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Abstract. In previous work, we introduce an axiomatic framework within which to
prove theorems about many varieties of infinite-dimensional categories simultaneously. In
this paper, we establish criteria implying that an ∞-category — for instance, a quasi-
category, a complete Segal space, or a Segal category — is complete and cocomplete,
admitting limits and colimits indexed by any small simplicial set. Our strategy is to
build (co)limits of diagrams indexed by a simplicial set inductively from (co)limits of
restricted diagrams indexed by the pieces of its skeletal filtration. We show directly
that the modules that express the universal properties of (co)limits of diagrams of these
shapes are reconstructible as limits of the modules that express the universal properties of
(co)limits of the restricted diagrams. We also prove that the Yoneda embedding preserves
and reflects limits in a suitable sense, and deduce our main theorems as a consequence.
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1. Introduction

This paper is a continuation of previous work [RV-I, RV-II, RV-III, RV-IV, RV-V, RV-VI,
RV-VII] to lay the foundations for the formal theory of ∞-categories, which model weak
higher categories. In contrast with the pioneering work of Joyal [J08] and Lurie [L09, L17],
our approach is “synthetic” in the sense that our proofs do not depend on what precisely
these ∞-categories are, but rather rely upon an axiomatisation of the universe in which
they live. To describe an appropriate “universe,” we introduce the notion of an ∞-cosmos,
a (large) simplicially enriched category K satisfying certain axioms. The objects of an ∞-
cosmos are called ∞-categories. A theorem, e.g. [RV-IV, 4.1.10] reproduced as Definition
3.1.2, that characterises a cartesian fibration of∞-categories in terms of the presence of an
adjunction between comma ∞-categories, is a result about the objects of any ∞-cosmos,
and thus applies of course to every ∞-cosmos.

The prototypical example is the∞-cosmos whose objects are quasi-categories, a model of
(∞, 1)-categories as simplicial sets satisfying the weak Kan condition, and whose function
complexes are the quasi-categories of functors between them. But there are other ∞-
cosmoi, whose objects are complete Segal spaces or Segal categories, each of these being
models of (∞, 1)-categories ; and of θn-spaces, or iterated complete Segal spaces, or n-
trivial saturated complicial sets, each modelling (∞, n)-categories. For any ∞-cosmos K
containing an ∞-category B, the slice category K/B is again an ∞-cosmos. Thus each of
these objects are ∞-categories in our sense and our theorems apply to all of them.1 Along
the road to our main theorems here, we prove that cartesian and cocartesian fibrations
over fixed or varying bases define ∞-cosmoi (see Propositions 3.2.14 and 3.2.18). While
we only require a minor consequence of these results here, they lay the foundations for a
complementary approach to parametrised ∞-category that is very much in the spirit of
[BDG+16, S16].

Our first paper in this series [RV-I] develops the basic theory of limits or colimits of
diagrams indexed by a simplicial set X and valued in an ∞-category A. In the case
where X is the nerve of an ordinary 1-category, this data is traditionally thought of as
defining a “homotopy coherent” diagram of that shape in A. In this paper, we shall explain
how to construct such limits inductively using the canonical skeletal decomposition of the
simplicial set X, in which the cells attached at stage n are indexed by the set LnX ⊂ Xn

1This may seem like sorcery but in some sense it is really just the Yoneda lemma. To a close approxima-
tion, an ∞-cosmos is a “category of fibrant objects enriched over quasi-categories.” When the Joyal–Lurie
theory of quasi-categories is expressed in a sufficiently categorical way, it extends to encompass analogous
results for the corresponding “representably defined” notions in a general ∞-cosmos.
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of non-degenerate n-simplices: ∐
LnX

∂∆n � � //

��

∐
LnX

∆n

��

∅ � � // sk0X
� � // sk1X

� � // sk2X skn−1X
� � // sknX colimn sknX ∼= X

(1.0.1)

The skeletal description gives rise to a presentation of the diagram ∞-category AX as
the limit in the ∞-cosmos of a countable tower of restriction functors, each of which is
a pullback of a product of maps of the form A∆n

� A∂∆n . We will argue that limits
of X-indexed diagrams in A can be defined inductively provided that A admits products,
pullbacks, and sequential inverse limits—though since sequential inverse limits may be built
from countable products and pullbacks we are only required to postulate the existence of
the first two of these.2 This allows us to provide criteria for ascertaining that an∞-category
A is complete (or, dually, cocomplete), obtaining a generalisation of a result [L09, 4.4.2.6]
that Lurie has proven for quasi-categories via a similar decomposition of the indexing
simplicial set (see [L09, §4.2.3]):

6.3.9. Theorem. Suppose that κ is a regular cardinal and that A is an ∞-category that
admits products of cardinality < κ and pullbacks. If X is a κ-presentable simplicial set
then A admits all limits of diagrams of shape X.

