##

A
f

// B
⇐β

so that the composite p1t equals f . We now show that this property characterizes the
representable modules.

3.3.2. Lemma. Suppose (q, p) : E � A×B defines a module from A to B and that q admits
a right adjoint right inverse t : A→ E. Then E is equivalent to B ↓ pt over A×B.

Proof. The unit η of the adjunction q a t induces a 1-cell r : E → B ↓ pt
E

p

��

q

��

E
r
�� p

��

q

		
⇐η

= B ↓ pt
p1
{{

p0
##

A
t
// E p

// B A
pt

// B
⇐β

(3.3.3)

Define e : B ↓ pt→ E to be the domain component of the cartesian lift of the morphism

B ↓ pt p1 //

p0
++

⇑β

A
r // E

p

��

B

=

B ↓ pt p1 //

e

⇑χ
99A

r // E

p

��

B

(3.3.4)

chosen so that qχ = idp1 ; Lemma 3.1.9 tells us this is possible. In particular, e and r are
both maps over A×B.

Restricting (3.3.4) along r, we see that χr : er ⇒ rq is a p-cartesian lift of βr = pη.
Since q a t is a right-adjoint-right-inverse, qη = idq, and Lemma 3.1.9 implies that η is also
a p-cartesian lift of pη. Observation IV.4.1.3 then implies that er ∼= idE over A×B.

To show that re ∼= idB↓pt, Lemma 3.1.9 implies that rχ is a p0-cartesian lift of β : p0 ⇒
p0rtp1. From the defining equation (3.3.3) and I.4.1.6, we see that rt defines a right adjoint
right inverse to p1 : B ↓ pt→ A. The unit of p1 a rt, as constructed in the proof of I.4.1.6,
defines a lift of β along p0, projecting along p1 to an identity. Lemma 3.1.9 tells us this
unit is p0-cartesian, and, as before, Observation IV.4.1.3 provides the desired isomorphism
re ∼= idB↓pt over A×B. This demonstrates that E is equivalent to B ↓ pt over A×B. �

On combining this with the following result for quasi-categories, which is a corollary of
Lemma I.4.4.12, we obtain a familiar “pointwise” recognition principle for representable
modules between quasi-categories:
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3.3.5. Lemma. A cocartesian fibration q : E � A of quasi-categories admits a right adjoint
right inverse t : A → E if and only if for each object a ∈ A the fibre Ea over that object
has a terminal object.

Proof. To prove necessity, consider the following commutative diagram:

∆0

{n}
//

ta
**

∂∆n
� _

��

// Ea

q
����

� � // E

q
����

∆n //

66
<<

1 a
// A

Under our assumption that q has a right adjoint right inverse t we may apply the lifting
condition depicted in equation I.4.4.13 of Lemma I.4.4.12 to show that the outer composite
square has a lifting (the dotted arrow) and then apply the pullback property of the right
hand square to obtain a lifting for the left hand square (the dashed arrow). This lifting
property of the left hand square shows that ta is a terminal object in Ea.

To establish sufficiency, we start by taking the object ta ∈ E to be the terminal object
in the fibre Ea for each object a ∈ A. Now by Lemma I.4.4.12 our desired result follows if
we can show that each lifiting problem

∆0

{n}
//

ta

))
∂∆n
� _

��

y
// E

q
����

∆n
x
// A

(3.3.6)

has a solution. Consider the order preserving function k : [n]×[1]→ [n] defined by k(i, 0) :=
i and k(i, 1) := n. Taking nerves, this gives rise to a simplicial map k : ∆n×∆1 → ∆n and
it is easy to check that this restricts to a simplicial map k : ∂∆n×∆1 → ∆n which we may
compose with x : ∆n → A to give (a representative of) a 2-cell

∂∆n

!
��

y
// E

q
����

1 a
// A

⇓κ

with the property that κ{n} is the identity 2-cell on a. Now we may take a cocartesian
lift χ : y ⇒ u of κ and by construction the image of u : ∂∆n → E is contained entirely in
the fibre Ea ⊆ E. What is more, we know that χ{n} is an isomorphism since we have, by
pre-composition stability of cocartesian 2-cells, that it is a cocartesian lift of the identity
2-cell on a. Consequently, we see that u{n} is a terminal object of Ea, since it is isomorphic
to ta, and it follows that we may apply its universal property to extend u : ∂∆n → Ea to
a simplex v : ∆n → Ea.
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Wemay combine (a representative of) the 2-cell χ with v to assemble the upper horizontal
map in the following commutative square:

∂∆n ×∆1 ∪∆n ×∆{1} //
� _

��

E

q
����

∆n ×∆1 //

`

66

A

Now we can construct a solution for this lifting problem by successively picking fillers for
each of the non-degenerate (n + 1)-simplices in ∆n × ∆1. These are guaranteed to exist
the for the first n − 1 of those because q is an isofibrations and they entail the filling of
an inner horn. To obtain a filler for the last one we need to fill an outer horn, but observe
that its final edge maps to an isomorphism of E, since it is the image of χ{n}, and so it
too has a filler. Finally on restricting the resulting map ` : ∆n×∆1 → E to the initial end
of the cylinder that is its domain, we obtain an n-simplex ∆n → E which is easily seen to
be a solution to the original lifting problem in (3.3.6) as required. �

3.3.7. Corollary. Suppose that (q, p) : E � A × B defines a module of quasi-categories
from A to B. Then E is covariantly represented if and only if for all objects a ∈ A the
module E(idB, a) from 1 to B is covariantly represented by some object b ∈ B.

Proof. Applying Lemma 3.3.2 and Lemma 3.3.5, we find that the module (q, p) : E � A×B
is covariantly represented if and only if each fibre of q : E � A has a terminal object. For
each object a ∈ A the module E(idB, a) is given by pullback along a× idB : 1×B → A×B,
and hence it is isomorphic to the module

Ea
!

||||

p

## ##
1 B

where Ea is the fibre of q : E � A at a. Applying Lemma 3.3.2, it follows that E(idB, a) is
covariantly represented if and only if the map ! : Ea � 1 has a right adjoint right inverse
which is equivalent to asking that Ea has a terminal object. �

We have long been acquainted with a particular instance of equivalence between modules.
As the following example recalls, a pair of functors in the homotopy 2-category are adjoints
if and only if the contravariant module represented by the left adjoint is equivalent to the
covariant module represented by the right adjoint.

3.3.8. Example. The arguments of §I.5 generalise, word for word, to any ∞-cosmos K to
demonstrate that a pair of functors u : A → B and f : B → A comprise an adjoint pair
f a u if and only if the comma objects f ↓ A and B ↓ u are equivalent as objects over
A× B. This latter condition means that there exists some equivalence w : f ↓ A→ B ↓ u
which makes the following triangle

f ↓ A
(p1,p0) && &&

w

'
// B ↓ u
(q1,q0)xxxx

A×B



KAN EXTENSIONS AND THE CALCULUS OF MODULES FOR ∞-CATEGORIES 33

commute. More precisely, isomorphism classes of such equivalences w in the 2-categorical
slice K2/A × B stand in bijective correspondence with choices of unit and counit for an
adjunction f a u.

Using the language established above, we might equivalently observe that a functor
f : B → A admits a right adjoint if and only if the contravariant representable module
f ↓ A is also covariantly represented by some functor u : A→ B.

Restricting to the case of quasi-categories, we may apply Lemma 3.3.5 to show that a
functor f : B → A of quasi-categories admits a right adjoint if and only if for all objects
a ∈ A the comma f ↓ a has a terminal object. On exploiting the equivalence between the
comma f ↓a and the slice f/a, we recover the pointwise criterion for the existence of a right
adjoint that is the converse to Proposition I.4.4.8 implicit in Theorem I.6.1.4.

4. The virtual equipment of modules

A double category is a sort of 2-dimensional category with objects; two varieties of 1-
morphisms, the “horizontal” and the “vertical”; and 2-dimensional cells fitting into “squares”
whose boundaries consist of horizontal and vertical 1-morphisms with compatible domains
and codomains. A motivating example from abstract algebra is the double category of mod-
ules: objects are rings, vertical morphisms are ring homomorphisms, horizontal morphisms
are bimodules, and whose squares are bimodule homomorphisms. In the literature, this
sort of structure is sometimes called a pseudo double category — morphisms and squares
compose strictly in the “vertical” direction but only up to isomorphism in the “horizontal”
direction — but we’ll refer to this simply as a “double category” here as it is the only
variety that we will consider.

Our aim in this section is to describe a similar structure whose objects and vertical
morphisms are the∞-categories and functors in an∞-cosmos, whose horizontal morphisms
are modules, and whose squares are module maps, as defined in 3.2.7. The challenge is
that composition of modules is a complicated operation, making use of certain colimits
that are not within the purview of the axioms of an ∞-cosmos.

Rather than leave the comfort of our axiomatic framework in pursuit of a double category
of modules, we instead describe the structure that naturally arises within the axiomatiza-
tion: it turns out to be familiar to category theorists and robust enough for our desired
applications, which will be the subject of the next section. We first demonstrate that ∞-
categories, functors, modules, and module maps assemble into a virtual double category, a
weaker structure than a double category in which cells are permitted to have a multi hor-
izontal source, as a replacement for horizontal composition of modules. We then observe
that certain cells in this virtual double category satisfy strict universal properties, defining
what Cruttwell and Shulman call a virtual equipment [2]. This universal property encodes
numerous bijections between module maps, which we exploit in the next section to develop
the theory of pointwise Kan extensions for ∞-categories.

