
SKETCHES OF AN ELEPHANT: AN INTRODUCTION TO TOPOS THEORY

EMILY RIEHL

Abstract. We briefly outline the history of topos theory, from its origins in sheaf theory
which lead to the notion of a Grothendieck topos, through its unification with categorical logic
which lead to the notion of an elementary topos, to a glimpse of the modern topos-theoretic
outlook. P.T. Johnstone describes this point of view as “the rejection of the idea that there
is a fixed universe of ‘constant’ sets within which mathematics can and should be developed,
and the recognition that the notion of ‘variable structure’ may be more conveniently handled
within a universe of continuously variable sets.” Time permitting, we’ll sketch an application
of the universal language of the topos of sheaves on the spectrum of a commutative ring that
allows one to regard the ring as a local ring, at least locally.
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1. Sheaves of spaces

In calculus one studies continuous or continuously differentiable or 𝑘-times continuously
differentiable functions 𝑓∶ 𝑈 ⊂ ℝ𝑛 → ℝ which might only be defined on certain (typically
open) regions in Euclidean space: eg 𝑓(𝑥, 𝑦) = 1

𝑥−𝑦 , which is a 𝐶∞-function on the comple-

ment of the diagonal 𝑥 = 𝑦 in the plane ℝ2. This leads naturally to the consideration of the
sheaf of continuous real-valued functions of 𝑛-variableswhose data is given by a family of sets

𝐶(𝑈,ℝ) = {continuous functions 𝑓∶ 𝑈 ⊂ ℝ𝑛 → ℝ}
for each open 𝑈 ⊂ ℝ𝑛. What structure does this family of sets have?
• Firstly there are naturally defined restriction functions: whenever 𝑉 ⊂ 𝑈 we have a func-

tion

𝐶(𝑈,ℝ) 𝐶(𝑉,ℝ)

𝑓 𝑓|𝑉

res𝑈𝑉

and this assignment is functorial. Put concisely, the family𝐶(𝑈,ℝ) defines a contravariant
functor

𝐶(−,ℝ) ∶ Oop → Set

Date: Talk in the Johns Hopkins Category Theory Seminar, Fall 2019.
1



2 EMILY RIEHL

whereO is the poset of open subsets ofℝ𝑛, with an object for each𝑈 ⊂ ℝ𝑛 and amorphism
𝑉 → 𝑈 iff 𝑉 ⊂ 𝑈.

• Secondly there is a gluing property: whenever 𝑓 ∈ 𝐶(𝑈,ℝ) and 𝑔 ∈ 𝐶(𝑉,ℝ) restrict to
the same function 𝑓|𝑈∩𝑉 = 𝑔|𝑈∩𝑉 ∈ 𝐶(𝑈 ∩𝑉,ℝ), there is a unique continuous extension
𝑓 ∪ 𝑔 ∈ 𝐶(𝑈 ∪ 𝑉,ℝ) on account of the following pushout in the category of spaces and
continuous functions:

𝑈 ∩ 𝑉 𝑈

𝑉 𝑈 ∩ 𝑉

ℝ

⌜ 𝑓

𝑔

𝑓∪𝑔

This can be expressed more categorically by saying that the functor 𝐶(−,ℝ) carries the
pushout defining 𝑈 ∪ 𝑉 by gluing 𝑈 and 𝑉 along 𝑈 ∩ 𝑉 to a pullback in the category of
sets

𝐶(𝑈 ∪ 𝑉,ℝ) 𝐶(𝑈,ℝ)

𝐶(𝑉,ℝ) 𝐶(𝑈 ∩ 𝑉,ℝ)

res𝑈∪𝑉
𝑈

res𝑈∪𝑉
𝑉

⌟
res𝑈𝑈∩𝑉

res𝑉𝑈∩𝑉

An analogous gluing property holds for any open cover 𝑈 = ∪𝑖𝑈𝑖.
This leads to the following definition.

defn. A sheaf (of sets) 𝐹 on a space 𝑋 is
• a presheaf 𝐹∶ Oop → Set indexed by the open set lattice of 𝑋
• so that for all open covers 𝑈 = ∪𝑖𝑈𝑖 the set 𝐹(𝑈) is the equalizer of the pair of functions