To explain the proof strategy, consider a pushout diagram of simplicial sets

X �
�

//

��

Y

��

Z �
�

// P

and suppose that an∞-category A admits limits of shape X, Y , and Z and also pullbacks,
which are limits of shape ⌟ := Λ2,2. A diagram d ∈ AP restricts to sub-diagrams dX ∈ AX ,
dY ∈ AY , and dZ ∈ AX . By hypothesis, these each have limits `X , `Y , and `Z which can be
seen to assemble into an internal diagram d⌟ := `Y → `X ← `Z in A⌟, which by hypothesis
also has a limit `⌟. In Proposition 6.3.8, we argue that `⌟ defines a limit for the original
P -shaped diagram d.

To explain why this is the case, we appeal to one of many equivalent definitions of a
limit of a diagram valued in an∞-category. In general, ` ∈ A defines a limit for a diagram
d ∈ AP if ` represents the∞-category of cones ∆↓d over d; see §5.2 for precise definitions.
This representability is encoded by an equivalence A ↓ ` ' ∆ ↓ d of modules from 1 to A,
these modules being the ∞-categories defined by pullbacks in the ∞-cosmos:

A ↓ `

����

// A2

(p1,p0)
����

∆ ↓ d //

����

(AP )2

(p1,p0)
����

1× A `×id
// A× A 1× A d×∆

// AP × AP

2We thank Tim Campion for pointing out this retrospectively obvious fact to us.
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So our hypothesised limits for the sub-diagrams of d provide equivalences A ↓ `X ' ∆↓dX ,
A ↓ `Y ' ∆ ↓ dY , and A ↓ `Z ' ∆ ↓ dZ , and similarly, the universal property of `⌟ as
the limit of the ⌟-shaped diagram d⌟ is encoded by an equivalence A ↓ `⌟ ' ∆ ↓ d⌟ of
modules.

We must show that `⌟ has the stronger universal property of representing cones over the
diagram d, i.e., that A ↓ `⌟ is equivalent to ∆ ↓ d. Since the diagram P is a pushout, it
follows easily that the ∞-category of P -shaped cones ∆ ↓ d is isomorphic to the pullback:

∆ ↓ d

����

// ∆ ↓ dY

����

∆ ↓ dZ // ∆ ↓ dX
This result appears as Lemma 6.3.3. So we may demonstrate the desired equivalence by
arguing that A ↓ `⌟ is the pullback of the equivalent cospan

A ↓ `Y //

'

��

A ↓ `X
'

��

A ↓ `Zoo

'

��

∆ ↓ dY // ∆ ↓ dX ∆ ↓ dZoo

in the large quasi-category of modules from 1 to A. To demonstrate this, and similar
results for products and inverse limits of sequences, we prove that

6.2.9. Proposition. For any ∞-category A, the covariant and contravariant Yoneda em-
beddings

FunK(1, A) ↪→ 1ModA and FunK(1, A)op ↪→ AMod1
co

preserves any family of limits which is stable under precomposition in K.

The clause “stable under precomposition in K” has to do with a subtlety in the statement:
the Yoneda embedding appearing there is external, defined as a functor of quasi-categories,
rather than internal to the∞-cosmos K. The limits it preserves are those arising from the
∞-cosmos in which A is defined, which are detectable as those limits in the underlying
quasi-category FunK(1, A) of the ∞-category A that are “stable under precomposition.”
This condition disappears when K is the ∞-cosmos of quasi-categories, in which case this
result is first proven by Lurie in [L09, 5.1.3.2].

To prove Proposition 6.2.9, in turn, we must first analyse limits in (large) quasi-categories
such as 1ModA that are defined as homotopy coherent nerves of Kan-complex-enriched
categories. A companion paper [RV-VII] does exactly this. There, we consider a general
notion of pseudo homotopy limit of a homotopy coherent diagram, defined to be a particular
flexible weighted limit whose universal property is satisfied up to equivalence of quasi-
categories. The main theorem, recalled as Theorem 6.1.1 below, demonstrates that limits
in the quasi-category 1ModA transpose across the homotopy coherent realisation–homotopy
coherent nerve adjunction to pseudo homotopy limits in the Kan-complex-enriched category
of modules from 1 to A. In §6.1, we provide explicit calculations of the pseudo homotopy
limits needed to prove Theorem 6.3.9 and its dual.
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While the steps in the proof of Theorem 6.3.9 certainly contain more subtleties than
in the classical case, the construction given here of a general limit out of iterations of
simpler limits, is entirely analogous to the proof of the classical 1-category theoretic result
presented, for instance, in [R16, 3.4.12].