4.1. The virtual double category of modules.
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4.1.1. Definition (the double category of isofibrations). The homotopy 2-category K2 of
an ∞-cosmos supports a double category of spans SpanK whose:
• objects are ∞-categories
• vertical arrows are functors
• horizontal arrows E : A p→ B are isofibrations (q, p) : E � A × B together with the
identity span from A to A
• 2-cells, with boundary as displayed below

A

f
��

E
| // B

g
��

⇓

C
F
| // D

are isomorphism classes of maps of spans, i.e., a 2-cell from A
q
�−− E

p
−−� B to

C
s
�−− F

r
−−� D over f and g is an isomorphism class of objects in the category

defined by the pullback diagram

homf,g(E,F ) //

��

hom(E,F )

(s∗,r∗)
��

1
(fq,gp)

// hom(E,C)× hom(E,D)

Horizontal composition of two-sided isofibrations are given by forming the simplicial pull-
back

E ×B F
π1
����

π0
�� ��

E
q
����

p
�� ��

F
s
����

r
�� ��

A B C

as described in Definition 3.1.10. As explained there, this construction indeed defines an
isofibration E ×B F � A × C. Simplicial functoriality of the pullbacks in K implies that
horizontal composition of morphisms and 2-cells is associative and unital up to isomor-
phism.

Lemma 3.1.12 reveals that there is a sub double category defined by restricting the
horizontal morphisms only to those isofibrations that are both cocartesian on the left and
cartesian on the right. Our real interest is in the substructure defined by restricting to
those spans that are modules, i.e., groupoidal in addition to being cartesian on the right
and cocartesian on the left. Example 3.1.13 illustrates that modules do not form a sub
double category of the double category of spans in K2. However, they do form a virtual
double category, a concept introduced by Leinster [6, 7, 8] under the name fc-multicategory
and renamed by Cruttwell and Shulman[2, 2.1].

4.1.2. Definition (virtual double category). A virtual double category consists of
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• a category of objects and vertical arrows
• for any pair of objects A,B, a class of horizontal arrows A p→B
• cells, with boundary depicted as follows

A0

f
��

|
E1 // A1 |

E2 //

⇓

· · · |
En // An

g

��

B0 |
F

// Bn

(4.1.3)

including those whose horizontal source has length zero, in the case A0 = An.
• a composite cell, for any configuration

A0

f0
��

|
E11,...,E1n1//

⇓

A1 |
E21,...,E2n2//

f1
��

⇓

· · · |
En1,...,Ennn//

··· ⇓

An

fn
��

B0

g

��

|
F1 // B1 |

F2 //

⇓

· · · |
Fn // Bn

h
��

C0 |
G

// Cn

• an identity cell for every horizontal arrow

A |
E // B

⇓idE

A |
E
// B

so that composition of cells is associative and unital in the usual multi-categorical sense.

4.1.4. Proposition. The ∞-categories, functors, modules, and module maps in the homo-
topy 2-category of an ∞-cosmos K form a virtual double category ModK.

Proof. Cells with boundary as in (4.1.3) are the isomorphism classes of objects in the hom
quasi-category

mapf,g(E1 ×A1 · · · ×An−1 En, F ) //

��

map(E1 ×A1 · · · ×An−1 En, F )

��

∆0 // map(E1 ×A1 · · · ×An−1 En, B0 ×B1)

In other words, cells in ModK are special cases of cells in the double category of spans SpanK
that are cocartesian on the left and cartesian on the right, as described in Definition 4.1.1.
The composition and identity operations that make ModK into a virtual double category
are inherited from the larger double category SpanK. �

4.1.5. Definition (composable modules). We refer to a finite sequence of modules
E1 : A0 p→ A1, E2 : A1 p→ A2, . . . , · · ·En : An−1 p→ An,
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in ModK as a composable sequence of modules ; this just means that their horizontal sources
and targets are compatible in the evident way. The horizontal composition operation
described in Definition 3.1.10 yields an isofibration

E1 ×
A1

· · · ×
An−1

En � A0 × An,

defined uniquely up to equivalence over A0×An, that is cartesian on the left and cartesian
on the right. This isofibration is unlikely to define a groupoidal object of K2/A0 × An
and hence does not define a module. When referring to the horizontal domains of cells in
ModK, we frequently drop the subscripts and write simply E1× · · ·×En for the composite
isofibration. A cell with this domain is an n-ary cell. Note that the cells in ModK with unary
source are precisely the module maps over a pair of functors introduced in Definition 3.2.7.

4.1.6. Observation. Recollection 2.3.4, which expresses 1-cell induction as a bijection be-
tween isomorphism classes of maps of spans whose codomain is a comma span and certain
2-cells in the homotopy 2-category, provides an alternate characterization of cells in the
virtual double category of modules whose codomain is a comma module. Explicitly, for
any cospan B0

k−→ C
h←− Bn, there is a bijection

A0

f
��

|
E1 // A1 |

E2 //

⇓

· · · |
En // An

g

��

B0 |
h↓k

// Bn

!

E1 ×A1 · · · ×An−1 En

{{ ##

⇐
A0

f
��

An
g
��

B0

k ##

Bn

h{{
C

between cells in ModK whose codomain is the comma module h↓k : B0 p→Bn and 2-cells in
the homotopy 2-category K2 under the pullback of the spans encoding the domain modules
and over the cospan defining the comma module h ↓ k.

4.2. The virtual equipment of modules. Proposition 3.1.6 tells us that modules in an
∞-cosmos can be pulled back. Given E : A p→ B and functors a : A′ → A and b : B′ → B,
we write E(b, a) : A′ p→B′ for the pullback module

E(b, a)

(q′,p′)
����

ρ
// E

(q,p)
����

A′ ×B′
a×b
// A×B

(4.2.1)

The horizontal functor ρ defines a cell in the virtual double category of modules with a
universal property that we now describe.
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4.2.2. Proposition. In ModK, the cell

A′

a
��

|
E(b,a)
//

⇓ρ

B′

b
��

A |
E
// B

defined by pulling back a module E : A p→ B along functors a : A′ → A and b : B′ → B has
the property that any cell as displayed on the left

X0

af
��

|
E1 // X1 |

E2 //

⇓

· · · |
En // Xn

bg
��

A
E
| // B

=

X0

f
��

|
E1 // X1 |

E2 //

⇓∃!

· · · |
En // Xn

g
��

A′

a
��

E(b,a)
| //

⇓ρ

B′

b
��

A
E
| // B

(4.2.3)

factors uniquely as displayed on the right.

Proposition 4.2.2 asserts that ρ is a cartesian cell in ModK.

Proof. As in Lemma 3.2.8, the simplicial pullback (4.2.1), induces an equivalence of hom
quasi-categories

mapaf,bg(E1 × · · · × En, E) ' mapf,g(E1 × · · · × En, E(b, a)). �

Each module A2 : A p→A defined by the arrow construction comes with a canonical cell
with nullary source. Under the identification of Observation 4.1.6, this cell corresponds via
1-cell induction to the isomorphism class of maps of spans representing the identity 2-cell
at the identity 1-cell of the object A.

A

⇓ι

A

A
A2
| // A

!

A

idA

��

idA

��

=

A

=

A

j

��

A2

q0

����

q1

�� ��

⇐ψ

A

This cell also has a universal property in the virtual double category of modules.
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4.2.4. Proposition. Any cell in the virtual double category of modules whose horizontal
source includes the object A, as displayed on the left

X

f
��

|
E1 // · · · |En // A

⇓

|
F1 // · · · |Fm // Y

g
��

B |
G

// C

=

X |
E1 //

⇓idE1

· · ·
···

|
En //

⇓idEn

A

⇓ι

A

⇓idF1

|
F1 // · · ·

···

|
Fm //

⇓idFm

Y

X

f
��

|
E1 // · · · |

En // A |
A2
//

⇓∃!

A |
F1 // · · · |

Fm // Y

g
��

B |
G

// C

factors uniquely through ι as displayed on the right.

Proposition 4.2.4 asserts that ι is a cocartesian cell in ModK.

Proof. In the case where both of the sequences Ei and Fj are empty, the Yoneda lemma, in
the form of Proposition 3.2.4, and Lemma 3.2.8 supply an equivalence of quasi-categories

mapf,g(A
2, G) ' mapA×A(A2, G(g, f))

j∗

'
// mapA×A(A,G(g, f)) ' mapf,g(A,G).

This equivalence descends to a bijection between isomorphism classes of objects, i.e., to a
bijection between cells

A

f
��

|
A2
//

⇓

A

g
��

B |
G
// C

∼=7→

A

f
��

⇓

A

g
��

B |
G
// C

implemented by restricting along the cocartesian cell ι.
In general, write (q, p) : E � X × A and (s, r) : F � A × Y for the composite spans

E1 × · · · × En and F1 × · · · × Fm, which we take to be the identity span A ← A → A if
the sequence of modules is empty. In the remaining cases, at least one of the sequences Ei
and Fj is non-empty, so we may assume without loss of generality, by Lemma 3.1.12, that
(q, p) : E � X × A is cartesian on the left and on the right. By Lemma 3.1.5, the functor
i : E → A ↓ p, which is isomorphic to the pullback E ×A j, admits a right adjoint t over
X ×A. This adjunction may be pulled back along X × s and pushed forward along X × r
to define an adjunction

A ↓ p×A F ∼= E ×A A2 ×A F
t×AF

22⊥ E ×A F
E×Aj×AF

rr

over X × Y . The module G(g, f) : X p→ Y is a groupoidal object in the slice 2-category
K2/X × Y . Therefore, the functor

mapX×Y (−, G(g, f)) : (K2/X × Y )op → qCat2



KAN EXTENSIONS AND THE CALCULUS OF MODULES FOR ∞-CATEGORIES 39

carries the fibered unit and counit 2-cells to isomorphisms. In particular, the induced map

(E ×
A
j ×
A
F )∗ : mapX×Y (E ×

A
A2 ×

A
F,G(g, f))→ mapX×Y (E ×

A
F,G(g, f))

defines an (adjoint) equivalence of quasi-categories. Passing to isomorphism classes of
objects, we obtain the claimed bijection between cells in ModK. �

Propositions 4.2.2 and 4.2.4 imply that the virtual double category of modules is a virtual
equipment in the sense introduced by Cruttwell and Shulman.

