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Quasi-categories

A quasi-category is a simplicial set A in which any inner horn

NGl p—| O0<k<n has a filler.

e
An
The homotopy category hA has

@ objects = vertices
@ morphisms = homotopy classes of 1-simplices

Via the adjunction
h

T
@(éqCat

quasi-category theory extends category theory.
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Adjunctions of quasi-categories

qCat, := the 2-category of quasi-categories, consisting of
@ quasi-categories A, B
e functors (maps of simplicial sets) g: A — B
@ natural transformations (homotopy classes of 1-simplices)

AO
4 g
g ‘o
ATl B - Al 2, pA
I —

k

AO

An adjunction of quasi-categories is an adjunction in gCat,.
f
AiB n:idp = uf €: fu=idy
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Some theorems and examples

Theorems.

e f - wu induces adjunctions fX 4 uX and C* 4 C7 for any
simplicial set X and quasi-category C.

@ Any equivalence can be promoted to an adjoint equivalence.
@ Right adjoints preserve limits.

@ f: B — A has a left adjoint iff f | a has a terminal object for
each a € A.

Examples.
@ ordinary adjunctions, topological adjunctions
@ simplicial Quillen adjunctions
@ colim - const H lim

@ loops—suspension
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A coherence question

qCat,, := the simplicial category of quasi-categories.
PERS
Given A 1L _ B in gCaty, what adjunction data exists in qCat.?
u

° idp L>uf in BB fu—=idy in A4
° - ufu e in BA fuf in AB
e N AN
idy, ldf
° uf uf filling A3! — BB

n/m‘tf\ n/w‘t’]\

—n—=uf idp —n—=uf

A IS
uf uef nn ufuf uef

idp

But do there exist fillers with the same bottom face?
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The free adjunction

Adj := the free adjunction, a 2-category with
@ objects + and —
o Adj(+,+) = Adj(—, )P :
o Adj(—,+) = Adj(+,-)? = «

I
+

Theorem (Schanuel-Street). 2-functors Adj — qCat, correspond
to adjunctions in gCat,. J

N—
N— ~—ue—r
id n uf ue ufuf —ufnr—ufufuf---

—ufn—> <—ufue—
—ufufn—

—N— ~<—ue

77 J—

<—ufue— —ufufn>

<ufufue—
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The free homotopy coherent adjunction

Conjecture. The free homotopy coherent adjunction is Adj,
regarded as a simplicial category under 2-Cat — sSet-Cat.

n-arrows are strictly undulating squiggles on n + 1 lines

ST s W NN RO

+ o vt W R

Proposition. Adj is a simplicial computad (i.e., cofibrant). |
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Homotopy coherent adjunctions

Theorem. Any adjunction Adj — gCat, lifts to a homotopy
coherent adjunction Adj — qCat . J

Theorem. Such extensions are homotopically unique: the spaces
of extensions are contractible Kan complexes.
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Homotopy coherent monads

Mnd := full subcategory of Adj on +.

Definition. A homotopy coherent monad is a simplicial functor
T: Mnd — gCat,., i.e., J

e +— B e gCat,,
o -5 BB =: the monad resolution

7’)7%
,’,L
12 —tp—13 ...
—tn— <~—tu—o
—ttn—>

3

3

idp t

.

and higher data, e.g., 12

/'~ N\

t=——=1
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Weighted limits

Fix a simplicial functor 7', a diagram of shape A.

A weight is a simplicial functor W: A — sSet. )

The weighted limit {W, T} represents the simplicial set of cones
of shape W over T.

Key facts:
@ The limit weighted by hom, evaluates at a.

@ The weighted limit bifunctor is cocontinuous in the weights.

Upshot: Weights built by gluing representables will define cones of
the expected shape. J
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Weighted limits in the quasi-categorical context

Proposition. gCat_, has all limits weighted by projective cofibrant
simplicial functors. J

Mnd

i %
hom+

Mlh:; sSet
T %
Mnd

Adj a simplicial computad = W, and W_ projective cofibrant.
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The Eilenberg-Moore quasi-category

Fix a homotopy coherent monad 7': Mnd — gCat_,
o (W, T}=B
o {W_,T} =: BJt], the Eilenberg-Moore quasi-category
By definition
Blt] =eq(B > = B +* =)

SO a vertex is a map o — B of the form:

_ N
i 12
i 2 27 —tn—=>,3
bt P T b
<~—tf— —ttn—>
<~—ttf—

and higher data, e.g., . 1)

N

b
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The monadic homotopy coherent adjunction

..is all in the weights!