This paper contains all of the background needed to fill in the details of this outline,
with the proofs of these results appearing in §6. To concisely cite previous work in this
program, we refer to the results of [RV-I, RV-II, RV-III, RV-IV, RV-V, RV-VI, RV-VII]
as I.x.x.x., II.x.x.x, III.x.x.x, IV.x.x.x, V.x.x.x, VI.x.x.x, or VII.x.x.x respectively, though
the statements of the most important results are reproduced here for ease of reference.
When an external reference accompanies a restated result, this generally indicates that
more expository details can be found there.

In §2, we introduce ∞-cosmoi and flexible weighted limits, and then recall the notion
of an absolute lifting diagram as defined in the homotopy 2-category of an ∞-cosmos.
In §3, we define cartesian fibrations, cocartesian fibrations, and the accompanying notion
of modules between ∞-categories. We also prove a new general result in ∞-cosmology,
demonstrating that the subcategories

coCart(K)/B ↪→ K/B and Cart(K)/B ↪→ K/B (1.0.2)
of (co)cartesian fibrations and cartesian functors between them define ∞-cosmoi, as sub-
categories of the sliced ∞-cosmos.

Perhaps the main technical challenge in extending the classical categorical theory of lim-
its and colimits to the ∞-categorical context is in merely defining the Yoneda embedding
that appears in Proposition 6.2.9; a comparable amount of work is involved in our favourite
construction of the quasi-categorical Yoneda embedding, exposed by Cisinski in [C19, §5].
In [RV-VI], the Yoneda embedding is constructed as an instance of the versatile compre-
hension construction. This material is reviewed in §4. For any fixed cocartesian fibration
p : E � B in an∞-cosmos K and∞-category A, the comprehension construction produces
a simplicial functor

CFunK(A,B)
cp,A−−→ coCart(K)/A ⊂ K/A

defined on a vertex a : A→ B by the pullback:

Ea

pa
����

`a // E

p
����

A a
// B

whose codomain is the Kan-complex-enriched core of the subcategory ofK/A spanned by the
cocartesian fibrations and cartesian functors. The functor cp,A transposes to define a func-
tor from the quasi-category FunK(A,B) of functors from A to B to the large quasi-category
of cocartesian fibrations over A. The Yoneda embedding is defined as the restriction of a
particular instance of this, obtained by applying this result to the arrow∞-category, which
defines a cocartesian fibration (p1, p0) : A2 � A× A in the sliced ∞-cosmos K/A.
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In §5, we provide an brief introduction to synthetic ∞-category theory developed in an
∞-cosmos, focusing on the theory of limits and colimits and the functors that preserve
them. The new material in this section develops the theory of fully faithful and strongly
generating functors, isolating the formal properties of the Yoneda embedding that will
allow us to prove Proposition 6.2.9. Finally, in §6, we define the pseudo homotopy limits
appearing in the statement of Theorem 6.1.1 and compute some explicit examples. We
then apply the material of §3 and §5 to the Yoneda embedding of §4 to prove Proposition
6.2.9, and then use this to prove our main theorem.

While many of the results herein will be familiar to the ∞-categorically well informed
reader, the context in which they are applied and the approach we take to their proofs is
likely to be more novel. When specialised to an ∞-cosmos of (∞, 1)-categories, Theorem
6.3.9 appears as [L09, 4.4.2.6], Proposition 6.2.9 appears as [L09, 5.1.3.2], and Theorem
6.1.1 appears as [L09, 4.2.4.1] and will thus be familiar to the quasi-categorical cognoscenti,
but our extension of these results to an arbitrary ∞-cosmos allows us to press them into
service to explicate certain aspects of the meta-theory of other species of ∞-category. Our
guiding light in developing these works has been the pro-arrow equipment [W82, W85]
and Yoneda structure [SW78] based accounts of classical 1-category theory. For example,
the preservation result developed in Proposition 6.2.9 is a direct analogue of an important
component of the pro-arrow axiomatics. The arguments given here also lead, in subsequent
work, to independent proofs of the exponentiability of (co)cartesian fibrations of quasi-
categories (and generalisations to certain higher contexts) and of the density of the point
in spaces (in certain ∞-cosmoi of fibred ∞-categories). Furthermore, our foundations
will (eventually) make substantial use of the fact that the flexible weighted limit-creating
inclusions (3.2.18) of Proposition 3.2.16 define monadic functors between the corresponding
large quasi-categories.

We might also note, in passing, that the proofs leading to Theorem 6.3.9 may be gen-
eralised to deliver other important results of that kind. For example, when our ambient
∞-cosmos K is cartesian closed then it is natural to study limits of diagrams indexed by
∞-categories in K, rather than by simplicial sets external to it. In that situation, our
approach to these results leads to an analogue of Proposition 6.3.8 which applies to pseudo
homotopy colimits of diagram shapes in K. Indeed, similar comments apply to an endeav-
our close to our hearts, that of generalising results of this kind to the (∞,∞)-categorical
theory of complicial sets [V08]. The extension of many of the methods we present here to
that, much more general, context is largely a matter of taking a little more care to push
markings (or stratifications) around our homotopy coherent structures; this, however, is a
topic for another work.