4.2.5. Definition ([2, §7]). A virtual equipment is a virtual double category such that
(1) For any module E : A � B and pair of functors a : A′ → A and b : B′ → B, there

exists a module E(b, a) : A′ p→ B′ together with a cartesian cell ρ satisfying the
universal property of Proposition 4.2.2.

(2) Every object A admits a unit module A2 : A p→A equipped with a nullary cocartesian
cell ι satisfying the universal property of Proposition 4.2.4.

4.2.6. Theorem. The virtual double category ModK of modules in an ∞-cosmos K is a
virtual equipment. �

The virtual equipment of modules in K has a lot of pleasant properties, which follow
formally from the axiomatization of Definition 4.2.5 [2, §7]. These include Lemma 4.3.9,
Lemma 4.3.13, Theorem 4.4.2, Corollary 4.4.3, Lemma 4.4.5, Corollary 4.4.7, and Lemma
4.4.11 below.

However, given the fact that the virtual equipment of modules in an∞-cosmos is the only
example that concerns us here, we find it more illuminating to give direct proofs of these
results, which make use of the particular structure of ModK, such as Observation 4.1.6. Our
efforts to this end in the remainder of this section aim to better acquaint the reader with
the calculus of models between ∞-categories, as encapsulated by the virtual equipment of
Theorem 4.2.6.

4.3. Composition and units.

4.3.1. Notation. To unclutter displayed diagrams, we adopt the convention that an un-
labeled unary cell in a virtual equipment whose vertical arrows are identities and whose
horizontal source and target agree is an identity cell.

Cells whose vertical boundary functors are identities, and hence whose source and target
spans lie between the same pair of∞-categories, may be displayed inline using the notation
µ : E1 × · · · × En ⇒ E. In the unary case, i.e., for ordinary module maps, this notation
was already introduced in Definition 3.2.5. Whenever we write a cell in this form, our use
of this notation implicitly asserts that:
• the modules E1, . . . , En define a composable sequence, in the sense of Definition 4.1.5,
• the source spans E1×· · ·×En and target module E lie between the same pair of objects,
A0 and An,
• µ is a cell from E1, . . . , En to E over the identities, i.e., µ is an isomorphism class of
objects in mapA0×An(E1 × · · · × En, E).
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4.3.2. Definition (composition of modules). A composable sequence of modules
E1 : A0 p→ A1, E2 : A1 p→ A2, . . . , · · ·En : An−1 p→ An, (4.3.3)

admits a composite if there exists a module E : A0 p→ An and a cell

A0 |
E1 // A1 |

E2 //

⇓µ

· · · |
En // An

A0 |
E

// An

(4.3.4)

that is an cocartesian cell in the virtual double category of modules: any cell of the form

X

f
��

|
F1 // · · · |Fk // A0 |

E1 // · · ·
⇓

|
En // An |

G1 // · · · |Gm // Y
g

��

B |
H

// C

factors uniquely along the cell µ together with the identity cells for the modules Fi and Gj

X |
F1 // · · ·

···

|
Fk // A0 |

E1 // · · · |En //

⇓µ

An |
G1 // · · ·

···

|
Gm // Y

X

f
��

|
F1 // · · · |

Fk // A |
E //

∃!⇓

B |
G1 // · · · |Gm // Y

g
��

B |
H

// C

Thus, a composite µ : E1 × · · · ×En ⇒ E can be used to reduce the domain of a cell by
replacing any occurrence of a sequence E1×· · ·×En from A0 to An with the single module
E. Particularly in the case of binary composites, we write E1⊗E2 to denote the composite
of E1 and E2, a module equipped with a binary cocartesian cell E1 × E2 ⇒ E1 ⊗ E2.

4.3.5. Observation (nullary and unary composites). Proposition 4.2.4 asserts that arrow∞-
categories act as nullary composites in ModK. It’s easy to see that a unary cell µ : E ⇒ F
between modules is a composite if and only if it is an isomorphism in the vertical 2-category
of ModK, i.e., if and only if the modules E and F are equivalent as spans.

4.3.6. Observation (associativity of composition). Suppose the cells µi : Ei1 × · · · ×Eini ⇒
Ei, for i = 1, . . . , n, exhibit each Ei as a composite of the corresponding Eij, and suppose
further that the Ei define a composable sequence of modules (4.3.3). If µ : E1×· · ·×En ⇒ E
exhibits E as a composite of the Ei, then

E11 × · · · × Ennn
µ1×···×µn +3 E1 × · · · × En

µ +3 E

exhibits E as a composite of E11×· · ·×Ennn . The required bijection factors as a composite
of n+ 1-bijections induced by the maps µ1, . . . , µn, µ.
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4.3.7. Observation (left cancelation of composites). Suppose the cells µi : Ei1×· · ·×Eini ⇒
Ei, for i = 1, . . . , n, exhibit each Ei as a composite of the corresponding Eij, and suppose
further that the Ei define a composable sequence of modules (4.3.3). If µ : E1×· · ·×En ⇒ E
is any cell so that

E11 × · · · × Ennn
µ1×···×µn +3 E1 × · · · × En

µ +3 E

exhibits E as a composite of E11× · · · ×Ennn , then µ : E1× · · · ×En ⇒ E exhibits E as a
composite of E1 × · · · × En. The required bijection composes with the bijections supplied
by the maps µ1, . . . , µn to a bijection, and is thus itself a bijection by the 2-of-3 property
for isomorphisms.

4.3.8. Observation. On account of the universal property described by Proposition 4.2.2 of
the cells encoding pullback modules, to prove that a cell (4.3.4) is a composite, it suffices
to consider cells whose vertical 1-morphisms are all identities.

To prove that a cell (4.3.4) is a composite in ModK, we frequently exhibit a stronger
universal property. Writing F � B × A0 and G � An × C for the pullbacks of finite
composable sequences F1, . . . , Fk and G1, . . . , Gm of modules, it (more than) suffices to
show that restriction along µ induces an equivalence of quasi-categories

mapB×C(F ×
A0

E ×
An
G,H)

mapB×C(F×A0
µ×AnG,H)

−−−−−−−−−−−−−−−→ mapB×C(F ×
A0

E1 × · · · × En ×
An
G,H)

for every module H : B p→C. This equivalence of hom quasi-categories induces a bijection
between sets of cells whose vertical boundaries are comprised of identities. This strategy
was employed in the proof of Proposition 4.2.4.

4.3.9. Lemma (composites with units). Given any module E : A p→ B, the unique cell
◦ : A2×E×B2 ⇒ E defined using the universal properties of the cocartesian cells associated
to the unit modules

A

⇓ι

A |
E // B

⇓ι

B

A |
A2
// A |

E //

⇓◦

B |
B2
// B

A |
E

// B

:=

A |
E // B

A |
E
// B

(4.3.10)

displays E as a composite of E with the units A2 and B2 at its domain and codomain
objects.

Proof. The result is immediate from Proposition 4.2.4 and Observation 4.3.7. �

4.3.11. Observation. In the case of a comma module h ↓ k : A p→ B associated to a cospan
A

k−→ C
h←− B, the cell ◦ : A2 × h ↓ k × B2 ⇒ h ↓ k in ModK defined by Lemma 4.3.9
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corresponds, under the identification of Observation 4.1.6, to the pasting diagram
A2 ×A h ↓ k ×B B2

ww ((��

A2

q1

~~~~

q0

    
ψ
⇐

h ↓ k
p1

||||

p0

"" ""
⇐

B2

q1

~~~~

q0

    
ψ
⇐

A A

k ##

B

h{{

B

C

in K2.

4.3.12. Definition (unit cells). Using the unit modules in ModK, we can define unit cells

A

f
��

|
A2
//

⇓f2

A

f
��

B |
B2
// B

associated to a (vertical) functor f : A → B between ∞-categories. By the universal
property of the cocartesian cell associated to the unit A2, it suffices to define the left-hand
composite

A

⇓ι

A A

f
��

A

f
��

A

f
��

|
A2
//

⇓f2

A

f
��

:= B

⇓ι

B

B |
B2
// B B |

B2
// B

!

A

f

��

f

��

idf
⇐

B

and we take this to be the composite of the cocartesian cell associated to the unit B2

with a nullary morphism. Applying Observation 4.1.6 both composites correspond to the
identity 2-cell idf : f ⇒ f : A→ B in the homotopy 2-category K2.
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4.3.13. Lemma (composite with unit cells). For any cell α whose boundary is of the form
displayed below-left, the composite cell

A

⇓ι

A |
E1 // A1 |

E2 // · · ·
···

|
En // C

⇓ι

C

A

f
��

|
A2
//

⇓f2

A

f
��

|
E1 // A1 |

E2 //

⇓α

· · · |
En // C

g

��

|
C2
//

⇓g2

C

g

��

B |
B2
// B |

E
//

⇓◦

D |
D2
// D

B |
E

// D

=

A

f
��

|
E1 // A1 |

E2 //

⇓α

· · · |
En // C

g

��

B |
E

// D

equals α.

