Homotopy coherent adjunctions

The formal theory of homotopy coherent monads

Emily Riehl

Harvard University http://www.math.harvard.edu/~eriehl

23 July, 2013 Samuel Eilenberg Centenary Conference Warsaw, Poland

Homotopy coherent adjunctions

Joint with Dominic Verity.

Slogan: "It's all in the weights!"

Plan

Homotopy coherent adjunctions

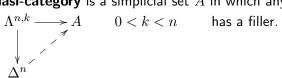
- Homotopy coherent adjunctions
- 2 Homotopy coherent monads and the monadic adjunction
- 3 Codescent in the Eilenberg-Moore quasi-category
- 4 Monadicity theorem

Quasi-categories

Homotopy coherent adjunctions

•000000

A quasi-category is a simplicial set A in which any inner horn



The **homotopy category** hA has

- objects = vertices
- morphisms = homotopy classes of 1-simplices

Via the adjunction

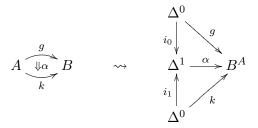
$$\underbrace{\operatorname{Cat}}^{h} \underbrace{\operatorname{qCat}}$$

quasi-category theory extends category theory.

Adjunctions of quasi-categories

 $\underline{\mathrm{qCat}}_2 := \mathsf{the}\ \textbf{2-category}\ \mathsf{of}\ \mathsf{quasi\text{-}categories},\ \mathsf{consisting}\ \mathsf{of}$

- ullet quasi-categories A,B
- functors (maps of simplicial sets) $g \colon A \to B$
- natural transformations (homotopy classes of 1-simplices)



An adjunction of quasi-categories is an adjunction in \underline{qCat}_2 .

$$A \underbrace{\perp}_{u} B \qquad \eta : \mathrm{id}_{B} \Rightarrow uf \qquad \epsilon : fu \Rightarrow \mathrm{id}_{A}$$

Some theorems and examples

Theorems.

Homotopy coherent adjunctions

0000000

- $f \dashv u$ induces adjunctions $f^X \dashv u^X$ and $C^u \dashv C^f$ for any simplicial set X and quasi-category C.
- Any equivalence can be promoted to an adjoint equivalence.
- Right adjoints preserve limits.
- $f \colon B \to A$ has a left adjoint iff $f \downarrow a$ has a terminal object for each $a \in A$.

Examples.

- ordinary adjunctions, topological adjunctions
- simplicial Quillen adjunctions
- colim ⊢ const ⊢ lim
- loops—suspension

A coherence question

Homotopy coherent adjunctions

0000000

 $\underline{\mathrm{qCat}}_{\infty} := \text{the simplicial category of quasi-categories.}$

Given $A \underbrace{ \int }_{f} B$ in \underline{qCat}_{2} , what adjunction data exists in $\underline{qCat}_{\infty}$?

•
$$\operatorname{id}_B \xrightarrow{\eta} uf \text{ in } B^B \qquad fu \xrightarrow{\epsilon} \operatorname{id}_A \text{ in } A^A$$

But do there exist fillers with the same bottom face?

The free adjunction

 $\underline{\mathrm{Adj}} := \mathsf{the} \ \mathsf{free} \ \mathsf{adjunction}, \ \mathsf{a} \ \mathsf{2}\mathsf{-category} \ \mathsf{with}$

- objects + and -
- $\underline{\mathrm{Adj}}(+,+) = \underline{\mathrm{Adj}}(-,-)^{\mathrm{op}} := \mathbb{A}_+$
- $\underline{\mathrm{Adj}}(-,+) = \underline{\mathrm{Adj}}(+,-)^{\mathrm{op}} := \mathbb{A}_{\infty}$

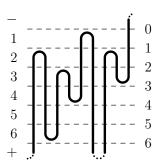
Theorem (Schanuel-Street). 2-functors $\underline{Adj} \to \underline{qCat}_2$ correspond to adjunctions in \underline{qCat}_2 .

Codescent for algebras

The free homotopy coherent adjunction

Conjecture. The free homotopy coherent adjunction is Adj. regarded as a simplicial category under $2\text{-Cat} \hookrightarrow sSet\text{-Cat}$.

n-arrows are strictly undulating squiggles on n+1 lines

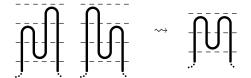


Proposition. Adj is a simplicial computed (i.e., cofibrant).