1.1. Size conventions. The quasi-categories defined as homotopy coherent nerves are
typically large. All other quasi-categories or simplicial sets, particularly those used to index
homotopy coherent diagrams, are assumed to be small. In particular, when discussing the
existence of limits and colimits we shall implicitly assume that these are indexed by small
categories, and correspondingly, completeness and cocompleteness properties will implicitly
reference the existence of small limits and small colimits. Here, as is typical, “small” sets
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will usually refer to those members of a Grothendieck universe defined relative to a fixed
inaccessible cardinal.

Our intent is to provide a size classification which allows us state and prove results
that require such a distinction for non-triviality, principally those of the form “such and
such a large category admits all small limits”. Our arguments mostly comprise elementary
constructions, so in applications this size distinction need not invoke the full force of a
Grothendieck universe, indeed it might be as simple as that between the finite and the
infinite. At the other extreme it might involve the choice of two Grothendieck universes to
prove results about large categories.

We use a common typeface — e.g. A, K, 1Mod(K)A — to differentiate small and large
quasi-categories from generic ∞-categories A; see 4.1.1.

1.2. Acknowledgements. The authors are grateful for support from the National Science
Foundation (DMS-1551129 and DMS-1652600) and from the Australian Research Council
(DP160101519). This work was commenced when the second-named author was visiting
the first at Harvard and then at Johns Hopkins, continued while the first-named author
was visiting the second at Macquarie, and completed after everyone finally made their way
home. We thank all three institutions for their assistance in procuring the necessary visas
as well as for their hospitality.

We owe an additional debt of gratitude to the referee who pointed out a simplification of
the proof of the converse half of Theorem 6.1.1, which had originally appeared here, allowing
us to move the proofs of both directions of the biconditional to [RV-VII]. In addition to
a number of other cogent mathematical and expository suggestions which precipitated a
cascading reorganisation of the present manuscript, the referee directed us to results in the
literature we had overlooked. We apologise to those authors and encourage them to write
to us directly if in the future we again fail to do our due diligence.

2. ∞-cosmoi and flexible weighted limits

In this section we review the axiomatic framework for the formal theory of∞-categories,
introducing the notion of an ∞-cosmos in an abbreviated §2.1. In §2.2, we review some of
the more exotic flexible weighted limits that exist in any ∞-cosmos. This will be used to
establish the new ∞-cosmoi of §3.

In §2.3, we recall the homotopy 2-category of an ∞-cosmos and the notion of absolute
lifting diagrams, which encode universal properties of∞-categories using the structure of a
strict 2-category of∞-categories, ∞-functors, and∞-natural transformations constructed
as a quotient of an ∞-cosmos. The universal properties expressed by absolute lifting
diagrams can also be encoded internally to the ∞-cosmos as a fibred equivalence between
comma ∞-categories, which are the subject of §2.4.

2.1. ∞-cosmoi and the comma construction. An ∞-cosmos is a category K whose
objects A,B we call ∞-categories and whose function complexes FunK(A,B) are quasi-
categories of functors between them. The handful of axioms imposed on the ambient
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quasi-categorically enriched category K permit the development of a general theory of ∞-
categories “synthetically,” i.e., only in reference to this axiomatic framework, as we shall
discover in §5.

2.1.1. Definition (∞-cosmos). An ∞-cosmos is a simplicially enriched category K whose
• objects we refer to as the ∞-categories in the ∞-cosmos, whose
• hom simplicial sets FunK(A,B) are quasi-categories,

and that is equipped with a specified subcategory of isofibrations, denoted by “�”, satis-
fying the following axioms:

(a) (completeness) As a simplicially enriched category, K possesses a terminal object
1, small products, cotensors AU of objects A by all small simplicial sets U , inverse
limits of countable sequences of isofibrations, and pullbacks of isofibrations along
any functor.

(b) (isofibrations) The class of isofibrations contains the isomorphisms and all of the
functors ! : A � 1 with codomain 1; is stable under pullback along all functors; is
closed under inverse limit of countable sequences; and if p : E � B is an isofibration
in K and i : U ↪→ V is an inclusion of simplicial sets then the Leibniz cotensor
i t̂ p : EV � EU ×BU BV is an isofibration. Moreover, for any object X and
isofibration p : E � B, FunK(X, p) : FunK(X,E)� FunK(X,B) is an isofibration of
quasi-categories.

For ease of reference, we refer to the limit types listed in axiom (a) as the cosmological
limit types, these referring to diagrams of a particular shape with certain maps given by
isofibrations.

