# Cellularity, composition, and morphisms of algebraic weak factorization systems

#### **Emily Riehl**

University of Chicago http://www.math.uchicago.edu/~eriehl

19 July, 2011 International Category Theory Conference University of British Columbia

# Algebraic weak factorization systems

### A weak factorization system $(\mathcal{L}, \mathcal{R})$

• has left and right classes  $\mathcal L$  and  $\mathcal R$  of maps s.t.  $\mathcal L \ni \ell$ 

# An algebraic weak factorization system $(\mathbb{L}, \mathbb{R})$

- $\bullet$  has a comonad  $\mathbb L$  and monad  $\mathbb R$  arising from a functorial factorization
- coalgebras are left maps; algebras are right maps
- (co)algebra structures witness membership and solve lifting problems

#### Examples

- (monos,epis) in Set
- (injective with projective cokernel, surjective) in Mod<sub>R</sub>

# Cellularity

#### Motivating example

- There is an algebraic weak factorization system on **Top** whose coalgebras for the comonad are relative cell complexes.
- Hence, we call the maps admitting a coalgebra structure cellular.
- Not all cofibrations (elements of the left class of the weak factorization system) are cellular: cellularity is a condition!
- Generic cofibrations are retracts of relative cell complexes, equivalently, coalgebras for the pointed endofunctor of the comonad.

# Composition

#### Composing coalgebras in Top

• A coalgebra structure for a relative cell complex  $i \colon A \to B$  is a cellular decomposition:

$$A = A_0 \longrightarrow A_1 \longrightarrow A_2 \longrightarrow \cdots \longrightarrow B$$

each object obtained by attaching cells.

- Cellular cofibrations can be composed: the composite of two relative cell complexes is one again.
- Furthermore, the coalgebra structures are composable: the composite is equipped with a canonical cellular decomposition.

#### In general

• Coalgebras for the comonad of an algebraic weak factorization system can be composed and the composition is functorial.

# Composition, continued

#### Composing algebras in sSet

- Kan fibrations admit algebra structures for the monad of an algebraic weak factorization system.
- An algebra structure is a choice of fillers for all horns



• Algebra structures are composable: Define  $\phi_{qf}$  by



# Morphisms of algebraic weak factorization systems

#### Preliminary definition.

A morphism between two algebraic weak factorization systems is

• a natural transformation comparing their functorial factorizations



• that induces functors  $\mathbb{L}\text{-}\mathbf{coalg} \to \mathbb{L}'\text{-}\mathbf{coalg}, \mathbb{R}'\text{-}\mathbf{alg} \to \mathbb{R}\text{-}\mathbf{alg}$ ; i.e., defines a colax morphism of comonads and a lax morphism of monads

We will define morphisms between algebraic weak factorization systems on different categories lifting (two-variable) adjunctions.

# Weak factorization systems

#### Definition

A weak factorization system (wfs)  $(\mathcal{L}, \mathcal{R})$  on a category  $\mathcal{M}$ :

ullet (factorization) there exists a functorial factorization  $\mathcal{M}^2 o\mathcal{M}^3$ :



- (lifting)  $\mathcal{L} \boxtimes \mathcal{R}$ :  $\mathcal{L} \ni \ell \bigvee_{r \in \mathcal{R}} r \in \mathcal{R}$
- ullet (closure) furthermore  $\mathcal{L}={}^{oxdot}\mathcal{R}$  and  $\mathcal{R}=\mathcal{L}^{oxdot}$

# Algebraic left and right maps

Left maps are coalgebras and right maps are algebras, resp., for the pointed endofunctors  $L, R: \mathcal{M}^2 \rightrightarrows \mathcal{M}^2$  with  $\epsilon: L \Rightarrow 1, \eta: 1 \Rightarrow R$ .

#### Algebraic right maps

$$f \in \mathcal{R} \quad \text{iff} \qquad \underset{t \neq f}{\text{left}} f \quad \text{iff} \qquad f \neq \underbrace{\begin{array}{c} Lf \\ Rf \\ \end{array}} f \quad \text{iff} \quad f \in (R, \eta) \text{-alg}$$

#### Algebraic left maps



# Algebraic lifts

### Recall

$$i \in \mathcal{L}$$
 iff  $i \bigvee_{s \in \mathcal{L}} Ri$ 

$$f \in \mathcal{R}$$
 iff  $Lf \bigvee_{Rf} f$ 

#### Constructing lifts

Given a coalgebra (i,s) and an algebra (f,t), any lifting problem





# Algebraic weak factorization systems

### Definition (Grandis, Tholen)

An algebraic weak factorization system (awfs)  $(\mathbb{L}, \mathbb{R})$  on a category  $\mathcal{M}$ :

 $\bullet$  a comonad  $\mathbb{L}=(L,\epsilon,\delta)$  and a monad  $\mathbb{R}=(R,\eta,\mu)$ 

#### such that

- ullet  $(L,\epsilon)$  and  $(R,\eta)$  come from a functorial factorization
- ullet the canonical map  $LR \Rightarrow RL$  is a distributive law.