∏
𝑖 𝐹(𝑈𝑖) ∏

𝑖,𝑗 𝐹(𝑈𝑖 ∩ 𝑈𝑗)
res

𝑈𝑖
𝑈𝑖∩𝑈𝑗

res
𝑈𝑗
𝑈𝑖∩𝑈𝑗

There are several important examples.

ex. Sheaves on a space 𝑋 with open set lattice O include:
(i) For 0 ≤ 𝑘 ≤ ∞, there is a sheaf 𝑈 ↦ 𝐶𝑘(𝑈,ℝ) of 𝑘-times continuously differentiable

real-valued functions on 𝑋.
(ii) For any fixed space 𝑌, there is a sheaf 𝑈 ↦ 𝐶(𝑈,𝑌) of continuous functions 𝑈 → 𝑌.
(iii) There is a sheaf 𝑈 ↦ {𝑉 ∈ O ∣ 𝑉 ⊂ 𝑈}.
(iv) For any fixed open subset 𝑉 ⊂ 𝑋, there is a sheaf O(−, 𝑉) defined by

𝑈 ↦ O(𝑈,𝑉) =
⎧⎪⎨
⎪⎩
∗ if 𝑈 ⊂ 𝑉
∅ if 𝑈 ⊄ 𝑉

(v) For any fixed continuous function 𝑝∶ 𝑌 → 𝑋, there is a sheaf Γ𝑝 defined by

𝑈 ↦ Γ𝑝𝑈 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑌

𝑈 𝑋

𝑝𝑠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
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whose elements are local sections, continuous functions 𝑠 ∶ 𝑈 → 𝑌 so that 𝑝𝑠 coincides
with the inclusion of 𝑈 into 𝑋.

non-ex. For a fixed set 𝑆, the constant functor 𝑈 ↦ 𝑆 defines a presheaf Oop → Set that is
a sheaf if and only if 𝑆 is the singleton set.

The following result reveals that all sheaves of spaces can be realized as sheaves of local
sections of a suitable defined continuous function 𝑝∶ 𝑌 → 𝑋 that has the special property
of being étale, meaning that each 𝑦 ∈ 𝑌 has an open neighborhood on which 𝑝 restricts to
a homeomorphism. For any sheaf or indeed presheaf 𝐹 and any point 𝑥 ∈ 𝑋, the stalk of 𝐹
at 𝑥 is the filtered colimit colim𝑈∋𝑥𝐹(𝑈), indexed by the open neighborhoods 𝑈 ∋ 𝑥, of the
sets 𝐹(𝑈). In particular each 𝑠 ∈ 𝐹(𝑉), where 𝑉 ∋ 𝑥, represents an element of the stalk of
𝐹 at 𝑥. When 𝐹 is the sheaf of continuous real-valued functions, these elements, which are
called germs, can be thought of as equivalence classes of continuous functions that agree in
an infinitesimal neighborhood of the point 𝑥. The disjoint union ∐

𝑥∈𝑋 colim𝑈∋𝑥𝐹(𝑈) of the
stalks is equipped with the finest topology that makes the maps

𝑈 ∐
𝑥∈𝑋 colim𝑉∋𝑥𝐹(𝑉)

𝑦 (𝑦, [𝑠])

𝜎𝑈𝑠

continuous for each 𝑠 ∈ 𝐹(𝑈), and defines a space over 𝑋 via the projection whose fibers are
exactly the stalks.

For this result and others to follow, we include a modern reference where a detailed proof
can be found, with apologies to the original discoverers.

Theorem ([J, 0.24]). For any space 𝑋 with poset of open subsets O, there is an adjunction between
the category of presheaves on O and the category of spaces over 𝑋

SetO
op

Space/𝑋

𝐿

⊥

Γ

that restricts to define an adjoint equivalence between the category of sheaves on 𝑋 and the category
of étale spaces over 𝑋.