The underlying category of an∞-cosmos K has a canonical subcategory of representably-
defined equivalences, denoted by “ ∼−−→”, satisfying the 2-of-6 property: a functor f : A→ B
is an equivalence just when the induced functor FunK(X, f) : FunK(X,A)→ FunK(X,B) is
an equivalence of quasi-categories for all objects X ∈ K. The trivial fibrations, denoted
by “ ∼−�”, are those functors that are both equivalences and isofibrations. These axioms
imply that the underlying 1-category of an∞-cosmos is a category of fibrant objects in the
sense of Brown. Consequently, many familiar homotopical properties follow from Definition
2.1.1. For instance, the axioms of an ∞-cosmos permit us to construct arrow and comma
∞-categories as particular simplicially enriched limits.

2.1.2. Definition (comma ∞-categories). For any ∞-category A, the simplicial cotensor

A2 := A∆1 (p1,p0)
// // A∂∆1 ∼= A× A

defines the arrow ∞-category A2, equipped with an isofibration (p1, p0) : A2 � A × A,
where p1 : A2 � A and p0 : A2 � A denote the codomain and domain projections.
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More generally, any pair of functors f : B → A and g : C → A in an ∞-cosmos K has
an associated comma ∞-category, constructed by the following pullback in K:

f ↓ g //

(p1,p0)

����

A2

(p1,p0)

����

C ×B
g×f
// A× A

2.1.3. Proposition (maps between commas, VII.3.1.4). A natural transformation of co-
spans on the left of the following display gives rise to the diagram of pullbacks on the
right

C
g
//

c
��

A

a
��

B
f

oo

b
��

C ′
g′
// A′ B′

f ′
oo

 

f ↓ g //

����

A2

����

f ′ ↓ g′ //

����

(A′)2

����

C ×B
g×f

// A× A

C ′ ×B′
g′×f ′

// A′ × A′

&&

c×b ''

a2

&&

a×a
''

in which the uniquely induced dashed map completing the commutative cube is denoted

↓(b, a, c) : f ↓ g → f ′ ↓ g′.
Moreover, ↓(b, a, c) is an isofibration (resp. trivial fibration, equivalence) whenever the
components a, b and c are all maps of that kind.

The axioms defining an ∞-cosmos are intentionally quite sparse so that there will be
many examples, such as:

2.1.4. Proposition (∞-cosmoi of isofibrations, VII.2.1.6). For any ∞-cosmos K, there is
an ∞-cosmos K which has:
• objects all isofibrations p : E � A in K;
• functor space from p : E � A to q : F � B defined by taking the pullback

FunK2(p, q) //

����

FunK(E,F )

FunK(E,q)
����

FunK(A,B)
FunK(p,B)

// FunK(E,B)

in simplicial sets so, in particular, the 0-arrows from p to q are commutative squares

E

p
����

g
// F

q
����

A
f
// B

(2.1.5)
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in K;
• equivalences those squares (2.1.5) whose components f and g are equivalences in K and
isofibrations (resp. trivial fibrations) those squares for which the map f and the induced
map E 99K A×B F (and thus also g) are isofibrations (resp. trivial fibrations) in K.

The cosmological limits are defined object-wise in K, or in other words are jointly created
by the domain and codomain projections dom, cod: K2 → K.

A cosmological functor is a simplicial functor K → L between ∞-cosmoi that preserves
the classes of isofibrations and all the cosmological limits. For instance, the domain and
codomain projections dom, cod: K2 → K are both cosmological. The cosmological functor
cod: K2 → K has a special property: namely its fibres define ∞-cosmoi: the sliced ∞-
cosmoi K/B of Example IV.2.1.11.

2.2. Flexible weighted limits in an ∞-cosmos. The basic simplicially-enriched limit
notions enumerated in axiom 2.1.1(a) imply that an ∞-cosmos K possesses a much larger
class of simplicially enriched limits. Before describing them recall the general notion of
a weighted limit of a simplicially enriched functor valued in a simplicial category C with
hom-spaces dented by MapC(X, Y ).

2.2.1. Definition. A weight for a diagram indexed by a small simplicial category A is a
simplicial functor W : A → SSet . A W -cone over a diagram F : A → C in a simplicial
category C is comprised of an object L ∈ C together with a simplicial natural transformation
λ : W → MapC(L, F−). Such a cone displays L as a W -weighted limit of F if and only if
for all X ∈ C the simplicial map

MapC(X,L)
∼= // MapSSetA(W,MapC(X,F−)) (2.2.2)

given by post-composition with λ is an isomorphism, in which case the limit object L is
typically denoted by {W,F}A or simply {W,F}. In this notation, the universal property
(2.2.2) of the weighted limit asserts an isomorphism

MapC(X, {W,F}A)
∼= // {W,MapC(X,F−)}A.