 $\mathbb{L}\text{-coalgebras}$  lift against  $\mathbb{R}\text{-algebras}$  —but so do  $(L,\epsilon)\text{-coalgebras}$  and  $(R,\eta)\text{-algebras}$  . Hence the underlying wfs has

 $\mathcal{L}=% \mathcal{L}$  retract closure of the  $\mathbb{L}$ -coalgebras

 $\mathcal{R}=\ \text{retract closure of the }\mathbb{R}\text{-algebras}$ 

# Cellularity

### Cellular maps

A map in the left class of an underlying wfs of an awfs  $(\mathbb{L}, \mathbb{R})$  is cellular if it admits an  $\mathbb{L}$ -coalgebra structure.

#### Examples

- In Top, there is an awfs such that the relative cell complexes are the cellular maps.
- In sSet, there is an awfs such that the left class is the monomorphisms, all of which are cellular.

### Lemma (R.)

In a cofibrantly generated awfs, all right maps admit  $\mathbb{R}\text{-algebra}$  structures.

# Cofibrantly generated algebraic weak factorization systems

#### Cofibrantly generated wfs

A wfs  $(\mathcal{L}, \mathcal{R})$  is cofibrantly generated if there exists a set  $\mathcal{J}$  such that  $\mathcal{J}^{\square} = \mathcal{R}$ . Quillen's small object argument constructs the factorizations.

### Theorem (Garner)

A small category of arrows  ${\mathcal J}$  generates an awfs  $({\mathbb L},{\mathbb R})$  such that

- ullet there is a canonical isomorphism  $\mathbb{R} ext{-}\mathbf{alg}\cong\mathcal{J}^{oxtimes}$
- there exists a canonical functor  $\mathcal{J} \to \mathbb{L}\text{-}\mathbf{coalg}$  over  $\mathcal{M}^2$ , universal among morphisms of awfs

This second universal property says

- ullet morphisms of awfs  $(\mathbb{L},\mathbb{R}) o (\mathbb{L}',\mathbb{R}') ext{ } \longleftrightarrow \mathcal{J} o \mathbb{L}'$ -coalg
- ullet i.e., a morphism exists iff the generators  ${\mathcal J}$  are cellular for  ${\mathbb L}'.$

# A sample theorem

### Theorem (R.)

 $|-|: \mathbf{sSet} \rightleftarrows \mathbf{Top} : S$  is an adjunction of awfs.

- left class in sSet are the monomorphisms, all uniquely cellular
- map via |-| to relative cell complexes with a specified coalgebra structure, here a cellular (in fact CW-) decomposition
- right class in **Top** are the algebraic trivial fibrations, equipped with chosen lifted contractions



ullet map via S to algebraic trivial fibrations with chosen sphere fillers

# Toward adjunctions of awfs

### Adjunctions interact well with ordinary wfs:

Given  $F \colon \mathcal{K} \rightleftarrows \mathcal{M} \colon U$  and wfs on  $\mathcal{K}$  and  $\mathcal{M}$ 

ullet F preserves the left class iff U preserves the right class

$$\operatorname{in} \mathcal{M} \qquad F_i \bigvee_{i} f \qquad \cdots \qquad i \bigvee_{i} U_f \quad \operatorname{in} \mathcal{K}$$

#### In an adjunction of awfs, want:

- ullet a lift of U to a functor between the categories of algebras
- ullet a lift of F to a functor between the categories of coalgebras
- the lifts to somehow determine each other

One way to make this precise uses the theory of mates. Alternatively ...

# Awfs encoded as double categories

### Lemma (Garner)

An awfs  $(\mathbb{L}, \mathbb{R})$  gives rise to and can be recovered from either of two double categories  $\mathbb{C}\mathbf{oalg}(\mathbb{L})$  or  $\mathbb{A}\mathbf{lg}(\mathbb{R})$ .

$$\mathbb{A}\mathbf{lg}(\mathbb{R}): \qquad \mathbb{R}\text{-}\mathbf{alg} \times_{\mathcal{M}} \mathbb{R}\text{-}\mathbf{alg} \xrightarrow{\circ} \mathbb{R}\text{-}\mathbf{alg} \xrightarrow{s} \mathcal{M}$$

- ullet objects and horizontal 1-cells are the objects and morphisms of  ${\mathcal M}$
- ullet vertical 1-cells and squares the the objects and morphisms of  $\mathbb{R} ext{-}\mathbf{alg}$

There is a forgetful double functor  $Alg(\mathbb{R}) \to Sq(\mathcal{M})$ .