T}

Adj® hom_ GetAdi _res sSetMnd = qCat2

- = hom_ ~ W_ ~  BJt]
T I

\

+ ~ hom; =~ Wi — B

Proposition. If V' < W is identity-on-0-cells, then
{W,T} — {V, T} is conservative. Eg, Wy - W_. J

Corollary. The monadic forgetful functor u!: B[t] — B is
conservative.
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Codescent in the Eilenberg-Moore category

Suppose (b, B) is an algebra for a monad ¢ on a category B.

Fact. There is a canonical colimit diagram in B][t]

—tt, 5>

3y SN g B>,
t°b tu» t“b <tn tb ﬁ» b
‘\ ~<tn— \ —H—,
\ — >/ v/ 77
\ / E

n

which is a ul-split reflexive coequalizer diagram, and preserved by
¢

u'.
P —— B[t

(b, B) ~ a ul-split (augmented) simplicial object J/ lut
~—B
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Codescent in the Eilenberg-Moore quasi-category

Theorem. Every vertex in BJt| is the colimit of a canonical
ul-split simplicial object that is preserved by u'.

Proof. By cocontinuity,

P X Wy —> o X Wy (W, T} —=B[t] ¥
l o d —I \L t
|_ u
1p x W_ W B * res B j_p
Blt]
> vl N iconst in qCat,.
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Codescent in the Eilenberg-Moore quasi-category

Theorem. Blt]

const
.
{W,T} — B[] + —~BI[t]

ev_q

defines an absolute left lifting diagram in gCat, that u’ preserves.

Proof. Similar to:

Theorem. B defines an absolute left lifting

vl
const
ﬂ

B>~—>B"
res

diagram in gCat, that is preserved by any functor.

Proof. See "The 2-category theory of quasi-categories.”
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The classical monadicity theorem
Let ¢ be the monad induced by an adjunction f - .

Theorem (Beck).

@ There is a comparison functor commuting with the
adjunctions.

@ If A has u-split coequalizers, then R has a left adjoint.

@ If u preserves them, then L is fully faithful.

@ If u is conservative, then L 4 R is an adjoint equivalence.

Goal. Prove the analogous theorem for the homotopy coherent
monad of a homotopy coherent adjunction.
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Defining the comparison map

/Ad' L qCat,
Mud ——F —~  Blf] = {W_,res H} = {lanW_, H}

Weights for the monadic adjunction, revisited.
@ weight for the Eilenberg-Moore quasi-category: lanres hom_

@ weight for the monadic adjunction: lanres hom

lan

The counit of SSetAAl? sSetMnd  defines a map of weights
lan res hom — hom and hence a natural transformation

between homotopy coherent adjunctions.
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The weight for u-split simplicial objects

Define a weight

°P x homy —> o X hom {(W H} —= A"
o J u

] 2
°P x hom_ w’ B~ B

res

Definition. The quasi-category A admits colimits of u-split
simplicial objects if there is an absolute left lifting diagram

A

%f lconst n gCatQ.

(W' HY —> A
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The proof of the monadicity theorem

Proof.

The obvious map W’ — lan W_ induces B[t] — {W' H}.

If A has colimits of u-split simplicial objects, define

L= B[t] —» {W' H} <™ 4.

From the universal property of absolute left liftings, L - R.

If u preserves these colimits, then u! carries the unit of L 4 R
to an isomorphism.

As u! is conservative, the unit is an isomorphism.

If u is conservative, it follows that the counit is also an
isomorphism, and A ~ BJt] is an adjoint equivalence of
quasi-categories.
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Further reading

@ "The 2-category theory of quasi-categories” arXiv:1306.5144.

o “A weighted limits proof of monadicity” on the n-category
café.

@ "Homotopy coherent adjunctions and the formal theory of
monads” — coming soon!
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