2.2.3. Definition (flexible weights). For a small simplicial category A and pair of objects
[n] ∈ � and A ∈ A, the projective n-cell associated with A is the simplicial natural
transformation:

∂∆n ×MapA(A,−) ↪→ ∆n ×MapA(A,−).

A weight W : A → SSet is a flexible if the inclusion ∅ ↪→ W may be expressed as a
countable composite of pushouts of coproducts of projective cells.

2.2.4. Proposition (VII.4.1.5). Let K be an ∞-cosmos and let A be a small simplicial
category.

(i) For any diagram F : A → K and flexible weight W : A → SSet , the weighted limit
{W,F} exists in K.



ON THE CONSTRUCTION OF LIMITS AND COLIMITS IN ∞-CATEGORIES 11

(ii) If κ : F ⇒ G is a simplicial natural transformation between two such diagrams
whose components are equivalences, isofibrations, or trivial fibrations in K and W
is a flexible weight, then the induced map

{W,F}
{W,κ}

// {W,G}

is an equivalence, isofibration, or trivial fibration (respectively) in K.

When working in a quasi-categorically enriched category K it is often the case that we
are only interested in weighted (co)limits that are defined up to equivalence rather than
isomorphism. To that end we have the following definition:

2.2.5. Definition (flexible weighted homotopy limits). Suppose that W : A → SSet is a
flexible weight and that F : A → K is a diagram in a quasi-categorically enriched category
K. We say that a W -cone λ : W → FunK(L,−) displays an object L ∈ K as a flexible
weighted homotopy limit of F weighted by W if for all objects X ∈ K the map

FunK(X,L)
' // {W,FunK(X,F−)}A. (2.2.6)

induced by post-composition with λ is an equivalence of quasi-categories,3 in which case
we denote the limit object by {W,F}'A.

2.3. Absolute lifting diagrams and (relative) adjunctions. Recall the quotient ho-
motopy 2-category of an ∞-cosmos:

2.3.1. Definition (the homotopy 2-category of an ∞-cosmos). The homotopy 2-category
of an ∞-cosmos K is defined by applying the homotopy category functor h : QCat → Cat
to the functor spaces of the ∞-cosmos:
• The objects of h∗K are the objects of K, i.e., the ∞-categories.
• The 1-cells f : A → B of h∗K are the vertices f ∈ FunK(A,B) in the functor spaces of
K, i.e., the ∞-functors.

• A 2-cell A
f
%%

g

99
⇓α B in h∗K is represented by a 1-arrow α : f → g ∈ FunK(A,B), where

a parallel pair of 1-arrows in FunK(A,B) represent the same 2-cell if and only if they
bound a 2-arrow whose remaining outer face is degenerate.

2.3.2. Definition (dual ∞-cosmoi). For any ∞-cosmos K, write Kco for the ∞-cosmos
with the same objects but with the opposite functor spaces

FunKco(A,B) := FunK(A,B)op.

The homotopy 2-category of Kco is the “co” dual of the homotopy 2-category of K, reversing
the 2-cells but not the 1-cells.

3Here we show that the codomain of the comparison map in (2.2.6) is a quasi-category by applying
Proposition 2.2.4 in the ∞-cosmos of quasi-categories.
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Pleasingly, some of the formal theory of ∞-categories can be developed in these strict
2-categories of ∞-categories, ∞-functors, and ∞-natural transformations.

2.3.3. Definition. An adjunction between∞-categories A,B ∈ K is simply an adjunction
in the homotopy 2-category h∗K: i.e., is comprised of a pair functors f : B → A and
u : A → B, together with a pair of 2-cells η : idB ⇒ uf and ε : fu ⇒ idA satisfying the
triangle identities.

We shall also make use of the following “partial adjunction” notion:

2.3.4.Definition (absolute right lifting). Given a cospan C g−→ A
f←− B, a functor ` : C → B

and a 2-cell

⇓λ

B

f
��

C

`
??

g
// A

(2.3.5)

define an absolute right lifting of g through f if any 2-cell as displayed below-left factors
uniquely through λ as displayed below-right

X

c
��

b //

⇓α

B

f
��

C g
// A

=

X

c
��

b //

∃!⇓ᾱ

⇓λ

B

f
��

C

`

>>

g
// A

(2.3.6)

When this property holds, we say that the triangle displayed in (2.3.5) as an absolute right
lifting diagram.

2.3.7. Remark. In category theory, the term “absolute” typically means “preserved by all
functors.” In that spirit, an absolute right lifting diagram is a right lifting diagram λ : f`⇒
g with the property that the restriction of λ along any generalised element c : X → C again
defines a right lifting diagram.

2.3.8. Example. Importantly, f a u is an adjunction with counit ε : fu⇒ idA if and only
if the triangle

⇓ε

B

f
��

A

u
??

A

is an absolute right lifting diagram.