Shv(𝑋) Etale/𝑋

𝐿
∼
⊥

Γ
∼

Proof. The right adjoint Γ takes a space 𝑝∶ 𝑌 → 𝑋 over 𝑋 to the sheaf of local sections over
𝑋. The left adjoint 𝐿 takes a presheaf 𝐹 to the étale mapping

𝜋∶ 􏾢
𝑥∈𝑋

colim𝑈∋𝑥𝐹(𝑈) → 𝑋

whose fiber over 𝑥 is the stalk of 𝐹. Note the topology of the space of stalks is arranged
to guarantee that there is a canonical local section 𝜎𝑈𝑠 associated to each 𝑠 ∈ 𝐹(𝑈). This
defines the components of the unit natural transformation 𝜂∶ 𝐹 → Γ𝐿(𝐹) for any 𝐹 ∈ SetO

op
.

Conversely, for any 𝑝∶ 𝑌 → 𝑋 there is a canonical mapping 𝜖 ∶ 𝐿Γ𝑝 → 𝑌 over 𝑋 defined by
choosing a representative 𝑠 ∈ Γ𝑝(𝑈) for each germ of 𝑥 and evaluating to obtain a point
𝑠(𝑥) ∈ 𝑌 in the fiber over 𝑥. This is well-defined and gives the components of the counit
natural transformation. �
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The colimits that define the stalks are filtered colimits, meaning that for each pair of open
neighborhoods 𝑈,𝑉 ∋ 𝑥 there is a common refinement 𝑈 ∩ 𝑉 ∋ 𝑥. It follows that the left
adjoint 𝐿 preserve finite limits. Hence:

Corollary ([J, 0.25]). The category of sheaves on𝑋 defines a lex reflective subcategory of the category
of presheaves, which is to say that the inclusion admits a finite-limit-preserving left adjoint

Shv(𝑋) SetO
op⊥

Γ𝐿

called the associated sheaf functor.

Proof. The claimed adjunction is defined as the composite of the adjunction 𝐿 ⊣ Γ with the
adjoint equivalence

Shv(𝑋) Etale/𝑋 SetO
op

𝐿
∼

⊥⊥
Γ

Γ
∼

𝐿

�

Exercise. What does it mean for 𝐹∶ Oop → Set to be a sheaf if 𝑋 is discrete or indiscrete?
What does the sheaf condition mean when 𝑋 is your favorite finite topological space?

2. Generalizations

The characterization of sheaves as sheaves of continuous sections of the canonical projec-
tion from the space of stalks is special to sheaves of spaces, and has no analog for the more
general notions of sheaves. However, the characterization of the category of sheaves as a lex
reflective subcategory of the category of presheaves is prototypical and in fact characterizes
the Grothendieck topoi, which are typically defined in a different manner.

defn. A Grothendieck topos Shv(C, 𝜏) is a lex reflective subcategory of the category of pre-
sheaves indexed by an arbitrary small category C

Shv(C, 𝜏) SetC
op⊥

𝑎

As the notation suggests, for eachGrothendieck topos Shv(C, 𝜏) there is a way to character-
ize which presheaves 𝐹∶ Cop → Set define sheaves. The 𝜏 in this notation refers to something
called a Grothendieck topology, which is analogous to the topology encoded by the open set
lattice O associated to a topological space 𝑋. We decline to give the full definition here but
describe the main idea.

Objects 𝑈 ∈ C can be thought of as analogous to the “open sets” that parametrize a sheaf
on a space. As before, a presheaf 𝐹∶ Cop → Set comes with specified “restriction functions”
𝐹𝑓∶ 𝐹𝑈 → 𝐹𝑉 associated to each arrow 𝑓∶ 𝑉 → 𝑈 in C. To state the condition that tells
us which presheaves are sheaves, we need to specify which families of arrows with codomain
𝑈 define “open covers” of 𝑈, playing the role of the family of inclusions 𝑈𝑖 ↪ 𝑈 in an open
cover 𝑈 = ∪𝑖𝑈𝑖 in O. The main part of what is entailed in a Grothendieck topology 𝜏 is
the specification of a collection of covering sieves for each 𝑈 ∈ C, these being subfunctors
𝑆 ↪ C(−,𝑈) of the representable functor determined by 𝑈. Then
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defn. A presheaf 𝐹∶ Cop → 𝑆𝑒𝑡 is a sheaf if for every covering sieve 𝑆 ↪ C(−,𝑈) of each
𝑈 ∈ C any map of presheaves admits a unique extension:

𝑆 𝐹

C(−,𝑈)
∃!

ex. In theminimial Grothendieck topology, the only covering sieves are the maximal covering
sieves, containing all arrows with fixed codomain. These correspond to the maximal subobject
C(−,𝑈) = C(−,𝑈). Hence every presheaf is a sheaf. In particular, for any C, the category of
presheaves SetC

op
is a Grothendieck topos.

See “sheaf toposes are equivalently the left exact localizations of presheaf toposes” on the
𝑛Lab for more.

Exercise. Convert the definition of a sheaf just given to one that expresses the set 𝐹(𝑈) as a
limit.

3. Elementary topoi

In the mid 1960s, Bill Lawvere introduced the elementary theory of the category of sets in
a paper by that same name, providing a categorical characterization of Set as a category. The
notion of an elementary topos grew out of a collaboration with Myles Tierney, culminating
in an axiomatization that captured many of the logical properties of the category of sets via
axioms that are also satisfied in any Grothendieck topos.

defn. An elementary topos is a category E that
• has finite limits,
• is cartesian closed, and
• has a subobject classifier, this being an object Ω ∈ E equipped with a distinguished

monomorphism ⊤∶ 1 ↣ E whose domain is necessarily terminal with the property that
arrows 𝐴 → Ω correspond bijectively to subobjects¹ of 𝐴, constructed by forming the
pullback

𝑆 1

𝐴 Ω

⌟
⊤

ex. The prototypical example is the category of sets, with Ω = {⊤,⊥} classifying subsets
𝑆 ⊂ 𝐴 via their characteristic function

𝐴 Ω

𝑎
⎧⎪⎨
⎪⎩
⊤ if 𝑎 ∈ 𝑆
⊥ if 𝑎 ∉ 𝑆

𝜒𝑆

Importantly, every Grothendieck topos is an elementary topos.

Theorem. SetC
op
, and Shv(C, 𝜏) are elementary topoi.

¹A subobject of 𝐴 is a monomorphism 𝑆 ↣ 𝐴 up to isomorphism: if 𝑆 and 𝑆′ are isomorphic over 𝐴, they
represent the same subobject.
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Proof. Famously the category SetC
op

is cartesian closed with 𝐺𝐹(𝑈) defined to be the set of
natural transformations 𝐹 × C(−,𝑈) → 𝐺. This category is also complete and cocomplete.
By the Yoneda lemma, the subobject classifier Ω ∈ SetC

op
must be defined so that Ω(𝑈) is

the set of subobjects of C(−,𝑈). Thus, we define Ω(𝑈) to be the set of sieves on 𝑈.
As a lex reflective subcategory of SetC

op
, Shv(C, 𝜏) is complete and cocomplete, with limits

formed as in SetC
op

and colimits formed by applying the associated sheaf functor to the colimit
of presheaves. The exponential𝐺𝐹 for sheaves𝐺 and 𝐹 is defined as in SetC

op
. It follows from

the fact that 𝑎 preserves products that this is automatically a sheaf. By adjunction and the
Yoneda lemma, the subobject classifier is defined by taking Ω(𝑈) to be the set of subobjects
of the associated sheaf of C(−,𝑈). Further details can be found in [MM]. �

This proof reveals that all Grothendieck topoi have all limits and colimits, not merely finite
ones. Thus, we have the following example of an elementary topos that is not a Grothendieck
topos.

ex. The category of finite sets is an elementary topos, with finite limits, exponentials, and
subobject classifier inherited from the topos of sets.

The original definition of elementary topos included an axiom requiring the existence of
finite colimits. Christian Mikkelsen later noticed that this is unnecessary, and Bob Paré found
a particularly elegant justification for the redundancy:

Theorem ([MM, §IV.5]). For any elementary topos E, the functor Ω− ∶ Eop → E is monadic.
Consequently, any elementary topos has all finite colimits, created by the contravariant power object
functor.