Proof. By Definition 4.3.12 and the identity laws in a virtual double category, the left-hand
side is the composite cell displayed on the left

A

f
��

A

f
��

|
E1 // A1 |

E2 //

⇓α

· · · |
En // C

g

��

C

g

��

B

⇓ι

B |
E

//

⇓idE

D

⇓ι

D

B |
B2
// B |

E
//

⇓◦

D |
D2
// D

B |
E

// D

=

A

f
��

|
E1 // A1 |

E2 //

⇓α

· · · |
En // C

g

��

B |
E

//

⇓idE

D

B |
E

// D

which equals the composite cell displayed on the right by the definition (4.3.10) of ◦ : B2×
E × D2 ⇒ E. Applying the virtual double category identity laws, the right-hand side
equals α. �

4.4. Representable modules. The restriction and unit cells present in any virtual equip-
ment imply that any vertical morphism has a pair of associated horizontal morphisms
together with cells that have universal properties similar to companions and conjoints in
an ordinary double category. In ModK, the horizontal morphisms associated to a functor
f : A → B are the covariant B ↓ f : A p→ B and contravariant f ↓ B : B p→ A represented
modules. This section is devoted to exploring their properties.

4.4.1. Definition. The covariant and contravariant representable modules associated to a
functor f : A → B are defined by pulling back the module B2 : B p→ B. Thus Proposi-
tion 4.2.2 implies that the cells, defined using the identification of Observation 4.1.6 by the
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pasting diagrams

A

f
��

|
B↓f
// B

⇓ρ

B |
B2
// B

!

B ↓ f

}} !!⇐

A
f
��

f
// B

B B

B |
f↓B
// A

f
��

⇓ρ

B |
B2
// B

!

f ↓B

}} !!
⇐

B A
f

oo

f
��

B B

are cartesian cells in the virtual equipment of modules.
We also have cells

A |
A2
// A

f
��

⇓κ

A |
B↓f
// B

!

A2

���� �� ��⇐

A A
f
��

A
f
// B

A |
A2
//

f
��

A

⇓κ

B |
f↓B
// A

!

A2

���� �� ��⇐

A
f
��

A

B A
f

oo

which compose vertically to the unit cell f2 associated to the functor f , introduced in
Definition 4.3.12

A |
A2
// A

f
��

⇓κ

A

f
��

|
B↓f
// B

⇓ρ

B |
B2
// B

=

A |
A2
//

f
��

A

⇓κ

B |
f↓B
// A

f
��

⇓ρ

B |
B2
// B

=

A |
A2
//

f
��

A

f
��

⇓f2

B |
B2
// B

!

A2

q0

����

q1

�� ��

⇐ψ

A

f

��

B

=

A2

f2

��

B2

q0

����

q1

�� ��

⇐ψ

B

Moreover, by Observation 4.3.11, we have identities

A |
A2
//

⇓κ

A |
B↓f
//

f
��

B

⇓ρ

A |
B↓f
// B |

B2
//

⇓◦

B

A |
B↓f

// B

!