# Vertical composition of awfs algebras and coalgebras

The essential point is that there is a canonical vertical composition law for algebras functorial with respect to  $\mathbb{R}$ -algebra morphisms:

# Example: $(\mathbb{L}, \mathbb{R})$ generated by $\mathcal{J}$

Algebra structures for  $f, g \in \mathbb{R}$ -alg  $\cong \mathcal{J}^{\square}$  are lifting functions  $\phi_f, \phi_g$ against all  $i \in \mathcal{J}$ .



This composition law encodes the comultiplication for  $\mathbb{L}$  (and dually).

# Adjunctions of algebraic weak factorization systems

#### Lemma/Definition

Given an adjunction  $F \colon \mathcal{K} \rightleftarrows \mathcal{M} \colon U$  together with awfs  $(\mathbb{L}, \mathbb{R})$  on  $\mathcal{K}$  and  $(\mathbb{L}', \mathbb{R}')$  on  $\mathcal{M}$ , the following data are equivalent and define an adjunction of awfs  $(F, U) \colon (\mathbb{L}, \mathbb{R}) \to (\mathbb{L}', \mathbb{R}')$ .

- a double functor  $\mathbb{C}\mathbf{oalg}(\mathbb{L}) \to \mathbb{C}\mathbf{oalg}(\mathbb{L}')$  lifting F
- a double functor  $\mathbb{A}\mathbf{lg}(\mathbb{R}') \to \mathbb{A}\mathbf{lg}(\mathbb{R})$  lifting U
- functors  $F \colon \mathbb{L}\text{-}\mathbf{coalg} \to \mathbb{L}'\text{-}\mathbf{coalg}$  and  $U \colon \mathbb{R}'\text{-}\mathbf{alg} \to \mathbb{R}\text{-}\mathbf{alg}$  whose characterizing natural transformations are mates

# Corollary (composition criterion)

A lifted right adjoint  $U \colon \mathbb{R}'$ -alg  $\to \mathbb{R}$ -alg defines an adjunction of awfs iff it preserves vertical composition of algebras.

# The cellularity theorem

# Theorem (R.)

Given  $F \colon \mathcal{K} \rightleftarrows \mathcal{M} \colon U$ , an awfs  $(\mathbb{L}, \mathbb{R})$  on  $\mathcal{K}$  generated by  $\mathcal{J}$ , an awfs  $(\mathbb{L}', \mathbb{R}')$  on  $\mathcal{M}$ ,

ullet  $F\dashv U$  is an adjunction of awfs iff  $F\mathcal{J}$  is cellular, i.e., iff there exists

$$\begin{array}{ccc} \mathcal{J} - - & \mathbb{L}'\text{-coalg} \\ \downarrow & & \downarrow \\ \mathcal{K}^2 & \xrightarrow{F} & \mathcal{M}^2 \end{array}$$

• Furthermore, the adjunction of awfs is determined by the coalgebra structures assigned to elements of  $F\mathcal{J}$ .

#### Corollary (R.)

The functor  $\mathcal{J} \to \mathbb{L}\text{-}\mathbf{coalg}$  constructed by Garner's small object argument is universal among adjunctions of awfs.

# Proof of the cellularity theorem

#### Proof:

- ullet define  $\mathbb{R}' ext{-}\mathbf{alg} o\mathbb{R} ext{-}\mathbf{alg}\cong\mathcal{J}^{oldsymbol{oldsymbol{arphi}}}$  to be the composite

$$\mathbb{R}'$$
-alg  $\xrightarrow{\text{lift}}$   $(\mathbb{L}'$ -coalg) $^{\square} \xrightarrow{\text{res}} (F\mathcal{J})^{\square} \xrightarrow{\text{adj}} \mathcal{J}^{\square}$ 

each functor preserves vertical composition

# Two-variable adjunctions and enrichment

#### Definition

A two-variable adjunction consists of pointwise adjoint bifunctors

$$\otimes : \mathcal{K} \times \mathcal{M} \to \mathcal{N} \quad \hom_{\ell} : \mathcal{K}^{\mathrm{op}} \times \mathcal{N} \to \mathcal{M} \quad \hom_{r} : \mathcal{M}^{\mathrm{op}} \times \mathcal{N} \to \mathcal{K}$$

#### Examples

A closed monoidal structure  $(\otimes, \hom_{\ell}, \hom_{r}) \colon \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ .

A tensored and cotensored enriched category  $(\odot, \{\}, \hom) \colon \mathcal{V} \times \mathcal{M} \to \mathcal{M}$ .