Homotopy coherent adjunctions

Homotopy coherent adjunctions

0000000



Theorem. Any adjunction $Adj \rightarrow qCat_2$ lifts to a homotopy coherent adjunction $Adj \rightarrow qCat_{\infty}$.

Theorem. Such extensions are homotopically unique: the spaces of extensions are contractible Kan complexes.

Homotopy coherent adjunctions

 $\underline{\mathrm{Mnd}} := \mathsf{full} \ \mathsf{subcategory} \ \mathsf{of} \ \underline{\mathrm{Adj}} \ \mathsf{on} \ +.$

Definition. A **homotopy coherent monad** is a simplicial functor $T \colon \operatorname{Mnd} \to \operatorname{qCat}_{\infty}$, i.e.,

- \bullet + \mapsto $B \in \underline{\mathrm{qCat}}_{\infty}$
- $\mathbb{A}_+ \xrightarrow{t} B^B =:$ the monad resolution

$$id_{B} \xrightarrow{\eta \longrightarrow t} t \xrightarrow{\eta \longrightarrow t^{2}} t^{2} \xrightarrow{\mu \longrightarrow t^{2}} t^{3} \cdots$$

$$\xrightarrow{-t\eta \longrightarrow t} t^{2} \xrightarrow{-t\eta \longrightarrow t^{3}} t^{3} \cdots$$

and higher data, e.g., t^2

Fix a simplicial functor T, a diagram of shape \mathbf{A} .

00000

Homotopy coherent monads

A **weight** is a simplicial functor $W : \mathbf{A} \to \underline{\mathrm{sSet}}$.

The **weighted limit** $\{W,T\}$ represents the simplicial set of cones of shape W over T.

Key facts:

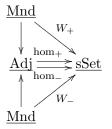
- ullet The limit weighted by \hom_a evaluates at a.
- The weighted limit bifunctor is cocontinuous in the weights.

Upshot: Weights built by gluing representables will define cones of the expected shape.

Codescent for algebras

Weighted limits in the quasi-categorical context

Proposition. $\underline{qCat}_{\infty}$ has all limits weighted by projective cofibrant simplicial functors.



 $\underline{\mathrm{Adj}}$ a simplicial computad $\Rightarrow W_+$ and W_- projective cofibrant.

The Eilenberg-Moore quasi-category

Fix a homotopy coherent monad $T: \mathrm{Mnd} \to \mathrm{qCat}_{\infty}$

- $\{W_{+}, T\} = B$
- $\{W_-, T\} =: B[t]$, the Eilenberg-Moore quasi-category

By definition

Homotopy coherent adjunctions

$$B[t] = \operatorname{eq} \left(B^{\triangle_{\infty}} \rightrightarrows B^{\triangle_{+} \times \triangle_{\infty}} \right)$$

so a vertex is a map $\mathbb{A}_{\infty} \to B$ of the form:

$$b \xrightarrow{\eta \longrightarrow} tb \xrightarrow{\longleftarrow \eta \longrightarrow} t^{2}b \xrightarrow{\longleftarrow t\eta \longrightarrow} t^{3}b \cdots$$

$$\leftarrow t\beta \longrightarrow} tb \xrightarrow{\longleftarrow t\eta \longrightarrow} t^{2}b \xrightarrow{\longleftarrow t\eta \longrightarrow} t^{3}b \cdots$$

and higher data, e.g., tb

The monadic homotopy coherent adjunction

... is all in the weights!

Homotopy coherent adjunctions

$$\underline{Adj}^{\text{op}} \xrightarrow{\text{hom}} \underline{sSet}^{\underline{Adj}} \xrightarrow{\text{res}} \underline{sSet}^{\underline{Mnd}} \xrightarrow{\{-,T\}} \underline{qCat}^{\text{op}}_{\infty}$$

$$- \mapsto \text{hom}_{-} \mapsto W_{-} \mapsto B[t]$$

$$f(\neg)u \qquad \downarrow \vdash \rangle \qquad \downarrow \vdash \rangle \qquad f^{t}(\neg)u^{t}$$

$$+ \mapsto \text{hom}_{+} \mapsto W_{+} \mapsto B$$

Proposition. If $V \hookrightarrow W$ is identity-on-0-cells, then $\{W,T\} \to \{V,T\}$ is conservative. E.g., $W_+ \to W_-$.