A2

�� ������ ⇐

B ↓ f

~~~~ !! !!⇐

A A
f

// B

A
f

// B

!

A |
A2
// A |

B↓f
//

⇓◦

B

A |
B↓f

// B
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and dually

B |
f↓B
//

⇓ρ

A |
A2
//

f
��

A

⇓κ

B |
B2
// B |

f↓B
//

⇓◦

A

B |
f↓B

// A

=

B |
f↓B
// A |

A2
//

⇓◦

A

B |
f↓B

// A

relating these canonical cells to the composition cells introduced in Lemma 4.3.9. To
summarize this situation, we say that these cells display f : A→ B and B ↓ f : A p→ B as
companions and display f : A→ B and f ↓B : B p→ A as conjoints in a sense appropriate
for a virtual equipment.

4.4.2. Theorem. In the virtual equipment of modules, there are bijections between cells

B |
f↓B
// A |

E //

⇓

C

g
��

A

f
��

|
E //

⇓α

C

g
��

!

B |
F

// D

!

B |
f↓B
// A |

E //

⇓β

C |
D↓g
// D

B |
F
// D A

f
��

|
E // C |

D↓g
//

⇓

D B |
F

// D

B |
F

// D

implemented by composing with the canonical cells κ and ρ and with the composition and
nullary cells associated with the units.

Proof. The composite bijection carries the cells α and β to the cells displayed on the left
and right, respectively:

α̂ :=

B |
f↓B
// A

⇓ρ

|
E //

f
��
⇓α

C

g
��

|
D↓g
// D

⇓ρ

B |
B2
// B |

F //

⇓◦

D |
D2
// D

B |
F

// D

β̄ :=

A A

⇓ι

|
E // C C

⇓ι

A

f
��

|
A2
// A |

E //

⇓κ

C |
C2
// C

g
��

⇓κ

B |
f↓B
// A |

E //

⇓β

C |
D↓g
// D

B |
F

// D
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We have

¯̂α :=

A A

⇓ι

|
E // C C

⇓ι

A

f
��

|
A2
// A |

E //

⇓κ

C |
C2
// C

g
��

⇓κ

B |
f↓B
// A

⇓ρ

|
E //

f
��
⇓α

C

g
��

|
D↓g
// D

⇓ρ

B |
B2
// B |

F //

⇓◦

D |
D2
// D

B |
F

// D

=

A A

⇓ι

|
E // C C

⇓ι

A

f
��

|
A2
// A

f
��

|
E //

⇓α⇓f2

C

g
��

|
C2
// C

g
��

⇓g2

B |
B2
// B |

F //

⇓◦

D |
D2
// D

B |
F

// D

=

A

f
��

|
E //

⇓α

C

g
��

B |
F
// D

by applying the companion and conjoint identities and Lemma 4.3.13.
The other composite is displayed below-left:

B |
f↓B
// A A

⇓ι

|
E // C C

⇓ι

|
D↓g
// D

B |
f↓B
//

⇓ρ

A

f
��

|
A2
// A |

E //

⇓κ

C |
C2
// C

g
��

⇓κ

|
D↓g
// D

⇓ρ

B |
B2
// B |

f↓B
// A |

E //

⇓β

C |
D↓g
// D |

D2
// D

B |
B2
// B |

F
//

⇓◦

D |
D2
// D

B |
F

// D

=

B |
f↓B
// A A

⇓ι

|
E // C C

⇓ι

|
D↓g
// D

B |
f↓B
//

⇓ρ

A

f
��

|
A2
// A |

E //

⇓κ

C |
C2
// C

g
��

⇓κ

|
D↓g
// D

⇓ρ

B |
B2
// B

⇓◦

|
f↓B
// A |

E // C |
D↓g
// D |

D2
//

⇓◦

D

B |
f↓B

// A |
E //

β

C |
D↓g

// D

B |
F

// D

The composite of the cells in the bottom two rows in the figure on the left equals the
composite of the cells in the bottom two rows in the figure on the right because both
compose with the unit cells ι for B2 and D2 to β. Applying the conjoint identities to the
right-hand figure and the definition (4.3.10) of the cells ◦ in Lemma 4.3.9, we recover β.

Vertically bisecting these constructions, one obtains the one-sided versions of these bi-
jections with the cells displayed in the middle column of the statement. �

We frequently apply Theorem 4.4.2 in an alternate form enabled by Proposition 4.2.2:
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4.4.3. Corollary. For any modules E : A p→C and F : B p→D and functors f : A→ B and
g : C → D there are bijections between cells

A |
E //

⇓α

C

!

B |
f↓B
// A |

E //

⇓β

C |
D↓g
// D

A |
F (g,f)

// C B |
F

// D

Our aim now is to prove that certain composites involving represented modules exist.
Several of these proofs will take advantage of the following lemma.

4.4.4. Lemma. Consider a cell µ : E1 × · · · ×En ⇒ E, where E : A p→B is a module from
A to B, and choose a representing map of spans

E1 × · · · × En
m //

"" ""

E

{{{{

A×B
If m admits an adjoint over A × B, then µ exhibits E as a composite of the sequence
E1, . . . , En.

Proof. We will employ the proof strategy outlined in Observation 4.3.8. Given isofibrations
(q, p) : F � Ā × A and (s, r) : G � B × B̄ defined as pullbacks of finite composable
sequences of modules, we use Remark 2.2.6 to pull back the adjunction over A× B along
p × s : F × G → A × B. Then composing with q × r : F × G � Ā × B̄, we obtain an
adjunction over Ā× B̄.

For any module H : Ā p→B̄, the 2-functor mapĀ×B̄(−, H) : K2/Ā×B̄ → qCat2 transforms
this adjunction into an adjoint equivalence: the isofibration H � Ā × B̄ is a groupoidal
object in K2/Ā× B̄ and thus the unit and counit 2-cells map to isomorphisms. Passing to
isomorphism classes of objects, the equivalence

mapĀ×B̄(F × E ×G,H)
(F×m×G)∗

'
// mapĀ×B̄(F × E1 × · · · × En ×G,H)

induces the required bijection between cells in ModK. �

4.4.5. Lemma. For any module E : A p→B and functor g : C → A, the composite A↓g⊗AE
exists and is given by E(1, g) : C p→B, the pullback of (q, p) : E � A×B along g ×B.

Proof. By Lemma 3.1.5, the functor i : E → q ↓ A admits a left adjoint ` over A× B. By
Remark 2.2.6, ` a i pulls back along g ×B to define an adjunction

E(1, g)
i′

22⊥ q ↓ g
`′

rr



48 RIEHL AND VERITY

over C × B. Here we use familiar composition and cancelation results for simplicial pull-
backs to form a diagram of pullback squares and rectangles

q ↓ g

����

// q ↓ A
(p1,p0)

����

// A2

(p1,p0)
����

C × E
C×p
����

g×E
// A× E

A×p
����

A×q
// A× A

C ×B
g×B
// A×B

allowing us to recognize the pullback of q ↓ A along g ×B as the module q ↓ g.
The simplicial pullback diagram of Lemma 2.3.7

q ↓ g
π1
����

π0
�� ��

A ↓ g
p1
����

p0
�� ��

E
q
����

p
�� ��

C A B

reveals that q ↓ g is the horizontal composite of the isofibrations (p1, p0) : A ↓ g � C × A
and (q, p) : E � A× B. Applying Lemma 4.4.4, the left adjoint `′ : A ↓ g ×A E → E(1, g)
over C × B represents a binary cell A ↓ g ×A E ⇒ E(1, g) that exhibits E(1, g) as the
composite A ↓ g ⊗ E, as claimed. �

4.4.6.Observation. Unpacking the proof of Lemma 4.4.5, the composition cell µ : A↓g×E ⇒
E(1, g) represented by the map `′ is defined in the following pasting diagram via the
universal property of the cartesian cell defining the pullback E(1, g):

C

g
��

|
A↓g
//

⇓ρ

A |
E // B

A |
A2
// A |

E
//

⇓◦

B

A |
E

// B

=

C |
A↓g
// A

⇓µ

|
E // B

C |
E(1,g)

//

g
��

⇓ρ

B

A |
E

// B

Dually, for any functor f : D → B, the composite E ⊗B f ↓B exists in ModK(A,D) and
equals E(f, 1), the pullback of (q, p) : E � A × B along A × f . Via Observation 4.3.6,
these results combine to prove:

4.4.7.Corollary. For any module E : A p→B and pair of functors g : C → A and f : D → B,
the composite A ↓ g ⊗A E ⊗B f ↓B exists and is given by E(f, g) : C p→D, the pullback of
(q, p) : E � A×B along g × f : C ×D → A×B. �
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4.4.8. Example. In particular, for any functors A f−→ B
g−→ C, the cell B↓f×BC↓g ⇒ C↓gf

encoded by the pasting diagram

B ↓ f ×B C ↓ g
�� ��

B ↓ f
�� ��⇐

C ↓ g
�� ��⇐

A
f
// B g

// C

displays C ↓ gf as the composite B ↓ f ⊗B C ↓ g.

4.4.9. Example. For any cospan C g−→ A
f←− B, by Corollary 4.4.7 the composite A ↓ g ⊗A

f ↓A is given by the module f ↓ g : C p→B. Under the interpretation of Observation 4.1.6,
the cell m : A↓g×A f ↓A⇒ f ↓g witnessing the composite is encoded by the map of spans
defined by the following pasting equality:

A ↓ g ×A f ↓ A
�� ��

A ↓ g
�� ��⇐

f ↓ A
�� ��⇐

C g
// A B

f
oo

=

A ↓ g ×A f ↓ A

����

m
��

f ↓ g
�� ��

⇐C

g ��

B

f��

A

In the context of Observation 4.1.6, if the above left pasting diagram appears as part
of a 2-cell representing a multimap whose domain includes the product A ↓ g ×A f ↓ A,
then the corresponding multimap whose domain substitutes f ↓ g replaces this 2-cell by
the canonical 2-cell displayed above right, with the map m omitted.

4.4.10. Lemma. Any module E : A p→B, encoded by an isofibration (q, p) : E � A×B, can
be regarded as a composite E ∼= q ↓A⊗EB ↓p of representable modules. More generally for
any span A g←− X

f−→ B, not necessarily even comprised of isofibrations, there is a bijection
between cells whose horizontal domain is comprised of a list of spans, one component being
X, and whose horizontal codomain is a module whose horizontal domain contains one
additional variable, with g ↓ A×X B ↓ f in place of X.

Proof. In the case where (q, p) : E � A×B defines a module E : A p→B there are bijections

A |
q↓A
// E

⇓

|
B↓p
// B

!

A |
A2
// A |

E //

⇓

B |
B2
// B

A |
E

// B A |
E

// B

because the simplicial pullbacks q ↓ A ×E B ↓ p and A2 ×A E ×B B2 are equivalent over
A × B. In particular, the canonical cell ◦ : q ↓ A × B ↓ p ⇒ E defined in Lemma 4.3.9
displays E as the composite of the representables at its legs.
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The point is that the proof of Proposition 4.2.4, which supplied the universal property
used in Lemma 4.3.9 applies more generally. Given isofibrations F � A′ × A and G �
B × B′ that are cartesian on the left and right and a module H : A′ p→ B′, the proof of
Proposition 4.2.4 defines an equivalence

mapA′×B′(F ×
A
A2 ×

A
X ×

B
B2 ×

B
G,H)

'−→ mapA′×B′(F ×
A
X ×

B
G,H).

The domain of the left-hand hom quasi-category is equivalent to F ×A g ↓A×XB ↓f ×BG,
completing the proof. �

4.4.11. Lemma. For any pair of parallel functors there are natural bijections between 2-cells

A

f

��

g

BB
⇓ B

in the homotopy 2-category and cells

A |
B↓f
//

⇓

B

!

A |
A2
//

g
��

⇓

A

f
��

!

B

⇓

|
g↓B
// A

A |
B↓g
// B B |

B2
// B B |

f↓B
// A

in the virtual equipment of modules.

Proof. Observation 4.1.6 and Proposition 4.2.4 imply that cells in the middle square cor-
respond to cells

A

f

~~

g

  

⇐

B

in the homotopy 2-category. Theorem 4.4.2 and Corollary 4.4.3 supply the bijections to
the cells displayed on the left and on the right. �

4.4.12. Remark. Lemma 4.4.11 and Example 4.4.8 imply that there are two locally-fully-
faithful homomorphisms K2 ↪→ ModK and Kcoop

2 ↪→ ModK embedding the homotopy 2-
category into the sub bicategory of ModK comprised only of unary cells whose vertical
boundaries are identities. The modules in the image of the first homomorphism are the
covariant representables and the modules in the image of the second homomorphism are
the contravariant representables. We refer to these as the covariant and contravariant
embeddings, respectively.

5. Pointwise Kan extensions

Right and left Kan extensions can be defined internally to any 2-category — a right
Kan extension is comprised of a 1-cell and a 2-cell that define a terminal object in an
appropriate category. However, in many 2-categories, as is the case for instance in the



KAN EXTENSIONS AND THE CALCULUS OF MODULES FOR ∞-CATEGORIES 51

homotopy 2-category of an ∞-cosmos, the notion of right Kan extension defined in this
way fails to be sufficiently robust. The more useful universal property is associated to the
stronger notion is of a pointwise Kan extension. Our aim in this section is to define and
study pointwise Kan extensions for functors between ∞-categories.

In fact, we give multiple definitions of pointwise Kan extension. One is fundamentally
2-categorical: a pointwise Kan extension is an ordinary 2-categorical Kan extension in the
homotopy 2-category that is stable under pasting with comma squares. Another definition
is that a 2-cell defines a pointwise right Kan extension if and only if its image under the
covariant embedding into the virtual equipment of modules defines a right Kan extension
there. Proposition 5.2.4 proves that these two notions coincide.

Before turning our attention to pointwise Kan extensions, we first introduce exact squares
in §5.1, a class of squares in the homotopy 2-category that include comma squares and which
will be used to define initial and final functors. Pointwise Kan extensions are introduced in
a variety of equivalent ways in §5.2. In §5.3, we conclude with a discussion of pointwise Kan
extensions in a cartesian closed ∞-cosmos, in which context these relate to the absolute
lifting diagrams and limits and colimits studied in §I.5.

5.1. Exact squares.

5.1.1. Definition (exact squares). By Lemma 4.4.11 there are bijections between 2-cells in
a square in the homotopy 2-category and cells in the virtual double category of modules:

D
h //

k
��
⇐λ

B

f
��

!

D |
A↓fh
//

⇓λ

A

C g
// A D |

A↓gk
// A

These cells correspond bijectively to cells

D

k
��

|
A↓fh
//

⇓

A

!

D

k
��

|
B↓h
// B

⇓

|
A↓f
// A

!

C |
k↓C
// D

⇓

|
B↓h
// B

f
��

C |
A↓g
// A C |

A↓g
// A C |

A↓g
// A

by Proposition 4.2.2, Lemma 4.4.5, and Theorem 4.4.2, respectively. Applying Proposi-
tion 4.2.2 again, these cells are in bijection with cells as displayed on the left:

C |
k↓C
// D

⇓λ̂

|
B↓h
// B

C |
f↓g

// B

!

k ↓ C ×D B ↓ h
%%yy

k ↓ C
%%

��

⇐

B ↓ h
yy

��

⇐D
h

%%

k

yy λ
⇐C

g %%

B

fyyA
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Under the isomorphism described by Observation 4.1.6, we can represent the 2-cell λ̂ as
the pasting diagram displayed above right in the homotopy 2-category K2. If λ̂ displays
f ↓ g as the composite k ↓ C ⊗D B ↓ h in ModK, then we say that the square λ : fh⇒ gk
in K2 is exact.

5.1.2. Lemma (composites of exact squares). Exact squares can be composed both “hori-
zontally” and “vertically”: given a diagram in the homotopy 2-category

H

t
��

s //

⇐τ

G

r
��

F

q
��

` //

⇐µ

D

k
��

h //

⇐λ

B

f
��

E p
// C g

// A

if λ : fh ⇒ gk, µ : k` ⇒ pq, and τ : rs ⇒ ht are exact, then are their composites fh` λ`
=⇒

gk`
gµ
=⇒ gpq and frs fτ

=⇒ fht
λt
=⇒ gkt.

Proof. We prove the result for horizontal composition; a similar argument shows that exact
squares can also be composed vertically. The cell induced by the composite λµ : fh`⇒ gpq
factors as

E |
q↓E
// F |

D↓`
//

⇓λ̂µ

D |
B↓h
// B

E |
f↓gp

// B

=

E |
q↓E
// F

⇓µ̂

|
D↓`
// D |

B↓h
// B

E |
k↓p

// D

⇓λ̃

|
B↓h
// B

E |
f↓gp

// B

where λ̃ is the cell defined by by the pasting equality

E |
C↓p
// C

⇓◦

|
k↓C
// D |

B↓h
// B

E |
k↓p

// D

⇓λ̃

|
B↓h
// B

E |
f↓gp

// B

:=

E |
C↓p
// C |

k↓C
// D

⇓λ̂

|
B↓h
// B

E |
C↓p
// C

⇓◦

|
f↓g

// B

E |
f↓gp

// B

via the universal property of the composite ◦ : C ↓ p × k ↓ C ⇒ k ↓ p of Lemma 4.4.5.
By exactness of λ and Lemma 4.4.5, the cell λ̂ and both cells labelled ◦ are composites;
thus Observation 4.3.7 implies that λ̃ : k ↓ p × B ↓ h ⇒ f ↓ gp is also a composite. Now
Observation 4.3.6 and exactness of µ implies that λ̂µ : q ↓ E × D ↓ ` × B ↓ h ⇒ f ↓ gp is
also a composite, proving that the composite 2-cell is exact. �
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5.1.3. Lemma. Any comma square is exact.

Proof. Consider
f ↓ g
q

��

p
//

⇐λ

B

f
��

C g
// A

Applying Lemma 4.4.10 to f ↓ g : C p→ B, the canonical cell q ↓ C × B ↓ p ⇒ f ↓ g is a
composite. Example 4.4.9 explains that this is λ̂. �

5.1.4. Lemma. Consider a pullback square

P

π1
��

π0 // B

f
��

C g
// A

If g is a cartesian fibration or if f is a cocartesian fibration, then the pullback square is
exact.

Proof. The two cases are dual. Suppose that f is a cocartesian fibration and consider the
induced map

P
t

!!

π1

��

π0

%%
f ↓ g
q

��

p
//

⇐λ

B

f
��

C g
// A

Observe that t : P → f ↓ g is the pullback of the map i : B → f ↓ A along g : C → A.

C A

P

f ↓ g

B

f ↓ A

g
//

π1

�� ��

q

����

f

�� ��

p1

����

π0 //

//

jj

`

i &&

kk

s

t
((

⊥⊥

By Theorem IV.4.1.10, i has a left adjoint over A. By Remark 2.2.6, this pulls back to
define a left adjoint s a t over C.

We wish to show that the cell îd : π1↓C×B↓π0 ⇒ f ↓g is a composite. By Lemma 4.4.5,
the canonical cell induces a bijection between cells with π1↓C×B↓π0 among their horizontal
domain and cells with π1↓C×(f ↓g)↓t×B↓p among their domains. By Proposition I.4.4.2,
the adjoint s a t implies that the modules (f ↓g)↓ t and s↓P are equivalendt, so these cells
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are in bijection with cells that have π1 ↓C × s ↓P ×B ↓ p among their horizontal domains.
Applying Lemma 4.4.5 again, the canonical cell induces a bijection between these cells and
those with q ↓ C ×B ↓ p among their domains.

The equation id = λt : fπ0 = fpt ⇒ gqt = gπ1 can be interpreted as saying that this
2-cell is the transpose along s a t of the 2-cell λ : fp ⇒ gq = gπ1s. This relation tells us
that the cells

îd : π1 ↓ C ×B ↓ pt⇒ f ↓ g and λ̂ : π1s ↓ C ×B ↓ p⇒ f ↓ g
correspond under the bijection just described. By Lemma 5.1.3 λ̂ is a composite; thus îd
is as well. �

We conclude this section with a pair of technical lemmas that will be used to prove
Proposition 5.3.1.

5.1.5. Lemma. For any pair of functors k : A→ B and h : C → D, the square

A× C k×C
//

A×h
��

B × C
B×h
��

A×D
k×D
// B ×D

is exact.

Proof. Following the prescription of Definition 5.1.1, the identity 2-cell idk×h transposes to
define a cell îdk×h in ModK whose horizontal domain is the span computed by the simplicial
pullback

(A2 ×A B ↓ k)× (h ↓D ×C C2)

ssss ++ ++

A2 × h ↓D
p1×p1
wwww

p0×p0

++ ++

B ↓ k × C2

p1×p1

ssss

p0×p0
'' ''

A×D A× C B × C
The horizontal codomain is isomorphic to the span

B ↓ k × h ↓D
p1×p1

wwww

p0×p0

'' ''

A×D B × C
as this is (B × h) ↓ (k ×D).

By inspection, the cell îdk×h : (A2 ×A B ↓ k) × (h ↓ D ×C C2) ⇒ B ↓ k × h ↓ D that
we seek to show defines a composite in ModK is represented in the slice 2-category over
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A×D ×B × C by the product of the functors considered in Lemma 4.4.5 and its dual:

A2 ×A B ↓ k

'' ''

`′ // B ↓ k

zzzz

h ↓D ×C C2 r′ //

'' ''

h ↓D

zzzz

A×B D × C
The former admits a fibered right adjoint while the latter admits a fibered left adjoint. The
product of these adjoints defines a fibered functor B↓k×h↓D → (A2×AB↓k)×(h↓D×CC2)
whose composites with `′×r′ : (A2×AB ↓k)× (h↓D×C C2)→ B ↓k×h↓D are connected
to the identity functors via a zig-zag of fibered 2-cells. As in the proof of Lemma 4.4.4,
these fibred cells are inverted upon mapping into a groupoidal object, exhibiting îdk×h as
a composite, as required. �

5.1.6. Lemma. If the left-hand square is a comma square in K2 and K is any object, then
the right-hand square is exact.

D
h //

k
��
⇐λ

B

f
��

D ×K h×K
//

k×K
��

⇐λ×K

B ×K
f×K
��

C g
// A C ×K

g×K
// A×K

Proof. The proof that comma squares are exact is derived from Lemma 4.4.4: the cell
λ̂ : k ↓ C ×B ↓ h⇒ f ↓ g is represented by a functor ` : k ↓ C ×B ↓ h→ f ↓ g over C ×B
that admits a fibred adjoint. Similarly, the cell λ̂×K : ((k ×K) ↓ (C ×K))×D×K ((B ×
K) ↓ (h×K))⇒ (f ×K) ↓ (g ×K) is represented by a fibred functor

k ↓ C ×D B ↓ h× (K2 ×K K2)
`×m

//

++ ++

f ↓ g ×K2

vvvv

C ×B ×K ×K
admitting a fibred adjoint: left and right fibred adjoints to the “composition functor”
m : K2 ×K K2 → K2 are constructed in I.4.5.8. Applying Lemma 4.4.4, we conclude that
λ̂×K is a composite, so λ×K is exact. �

5.2. Pointwise Kan Extensions. In this section, we give two definitions of pointwise
right Kan extension in the homotopy 2-category of an ∞-cosmos and prove that they are
equivalent.

5.2.1.Definition (right extension of modules). In the virtual equipment ModK of modules,
a right extension of a module F : A p→ C along a module K : A p→ B is given by a module
R : B p→ C together with a cell µ : K × R ⇒ F so that for any composable sequence of