Not only are elementary topoi cartesian closed, but they are locally cartesian closed, mean-
ing that for each 𝑓∶ 𝐴 → 𝐵 in E, the pullback functor admits left and right adjoints

E/𝐵 E/𝐴𝑓∗

∑𝑓
⊥

∏𝑓

⊥

This follows from a result sometimes referred to as the “fundamental theorem of elementary
topos theory” and the fact that locally cartesian closed categories are equivalently character-
ized as cartesian closed categories whose slice categories E/𝐴 are again cartesian closed.

Theorem ([MM, IV.7.1]). For any elementary topos E and any object 𝐴 ∈ E, E/𝐴 is an elementary
topos.

We advertised elementary topoi as categories that have many of the logical properties of
the category of sets. To see this note that we can form the following constructions in any
elementary topos:
• Each object 𝐴 ∈ E has a power objectΩ𝐴 whose elements 1 → Ω𝐴 classify subobjects of
𝐴.

• The membership relation is encoded by the evaluation map 𝜖𝐴 ∶ 𝐴 × Ω𝐴 → Ω, arising
from the cartesian closed structure on E.

• The identity relation is encoded by the map =𝐴 ∶ 𝐴 × 𝐴 → Ω that classifies the diagonal
subobject Δ𝐴 ∶ 𝐴 → 𝐴 × 𝐴.
Moreover, in an elementary topos the set of subobjects of a fixed object𝐴 naturally admits

the structure of a Heyting algebra, a cartesian closed bicomplete poset. Consequently:
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Theorem. The subobject classifier in an elementary topos admits the structure of a internal Heyting
algebra, admitting maps

1 Ω Ω ×Ω
⊤

⊥

¬
⇐

∨

∧

satisfying axioms that can be expressed internally to any category with finite limits.

4. The internal language

The idea of the logic encoded by an elementary topos can be made more precise. The
Mitchell-Bénabou language has types and terms, used to build formulae, which can be inter-
preted in the topos. We briefly sketch its definition.

defn. In the Mitchell-Bénabou language:

• Types 𝐴, 𝐵, 𝐶, correspond to objects of E.
• Terms, which will be represented by arrows of E and belong to the type corresponding to

their codomain, are built inductively from:
– variables 𝑎, 𝑎′, 𝑎″ of type 𝐴, which are interpreted by the identity map;
– by pairing terms 𝑢 ∶ 𝐴 and 𝑣 ∶ 𝐵, represented by maps 𝑢∶ 𝑈 → 𝐴 and 𝑣∶ 𝑉 → 𝐵, to

form a term ⟨𝑢, 𝑣⟩ ∶ 𝐴 × 𝐵, which is represented by the map 𝑢 × 𝑣∶ 𝑈 × 𝑉 → 𝐴 × 𝐵;
– by composing a function 𝑓∶ 𝐴 → 𝐵 with a term 𝑢 ∶ 𝐴 to obtain a new term 𝑓 ∘ 𝑢 ∶ 𝐵

represented by the composite function;
– by applying a term 𝜙 ∶ 𝐵𝐴 to a term 𝑢 ∶ 𝐴 to obtain a term 𝜙(𝑢) ∶ 𝐵 represented by the

composite function

𝑈 × 𝑉 𝐴 × 𝐵𝐴 𝐵
𝑢×𝜙 𝜖

– in the special case, by applying a term 𝜏 ∶ Ω𝐴 to a term 𝑢 ∶ 𝐴 to obtain a term 𝑢 ∈ 𝜏 ∶ Ω
represented by the composite function

𝑈 ×𝑊 𝐴 ×Ω𝐴 Ω𝑢×𝜏 𝜖

– by combining a variable 𝑎 ∶ 𝐴 with a term represented by a function 𝜎∶ 𝐴 × 𝐵 → 𝐶 to
obtain a term 𝜆𝑎.𝜎 ∶ 𝐶𝐴 represented by the function 𝜎∶ 𝐵 → 𝐶𝐴.