Corollary. The monadic forgetful functor $u^t \colon B[t] \to B$ is conservative.

Codescent in the Eilenberg-Moore category

Suppose (b,β) is an algebra for a monad t on a category B.

Fact. There is a canonical colimit diagram in B[t]

which is a u^t -split reflexive coequalizer diagram, and preserved by u^t .

Codescent in the Eilenberg-Moore quasi-category

Theorem. Every vertex in B[t] is the colimit of a canonical u^t -split simplicial object that is preserved by u^t .

Proof. By cocontinuity,

Codescent in the Eilenberg-Moore quasi-category

Theorem.

$$\{W, T\} \longrightarrow B[t]^{\triangle_{+}^{\text{op}}} \xrightarrow{\text{res}} B[t]^{\triangle_{-}^{\text{op}}}$$

defines an absolute left lifting diagram in $qCat_2$ that u^t preserves.

Proof. Similar to:

Theorem.

defines an absolute left lifting

diagram in qCat₂ that is preserved by any functor.

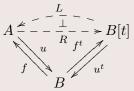
Proof. See "The 2-category theory of quasi-categories."

The classical monadicity theorem

Let t be the monad induced by an adjunction $f \dashv u$.

Theorem (Beck).

 There is a comparison functor commuting with the adjunctions.



- If A has u-split coequalizers, then R has a left adjoint.
- ullet If u preserves them, then L is fully faithful.
- ullet If u is conservative, then $L\dashv R$ is an adjoint equivalence.

Goal. Prove the analogous theorem for the homotopy coherent monad of a homotopy coherent adjunction.

Defining the comparison map

Homotopy coherent adjunctions

$$\underline{\underline{\mathrm{Mnd}}} \xrightarrow{\underline{\mathrm{Adj}}} \underline{\underline{\mathrm{qCat}}}_{\infty} \qquad \Rightarrow \qquad B[t] \cong \{W_{-}, \operatorname{res} H\} \cong \{\operatorname{lan} W_{-}, H\}$$

Weights for the monadic adjunction, revisited.

- weight for the Eilenberg-Moore quasi-category: lan res hom_
- weight for the monadic adjunction: lan res hom

The counit of $\underline{\operatorname{sSet}}^{\underline{\operatorname{Adj}}} \xrightarrow{res} \underline{\operatorname{sSet}}^{\underline{\operatorname{Mnd}}}$ defines a map of weights $lan res hom \rightarrow hom$ and hence a natural transformation

$$A - - - \stackrel{R}{-} - > B[t]$$

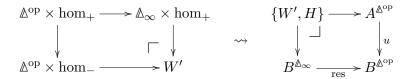
$$f \qquad \qquad f^t \qquad \qquad u^t$$

between homotopy coherent adjunctions.

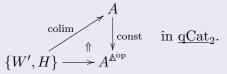
The weight for *u*-split simplicial objects

Define a weight

Homotopy coherent adjunctions



Definition. The quasi-category A admits colimits of u-split simplicial objects if there is an absolute left lifting diagram



The proof of the monadicity theorem

Proof.

- The obvious map $W' \to \operatorname{lan} W_-$ induces $B[t] \to \{W', H\}$.
- If A has colimits of u-split simplicial objects, define $L:=B[t] \to \{W',H\} \xrightarrow{\operatorname{colim}} A.$
- From the universal property of absolute left liftings, $L \dashv R$.
- If u preserves these colimits, then u^t carries the unit of $L\dashv R$ to an isomorphism.
- As u^t is conservative, the unit is an isomorphism.
- If u is conservative, it follows that the counit is also an isomorphism, and $A \simeq B[t]$ is an adjoint equivalence of quasi-categories.

Further reading

- "The 2-category theory of quasi-categories" arXiv:1306.5144.
- "A weighted limits proof of monadicity" on the *n*-category café.
- "Homotopy coherent adjunctions and the formal theory of monads" — coming soon!