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modules E1, . . . , En from B to C, composition with µ defines a bijection

A |
K //

|F

��

B

|E1��

A1

ww
C An−1|

En
oo

⇐χ =

A |
K //

⇐ν

⇐∃!

|F

��

B

|
R

{{

|E1��

A1

ww
C An−1|

En
oo

In the case where the modules K : A p→ B, F : A p→ C, and R : B p→ C are all covariant
representables, the Yoneda lemma, in the form of Lemma 4.4.11, implies that the binary
cell arises from a 2-cell in the homotopy 2-category. The following lemma shows that
Definition 5.2.1 implies that this 2-cell is a right extension in K2, in the usual sense.

5.2.2. Lemma. If µ : B ↓ k × C ↓ r ⇒ C ↓ f displays C ↓ r : B p→ C as a right extension
of C ↓ f : A p→ C along B ↓ k : A p→ B in ModK, then µ : rk ⇒ f displays r as the right
extension of f along k in K2.

Proof. By Example 4.4.8, the binary cell µ is represented by a unary cell C ↓ rk ⇒ C ↓f in
ModK. The covariant embedding K2 ↪→ ModK described in Remark 4.4.12 is locally fully
faithful, so this cell comes from a unique 2-cell µ : rk ⇒ f in K2. Local fully faithfulness
implies immediately that for any e : B → C pasting with µ defines a bijection

hom(B,C)(e, r)
µ∗(−◦k)−−−−→ hom(A,C)(ek, f),

derived from the similar bijection between cells between the corresponding covariant rep-
resented modules. �

5.2.3. Definition (stability of extensions under pasting). In any 2-category, a right exten-
sion diagram

A
k //

f ��

⇐µ
B

r
��

C

is said to be stable under pasting with a square

D

g
��

h //

⇐λ

E

b
��

A
k
// B
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if the pasted diagram
D

h //

g
��

⇐λ

E

b
��

A
k //

f   

⇐µ
B

r
��

C

displays br as a right extension of fg along h.

5.2.4. Proposition. For a diagram

A
k //

f ��

⇐µ
B

r
��

C

(5.2.5)

in the homotopy 2-category of an ∞-cosmos K the following are equivalent.
(i) µ : rk ⇒ f defines a right extension in K2 that is stable under pasting with exact

squares.
(ii) µ : rk ⇒ f defines a right extension in K2 that is stable under pasting with comma

squares
(iii) The image µ : B↓k×C↓r ⇒ C↓f of µ under the covariant embedding K2 ↪→ ModK

defines a right extension in ModK.
(iv) The image of the pasted composite of µ with any exact square under the covariant

embedding K2 ↪→ ModK defines a right extension in ModK.

If any of these equivalent conditions hold, we say that (5.2.5) defines a pointwise right
Kan extension in the homotopy 2-category K2.

Proof. Lemma 5.1.3 proves that (i)⇒(ii).
To show (ii)⇒(iii), suppose (5.2.5) defines a right extension in K2 that is stable under

pasting with comma squares and consider a cone over the cell µ : B ↓k×C ↓r ⇒ C ↓f with
summit given by an isofibration (q, p) : E � B × C. By our hypothesis (ii), the pasted
composite

q ↓ k t //

s
��

⇐λ

E

q

��

A
k //

f ""

⇐µ
B

r
��

C

defines a right extension in K2. A 2-cell B ↓ k ×B E ⇒ C ↓ f is, by Lemma 4.4.10, the
same as a 2-cell

B ↓ k ×
B
q ↓B ×

E
C ↓ p⇒ C ↓ f.
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Using Corollary 4.4.3 and Lemma 4.4.5 this is the same as q ↓ k ⇒ p ↓ f , which, by
Observation 4.1.6 is the same as a 2-cell

q ↓ k
s
��

t //

⇐

E

p

��

A
f
// C

Using the hypothesis that rq is the right extension of fs along t in the homotopy 2-category
this is the same as a 2-cell p ⇒ rq, or by Lemma 4.4.11, as a cell C ↓ p ⇒ C ↓ rq. By
Corollary 4.4.3, this is the same as a cell

q ↓B ×
E
C ↓ p⇒ C ↓ r,

which by Lemma 4.4.10 produces the desired factorization E ⇒ C ↓ r.
To show (iii)⇒(iv) consider a diagram

D
h //

g
��

⇐λ

E

b
��

A
k //

f   

⇐µ
B

r
��

C

in which λ is exact and µ displays C ↓ r as the right extension of C ↓ f along B ↓ k. We
will show that the pasted composite again defines a right extension diagram at the level of
modules.

To that end, observe that a cell
E ↓ h× E1 × · · · × En ⇒ C ↓ fg

corresponds to a cell
g ↓ A× E ↓ h× E1 × · · · × En ⇒ C ↓ f

by Corollary 4.4.3. By exactness of λ, this corresponds to a cell
b ↓ k × E1 × · · · × En ⇒ C ↓ f,

or equivalently, upon restricting along the composition map B ↓ k × b ↓ B ⇒ b ↓ k of
Lemma 4.4.5 to a cell

B ↓ k × b ↓B × E1 × · · · × En ⇒ C ↓ f.
As C ↓ r is the right extension of C ↓ f along B ↓ k, this corresponds to a cell

b ↓B × E1 × · · · × En ⇒ C ↓ r,
which transposes, via Corollary 4.4.3, to the the desired factorization

E1 × · · · × En ⇒ C ↓ rb.
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To see that this bijection is implemented by composing with µλ : E ↓h×C ↓rb⇒ C ↓fg,
it suffices, by the Yoneda lemma, to start with the identity cell C ↓ rb⇒ C ↓ rb and trace
backwards through each step in this bijection to see that the result is µλ : E ↓h×C ↓ rb⇒
C ↓ fg. Employing Observation 4.1.6 to represent each cell in the virtual double category
as a pasting diagram in the homotopy 2-category, this is straightforward.

Finally, Lemma 5.2.2, together with the trivial observation that the identity 2-cell defines
an exact square

A
k // B

A
k
// B

proves that (iv)⇒(i). �

5.2.6. Observation. Lemma 5.1.2 implies that the pasted composite of a pointwise Kan
extension with an exact square again defines a pointwise Kan extension.

5.2.7. Definition (fully faithful). A functor k : A → B is fully faithful if and only if the
square

A A

k
��

A
k
// B

is exact, i.e., if and only if A2 ⇒ k ↓ k is a composite. Observation 4.3.5 reminds us that
a cell between parallel modules is a composite if and only if it is an isomorphism in the
vertical 2-category contained in the virtual equipment, so this is the case if and only if the
canonical cell A2 ⇒ k ↓ k defines an equivalence of modules from A to A.

5.2.8. Lemma. If

A
k //

f ��

⇐µ
B

r
��

C

is a pointwise right extension and k is fully faithful, then µ is an isomorphism.

Proof. Pasting µ with the exact square idk yields, by Proposition 5.2.4.(i), a pointwise right
extension diagram

A
idA //

f ��

⇐µ
A

rk��

C

Proposition 4.2.4 asserts that any functor f : A→ C defines a pointwise extension of itself
along idA : A→ A in the sense of 5.2.4(iii). The unique factorization in K2 of the pointwise
right extension idf through rk defines an inverse isomorphism to µ. �
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5.2.9. Lemma. A right adjoint u : A→ B is fully faithful if and only if the counit ε : fu⇒
1A of the adjunction is an isomorphism.

Proof. If f a u with counit ε : fu ⇒ 1A, then Proposition I.4.4.2 demonstrates that com-
posing with ε defines an isomorphism of modules B↓u⇒ f↓A, as recalled in Example 3.3.8.
By Observation 4.3.5, this says that the bottom square is exact.

A A

u
��

A
u //

⇐ε

B

f
��

A A

If u is fully faithful, then by Lemma 5.1.2, then so is the composite rectangle. This says
that the contravariant embedding of ε into ModK defines an isomorphism A2 ⇒ fu ↓A of
modules from A to A, which by fully faithfulness of the Yoneda embedding implies that ε
is an isomorphism.

Conversely, Example 4.4.9 tells us that B↓u×Bu↓B ⇒ u↓u is a composite. Substituting
the equivalent module f ↓A, Example 4.4.8 provides another composite f ↓A×B u ↓B ⇒
fu↓A. Factoring one composite through the other, we obtain an equivalence fu↓A⇒ u↓u.
If ε is an isomorphism, we have a composite equivalence A2 ⇒ fu↓A⇒ u↓u, which proves
that u is exact. �

5.3. Pointwise Kan extensions in a cartesian closed ∞-cosmos. In this section we
work in the homotopy 2-category of a cartesian closed ∞-cosmos K.

5.3.1. Proposition. Suppose

A×K k×K
//

f
##

ν
⇐

B ×K

r
{{

E

is a pointwise right Kan extension in a cartesian closed ∞-cosmos K. Then the transpose

⇓ν

EB

Ek
��

K
f
//

r

>>

EA

(5.3.2)

defines an absolute right lifting diagram in K2 and moreover this absolute lifting diagram
is stable under pasting with Eλ for any comma square λ.
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Proof. Given a cone as displayed on the left, we construct the required factorization as
displayed on the right

X
q
//

p

��
⇓χ

EB

Ek
��

=

X

p

��

q
//

⇓φ

⇓ν

EB

Ek
��

K
f
// EA K

r

>>

f
// EA

by solving this problem in transposed form:

A×X
A×p
��

k×X
//

⇐χ

B ×X

q

��

A×X
A×p
��

k×X
// B ×X
B×p
��

q
mm

A×K

f ��

= A×K

f ��

k×K
//

ν
⇐

B ×K

r
��

∃!⇐φ

E E

Lemma 5.1.5 tells us that the top right square is exact. Thus, r(B× p) is a pointwise right
Kan extension of f(A× p) along k ×X, inducing the desired 2-cell φ.

Now the pasted composite of ν with an exponentiated comma square, as displayed below-
left, transposes to the diagram displayed below right.

⇓ν

EB

Ek
��

Eh //

⇓Eλ

ED

Ep

��

K
f
//

r

>>

EA

Eq
// EC

!

C ×K p×K
//

q×K
��

⇐λ×K

D ×K
h×K
��

A×K

f ��

k×K
//

ν
⇐

B ×K

r
��

E

By Lemma 5.1.6, λ×K is exact, so the right-hand pasting diagram defines a pointwise Kan
extension. The universal property of this right Kan extension diagram in K2 transposes
across − × K a (−)K to demonstrate that the left-hand side defines an absolute right
lifting diagram. �

Recall Definition I.5.2.2: in a cartesian closed∞-cosmos, the limit of a diagram f : A→
E is a point ` : 1→ E equipped with an absolute right lifting diagram

⇓ν

E

E!

��

1
f
//

`

>>

EA

(5.3.3)

Here the 2-cell ν encodes the data of the limit cone.
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5.3.4. Proposition. In a cartesian closed ∞-cosmos K, any limit (5.3.3) defines a point-
wise right Kan extension

A

f ��

! //

ν
⇐

1

`��

E

Conversely, any pointwise right Kan extension of this form transposes to define a limit
(5.3.3) in E.

Proof. Comma squares over the terminal object have the form

A×X
π1
��

π0 // X

!
��

A
!
// 1

for some X. We can show that the pasted composite of ν : `!⇒ f with this comma square