Directly from the universal property of absolute right lifting diagrams observe:
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2.3.9. Lemma (composition and cancellation of absolute right lifting diagrams). In any
2-category, suppose we are given a diagram

⇓λ

A

f
��

D

h
99

k //

l %%

B
g
��

⇓µ

C

and assume that the lower triangle is an absolute right lifting diagram. Then the upper
triangle is an absolute right lifting diagram if and only if the composite triangle displays h
as an absolute right lifting of l along gf . �

2.3.10. Definition. Transformations
B

f
��

v

!!

C
g
//

w   

A

u
  

B′

f ′
��

C ′
g′
// A′

(2.3.11)

between diagrams which admit absolute right liftings give rise to the following diagram

⇓λ

B

f
��

v

!!

C

`
>>

g
//

w   

A

u
  

B′

f ′
��

C ′
g′
// A′

=

B
v

  

C

`
>>

w   

⇓τ

⇓λ′

B′

f ′
��

C ′

`′
>>

g′
// A′

in which the triangles are absolute right liftings and the 2-cell τ is induced by the universal
property of the triangle on the right. We say that the transformation (2.3.11) is right exact
if and only if the induced 2-cell τ is an isomorphism. This right exactness condition holds
if and only if, in the diagram on the left, the whiskered 2-cell uλ displays v` as the absolute
right lifting of g′w through f ′.

2.3.12. Observation. Unpacking the definitions in any 2-category, λ : f` ⇒ g defines an
absolute right lifting diagram if and only if the induced functor

hom(X,B) ↓ hom(X, `)
∼=−→ hom(X, f) ↓ hom(X, g) (2.3.13)

defines an isomorphism of comma categories, natural inX. From the 2-categorical universal
property of these comma categories, it is now clear that λ : f` ⇒ g defines an absolute
right lifting diagram if and only if
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(i) for each object X, the diagram

⇓hom(X,λ)

hom(X,B)

hom(X,f)
��

hom(X,C)
hom(X,g)

//

hom(X,`)
66

hom(X,A)

(2.3.14)

defines an absolute right lifting diagram in Cat , and
(ii) moreover, each morphism e : Y → X induces a right exact transformation

hom(X,B)

hom(X,f)
��

hom(e,X)

((

hom(X,C)
hom(X,g)

//

hom(e,X) ((

hom(X,A)

hom(e,X)
((

hom(Y,B)

hom(Y,f)
��

hom(Y,C)
hom(Y,g)

// hom(X,A)

In fact, by the Yoneda lemma, it suffices to assume in (i) that hom(X, g) admits any
absolute right lifting along hom(X, f) for which the transformation induced from any
e : Y → X is right exact. Specialising to the case X = C reveals that these absolute left
liftings are represented by a morphism ` : C → B and 2-cell λ : f`⇒ g.

2.4. Fibred equivalences between comma ∞-categories. In general the homotopy
2-category of an ∞-cosmos will admit few 2-dimensional limit notions. Nonetheless, the
2-cell representing the horizontal functor in the defining pullback of the comma∞-category
of a cospan:

f ↓ g //

(p1,p0)

����

A2

(p1,p0)

����

C ×B
g×f
// A× A

f ↓ gp1
{{{{

p0
## ##

C

g $$

φf,gks B

fzzA

(2.4.1)

enjoys a weak universal property:

2.4.2. Proposition (IV.3.4.6). 2-cells in the homotopy 2-category h∗K of the form depicted
on the left in the following diagram

D
b //

c
��

B

f
��

C g
// A

αz� !

D

(c,b) ��

ᾱ // f ↓ g

(p1,p0)����

C ×B

stand in bijective correspondence to isomorphism classes of 1-cells in the slice 2-category
(h∗K)/C×B as shown on the right, with the action of this bijection, from right to left, is
given by composition with the comma square depicted in (2.4.1).
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We refer the curious reader interested in more details to §I.3.3 or §IV.3.2.

2.4.3. Observation. As an application of the weak universal property, we may generalise
the construction of Proposition 2.1.3 to diagrams in h∗K of the following form:

C
g

//

c
��

A

a
��

dl α
B

f
oo

b
��

C ′
g′

//

rz
β

A′ B′
f ′

oo

(2.4.4)

This may be glued onto the square that displays the comma f ↓g (2.4.1) to give the pasted
square on the left of the following diagram

f ↓ g
p1

||

p0

""
C
c
��

g

##

ks
φf,g

B
b
��

f

{{
C ′

g′ ##

A
a
��

B′

f ′{{

A′

ks β ks α
=

f ↓ g
∃ α↓β
��

f ′ ↓ g′
p′1

{{

p′0

##

C ′

g′ ##

ks
φf ′,g′

B′

f ′{{
A′

(2.4.5)

which induces a functor α ↓ β as shown on the right, by the weak 2-universal property of
f ′ ↓ g′. Indeed, the Proposition 2.4.2 tells us that α ↓ β is a representative of a uniquely
determined isomorphism class of such functors in K/C′×B′ .