Terms of type Ω are called formulae. For instance, given two terms 𝑢, 𝑣 ∶ 𝐴, the composite
morphism

𝑈 × 𝑉 𝑈 × 𝑉 Ω𝑢×𝑣 =𝐴

defines a formula 𝑢 =𝐴 𝑣. Formulae can be combined using the operations ∧, ∨, ⇒, and ¬
to form combined propositional formulae. In addition, any elementary topos has “internal
adjoints” to the constant arrow

Ω Ω𝐴Δ

∃

∀

that can be used to quantify formulae involving a free variable of type 𝐴.
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5. All rings are locally local rings

Let 𝑅 be a commutative, unital ring and consider its set Spec(𝑅) of prime ideals, equipped
with the Zariski topology, whose basic opens are the sets𝑂𝑟 = {𝔭 ∈ Spec(𝑅) ∣ 𝑟 ∉ 𝔭} indexed
by elements 𝑟 ∈ 𝑅. By the first theorem above, we can define a sheaf on Spec(𝑅) by defining
an étale space over Spec(𝑅). We build this from the local rings

𝑅𝔭 = {
𝑟
𝑠
∣ 𝑟, 𝑠 ∈ 𝑅, 𝑠 ∉ 𝔭}.

These are local rings: satisfying the condition that for each 𝑥 ∈ 𝑅𝔭 either 𝑥 or 1−𝑥 is invertible.
We equip the disjoint union ∐

𝔭∈Spec(𝑅) 𝑅𝔭 with the finest topology that makes the maps

𝑂𝑠 ∐
𝔮∈Spec(𝑅) 𝑅𝔮

𝔭 (𝔭, 𝑟𝑠 )

𝜎𝑟𝑠

continuous for all 𝑟, 𝑠 ∈ 𝑅. This defines the structure space of the ring 𝑅.

Theorem ([B, 2.11.8,9,15]). The structure space defines an étale space

𝜋∶ 􏾢
𝔭∈Spec(𝑅)

𝑅𝔭 → Spec(𝑅)

whose corresponding sheaf of local sections Γ is a sheaf of rings. Furthermore, the ring of global sections
Γ(Spec(𝑅)) is isomorphic to 𝑅.

A sheaf of rings is a sheaf valued in the category Ring of rings rather than the category Set
of sets. This allows us to think about Γ as a ring object in the category of sheaves of sets on
Spec(𝑅). The following result explains the sense in which the “ring” Γ is “locally a local ring.”

Proposition ([B, 2.11.16]). Let 𝑅 be a commutative ring with unit and Γ the sheaf of local sections of
the corresponding structure space. Then for every open 𝑈 ⊂ Spec(𝑅) and 𝜎 ∈ Γ(𝑈), there exists an
open cover𝑈 = ∪𝑖𝑈𝑖 such that for each 𝑖 either 𝜎|𝑈𝑖 is invertible in Γ(𝑈𝑖) or (1 − 𝜎)|𝑈𝑖 is invertible
in Γ(𝑈𝑖).

The Kripke-Joyal semantics tells us how to determine the validity of a formula 𝜑 written
in the internal language of a topos. In the topos of sheaves on the space Spec(𝑅) we have a
formula

∀𝑥 ∶ Γ, (∃𝑢 ∶ Γ, 𝑥 ⋅ 𝑢 = 1) ∨ (∃𝑣 ∶ Γ, (1 − 𝑥) ⋅ 𝑣 = 1).
Each 𝑟 ∈ 𝑅 defines a global section 𝑟 ∈ Γ(Spec(𝑅)), so the previous result tells us there exists
an open cover ∪𝑖𝑈𝑖 of Spec(𝑅) so that for each 𝑈𝑖 either 𝑟|𝑈𝑖 or (1 − 𝑟)|𝑈𝑖 is invertible. In the
Kripke-Joyal semantics, this tells us that this formula is then valid. This justifies treating the
commutative ring 𝑅 as if it were “locally a local ring” when proving theorems in the internal
logic of the topos of sheaves on the space Spec(𝑅).
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