defines a right extension diagram in K2 by proving that the transposed diagram

⇓ν

E

E!

��

E!
// EX

Eπ0
��

1
f
//

`

??

EA

Eπ1
// EA×X

defines a right lifting diagram. In fact this diagram is an absolute right lifting diagram.
This follows easily from the universal property of the absolute lifting diagram (5.3.3) by
transposing across the 2-adjunction X ×− a (−)X .

The converse is a special case of Proposition 5.3.1. �

5.3.5. Definition (initial/final functor). A functor k : A → B is final if and only if the
left-hand square is exact

A

!
��

k // B

!
��

A

k
��

! // 1

1 1 B
!
// 1

and initial if and only if the right-hand square is exact.

5.3.6. Proposition. In a cartesian closed∞-cosmos, if k : A→ B is initial and f : B → C
is any diagram, then a limit of f also defines a limit of fk : A → C. Conversely, if the
limit of fk : A → C exists then so does the limit of f and it is given by the same point
` : 1→ C.
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Proof. By Proposition 5.3.4, a limit of f is a pointwise right Kan extension.

B

f ��

! //

ν
⇐

1

`��

C

If k is final, then by 5.2.4(i),

A

k
��

! // 1

B

f ��

! //

ν
⇐

1

`��

C

is again a pointwise right Kan extension, which defines a limit of fk by Proposition 5.3.4.
For the converse, suppose we are given a pointwise right Kan extension diagram

A

fk ��

! //

ν
⇐

1

`��

C

in K2, which Proposition 5.2.4 tells us defines a right extension between covariant repre-
sented modules in ModK. This universal property tells us that for any composable sequence
of modules E1, . . . , En from 1 to C, composing with ν : 1↓! × C ↓ ` ⇒ C ↓ fk defines a
bijection between cells E1 × · · · × En ⇒ C ↓ ` and cells

A |
1↓!
// 1 |

E1 //

⇓

· · · |
En // C

A |
C↓fk

// C

By Corollary 4.4.3, composing with ν : 1↓!×C ↓`⇒ C ↓fk also defines a bijection between
cells E1 × · · · × En ⇒ C ↓ ` and cells

B |
k↓A
// A |

1↓!
// 1 |

E1 //

⇓

· · · |
En // C

B |
C↓f

// C

As k : A → B is initial, the induced cell k ↓ A × 1↓! ⇒ 1↓! of modules from B to 1 is a
composite. Thus, composing with ν : 1↓!×C ↓ `⇒ C ↓ fk also defines a bijection between
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cells E1 × · · · × En ⇒ C ↓ ` and cells

B |
1↓!
// 1 |

E1 //

⇓

· · · |
En // C

B |
C↓f

// C

But this says exact that the cell 1↓!×C ↓ `⇒ C ↓f that corresponds to ν under this series
of bijections displays C ↓ ` : 1 p→C as a right extension of C ↓ f : B p→C along 1↓! : B p→ 1.
By Proposition 5.2.4 and Proposition 5.3.4 we conclude that ` also defines the limit of
f : B → C, as claimed. �

5.3.7. Lemma. If f : B → A admits a right adjoint u : A→ B, then k is initial.

Proof. The functor f is initial if and only if the map p1 : f ↓ A ⇒ A of modules from A
to 1 exhibits A as the reflection into modules of the isofibration (p1, !) : f ↓ A� A× 1. If
f a u, we have f ↓A ' B ↓u over A. Lemma I.4.1.6 constructs a right adjoint right inverse
to p1 and the conclusion follows from Lemma 4.4.4. �

5.3.8. Definition. In a cartesian closed ∞-cosmos, an ∞-category E admits functorial
pointwise right Kan extension along a functor k : A→ B if there is a pointwise right Kan
extension

A× EA

ev
##

k×EA
//

ν
⇐

B × EA

rank(−)
{{

E

of the evaluation functor along k × EA.

5.3.9. Proposition (Beck-Chevalley condition). For any comma square

D
h //

k
��
⇐λ

B

f
��

C g
// A

in a cartesian closed ∞-cosmos and any object E, the Beck-Chevalley condition is satisfied
for the induced 2-cell

EA f∗
//

g∗

��
⇓λ∗

EB

h∗
��

EC

k∗
// ED



KAN EXTENSIONS AND THE CALCULUS OF MODULES FOR ∞-CATEGORIES 65

whenever functorial pointwise left or right Kan extensions of these functors exist: that is,
the mates of λ∗ are isomorphisms.

EA f∗
//

⇓λ!

EB EA

g∗

��
⇑λ!

EB

h∗
��

lanf
oo

EC

k∗
//

rang

OO

ED

ranh

OO

EC ED

lank

oo

Proof. By Proposition 5.3.1, the pointwise right Kan extensions define absolute right lifting
diagrams

⇓ε

EA f∗
//

g∗

��
⇓λ∗

EB

h∗
�� ⇓ε

EB

h∗
��

EC

rang
==

EC

k∗
// ED EC

k∗
// ED

ranh

==

ED

and moreover the mate λ! of λ∗ defines a factorization of the left-hand diagram through
the right-hand diagram

⇓ε

EA f∗
//

g∗

��
⇓λ∗

EB

h∗
��

=

EA f∗
//

λ!⇓
⇓ε

EB

h∗
��

EC

rang
==

EC

k∗
// ED EC

k∗
//

rang
==

ED

ranh

==

ED

Immediately from the universal property of the absolute liftings of k∗ along h∗ we have
that λ! is an isomorphism. �

5.3.10. Remark (on derivators for (co)complete quasi-categories). Derivators were intro-
duced independently by Heller [4] and by Grothendieck in Pursuing Stacks. A derivator
is a 2-functor D : Catop

2 → CAT2 from the 2-category of small 2-categories, thought of as
indexing shapes for diagrams, to the 2-category of large categories, satisfying the following
axioms:

(Der1) D carries coproducts to products.
(Der2) For each A ∈ Cat2, the functor D(A) →

∏
a∈AD(1) induced by the family of

functors a : 1→ A is conservative.
(Der3) For every functor k : A→ B ∈ Cat2, its image k∗ : D(B)→ D(A) admits a left

adjoint lank : D(A)→ D(B) and a right adjoint rank : D(A)→ D(B).
(Der4) For every comma square in Cat2, the Beck-Chevalley condition is satisfied: that

is the mates of the induced 2-cell in the image of D are isomorphisms.
(Der5) For each A ∈ Cat2, the induced functor D(A × 2) → D(A)2 is essentially

surjective and full.
We have an embedding Cat2 ↪→ qCat2 that carries comma squares to comma squares.

Thus, for any large quasi-category E, we have a 2-functor

Catop
2

E− // qCAT2
h // CAT2, (5.3.11)
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which sends a category A to the homotopy category of the large quasi-category of A-
indexed diagrams, valued in E.

Suppose E admits functorial pointwise Kan extensions for all functors k : A → B. By
Proposition 5.3.1, these define adjoints lank a k∗ a rank to the induced functor k∗ : EB →
EA, which define adjunctions between homotopy categories. This proves (Der3). By
Proposition 5.3.9, the Beck-Chevalley 2-cells are isomorphisms in qCAT2 and hence also in
CAT2, proving (Der 4). Axiom (Der 1) follows from the fact that exponentiation converts
coproducts in the domain to products, E

∐
iAi ∼=

∏
iE

Ai , and the homotopy category
functor h : qCAT2 → CAT2 preserves small products. (Der 2) and (Der 5) were proven
as Corollary I.2.3.12 and Proposition I.3.3.9. Indeed, in the arguments just given, qCAT2

can be replaced by the homotopy 2-category of any cartesian closed ∞-cosmos admitting
a comma-preserving 2-functor Cat2 → K2.

In the special case of quasi-categories, we can argue further that any complete and
cocomplete quasi-category E admits functorial pointwise Kan extensions along all functors
k : A→ B, thus defining a derivator (5.3.11). A complete and cocomplete quasi-category
is a large quasi-category admitting limits and colimits of all diagrams indexed by small
simplicial sets. We outline the argument here, defering full details to a future paper that
will focus on the quasi-categorical case.

The first step is to show that in ModqCAT right extensions always exist. Consider a
module K : A p→ B represented by an isofibration (q, p) : K � A × B. The operation of
horizontal composition with this isofibration can be represented as a composite simplicial
functor

qCAT/B × C p∗
// qCAT/K × C q◦−

// qCAT/A× C
formed by first pulling back along p×idC and then composing with q×idC . The latter func-
tor has a right adjoint, pullback along q× idC , which is a functor of∞-cosmoi. Because p is
a cartesian fibration, it is homotopy exponentiable, i.e., p∗ : qCAT/B × C → qCAT/K × C
also admits a right adjoint Πp, defining a functor of∞-cosmoi; see [10, §B.3], where homo-
topy exponentiable maps are called flat fibrations, for a discussion. Now, given a module
F : A p→ C, the component at F of the counit of the composite adjunction defines a right
extension diagram

A

|
F ��

|
K //

ε
⇐

B

|
Πp(q∗F )��

C

in ModqCAT.
In particular, given the quasi-categories and functors displayed on the left, where A and

B are small, there is some module G that defines the right extension displayed on the right.

A× EA

ev
##

k×EA
// B × EA A× EA

|
E↓ev

##

|
(B×EA)↓(k×EA)

//

ν
⇐

B × EA

|
G

{{
E E

(5.3.12)
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Now the quasi-category E will admit functorial pointwise right Kan extensions along
k : A → B, just when the module G in (5.3.12) is covariantly represented. By Corol-
lary 3.3.7, the module G : B×EA p→E is covariantly represented if and only if its pullbacks
along each vertex (b, f) ∈ B × EA are covariantly represented.

Now the proof of Proposition 5.2.4 (iii)⇒(iv) tells us that the right extension diagram
(5.3.12) is stable under pasting with the images of exact squares in qCAT2 under the
covariant embedding qCAT2 ↪→ ModqCAT. Thus, by Lemma 5.1.3, Lemma 5.1.5, and
Lemma 5.1.2 we have a right extension diagram

b ↓ k
⇐φA↓p1

��

∆0↓p0 // ∆0

B↓b
��

A
B↓k

//

(A×EA)↓(A×f)
��

B

(B×EA)↓(B×f)
��

A× EA

|
E↓ev

##

|
(B×EA)↓(k×EA)

//

ν
⇐

B × EA

|
G

{{
E

Now if A and B are small then so is b ↓ k, and hence if E is complete, Proposition 5.3.4
tells us that there is a pointwise right Kan extension diagram

b ↓ k
p1
��

! //

⇐ν

∆0

`

��

A

f ""
E

given by forming the limit ` ∈ E of p1f : b ↓ k → E. Thus the fiber of the module G over
the point (b, f) : ∆0 → B×EA is equivalent to E ↓ `. As argued above, this implies that G
is represented, which implies that functorial pointwise right Kan extensions exist for any
complete quasi-category E.
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