### Induced two-variable adjunctions

$$(\hat{\otimes}, \hat{\mathrm{hom}}_\ell, \hat{\mathrm{hom}}_r) \colon \mathcal{K}^\mathbf{2} \times \mathcal{M}^\mathbf{2} \to \mathcal{N}^\mathbf{2} \quad \text{ e.g., } (\Lambda^2_1 \to \Delta^2) \hat{\otimes} (\partial \Delta^1 \to \Delta^1) \text{ is }$$



# Two-variable adjunctions of awfs

### Definition (R.)

A two-variable adjunction of awfs consists of

- a two-variable adjunction  $(\otimes, \hom_{\ell}, \hom_{r}) \colon \mathcal{K} \times \mathcal{M} \to \mathcal{N}$
- ullet awfs  $(\mathbb{L},\mathbb{R})$  on  $\mathcal{K}$ ,  $(\mathbb{L}',\mathbb{R}')$  on  $\mathcal{M}$ , and  $(\mathbb{L}'',\mathbb{R}'')$  on  $\mathcal{N}$
- lifted functors

$$-\hat{\otimes}-: \mathbb{L}\text{-coalg} \times \mathbb{L}'\text{-coalg} \to \mathbb{L}''\text{-coalg} \ \ \hat{\mathrm{hom}}_{\ell}(-,-): \mathbb{L}\text{-coalg}^{\mathrm{op}} \times \mathbb{R}''\text{-alg} \to \mathbb{R}'\text{-alg} \ \hat{\mathrm{hom}}_{r}(-,-): \mathbb{L}'\text{-coalg}^{\mathrm{op}} \times \mathbb{R}''\text{-alg} \to \mathbb{R}\text{-alg}$$

such that their characterizing natural transformations are parameterized mates.

Sadly, the lifted functors don't even preserve *composability* of (co)algebras.

# The composition criterion

### Theorem (R.)

A lifted functor  $\hat{\mathrm{hom}}(-,-)\colon \mathbb{L}'\text{-}\mathbf{coalg}^\mathrm{op}\times \mathbb{R}''\text{-}\mathbf{alg}\to \mathbb{R}\text{-}\mathbf{alg}$  determines a two-variable adjunction of awfs iff, given  $i\in \mathbb{L}'\text{-}\mathbf{coalg}$  and composable  $f,g\in \mathbb{R}''\text{-}\mathbf{alg}$ ,  $\hat{\mathrm{hom}}(i,gf)\in \mathbb{R}\text{-}\mathbf{alg}$  solves a lifting problem against  $j\in \mathbb{L}\text{-}\mathbf{coalg}$  as follows:



and also satisfies a dual condition in the first variable.

# The cellularity theorem

# Theorem (R.)

Given a two-variable adjunction  $\otimes \colon \mathcal{K} \times \mathcal{M} \to \mathcal{N}$ , awfs  $(\mathbb{L}, \mathbb{R})$  and  $(\mathbb{L}', \mathbb{R}')$  on  $\mathcal{K}$  and  $\mathcal{M}$  generated by  $\mathcal{J}$  and  $\mathcal{J}'$ , and an awfs  $(\mathbb{L}'', \mathbb{R}'')$  on  $\mathcal{N}$ ,

•  $\otimes$  is a two-variable adjunction of awfs iff  $\mathcal{J} \hat{\otimes} \mathcal{J}'$  is cellular, i.e., iff there exists

$$\begin{array}{ccc} \mathcal{J}\times\mathcal{J}'--*\mathbb{L}''\text{-coalg}\\ & \downarrow & & \downarrow\\ \mathcal{K}^2\times\mathcal{M}^2 \stackrel{\hat{\otimes}}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \mathcal{N}^2 \end{array}$$

• Furthermore, the two-variable adjunction of awfs is determined by the coalgebra structures assigned to elements of  $\mathcal{J}\hat{\otimes}\mathcal{J}'$ .

### Sample Theorems (R.)

Quillen's model structure on  $\mathbf{Set}$  and the folk model structure on  $\mathbf{Cat}$  are (cartesian) monoidal algebraic model structures.

# Acknowledgments

#### **Thanks**

Thanks to the organizers, Eugenia Cheng, Richard Garner, Martin Hyland, Peter May, Mike Shulman, and the members of the category theory seminars at Chicago, Macquarie, and Sheffield.

#### Further details

Further details can be found in

- "Algebraic model structures" New York J. Math 17 (2011) 173-231
- "Monoidal algebraic model structures" a preprint available at www.math.uchicago.edu/~eriehl
- my Ph.D. thesis "Algebraic model structures" available at www.math.uchicago.edu/~eriehl