This construction is functorial in the following sense, suppose that we are given a second
diagram of the form given in (2.4.4):

C ′
g′

//

c′
��

A′

a′
��

dl α′
B′

f ′
oo

b′
��

C ′′
g′′

//

rz
β′

A′′ B′′
f ′′

oo

We may juxtapose these two diagrams vertically to give the following diagram

f ↓ g
p1

{{

p0

##
C
c
��

g

##

ks
φf,g

B
b
��

f

{{
C ′

g′

##
c′
��

A
a
��

B′

f ′

{{
b′
��

C ′′

g′′ ##

A′

a′
��

B′′

f ′′{{

A′′

ks β ks α

ks β
′

ks α
′

=

f ↓ g
α↓β
��

f ′ ↓ g′
p′1

{{

p′0

##
C ′

g′

$$
c′
��

B′

f ′

zz
b′
��

C ′′

g′′ $$

A′

a′
��

B′′

f ′′zz

A′′

ks
φf ′,g′

ks β
′

ks α
′

=

f ↓ g
α↓β
��

f ′ ↓ g′

α′↓β′
��

f ′′ ↓ g′′
p′′1

zz

p′′0

$$

C ′′

g′′ $$

ks
φf ′′,g′′

B′′

f ′′zz
A′′
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in which we’ve applied the induction process depicted in (2.4.5) twice. Alternatively, take
the same diagram on the left and start by forming the pasting composites of each column
of squares

f ↓ g
p1

{{

p0

##
C
c
��

g

##

ks
φf,g

B
b
��

f

{{
C ′

g′

##
c′
��

A
a
��

B′

f ′

{{
b′
��

C ′′

g′′ ##

A′

a′
��

B′′

f ′′{{

A′′

ks β ks α

ks β
′

ks α
′

=

f ↓ g
p1

{{

p0

##
C

c′c

��

g

##

ks
φf,g

B

b′b

��

f

{{
A

a′a
��

C ′′

g′′ ##

B′′

f ′′{{

A′′

w�
β′r·p′β _g p

′α·α′q
=

f ↓ g

(p′α·α′q)↓(β′r·p′β)

��

f ′′ ↓ g′′
p′′1

zz

p′′0

$$

C ′′

g′′ $$

ks
φf ′′,g′′

B′′

f ′′zz
A′′

then apply the induction process depicted in (2.4.5) only once. It follows that the functors
(α′ ↓β′)(α↓β) and (p′α ·α′q) ↓ (β′r ·p′β) are both induced by the same diagram on the left
under the weak 2-universal property of f ′′ ↓ g′′, consequently there exists an isomorphism
between them in K/C′′×B′′ .

For instance, suppose that we are given triangle as in (2.3.5) of Definition 2.3.4, then we
may apply the construction of Observation 2.4.3 to the diagram

C
` // B

f
��

B

C g
// A B

f
oo

λ
z�

to give a functor B ↓λ : B ↓`→ f ↓g fibred over C×B, which detects whether the diagram
(2.3.5) is absolute right lifting:

2.4.6. Proposition (I.5.1.3). Given a cospan C g−→ A
f←− B then there exists an equivalence

f ↓ g ' B ↓ ` over C ×B if and only if there exists an absolute right lifting diagram of the
following form

⇓λ

B

f
��

C

`
??

g
// A

2.4.7. Remark. The construction in Observation 2.4.3 may clearly be regarded as being a
generalisation of that discussed in Proposition 2.1.3. There is, however, a good reason for
distinguishing them in the way we have. On the one hand, the construction in Proposi-
tion 2.1.3 relies only upon the strict universal property of the comma construction, and so
it delivers a uniquely determined map. On the other hand, the construction in Observa-
tion 2.4.3 depends upon a choice of functors representing a 2-cell and so is only defined up
to isomorphism. It is, nevertheless, the case that when both constructions apply the first
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provides a specific choice which is certainly a member of the isomorphism class determined
by the second.

This distinction becomes particularly important in situations where it is important to
infer that the map induced by a transformation of cospans is an isofibration. As we have
seen such results hold for the construction of Proposition 2.1.3, but they cannot reasonably
be expected to hold for that of Observation 2.4.3, simply because the class of isofibrations
is not closed under isomorphisms at the 2-cell level.

3. Cartesian fibrations and modules

In §3.1 we review the notions of cartesian and cocartesian fibrations between∞-categor-
ies, which combine to yield a two-sided structure we refer to as a module between ∞-cat-
egories; elsewhere this notion is called a profunctor or correspondence. Again, we neglect
to describe the full theory developed in [RV-IV], only recalling those aspects necessary to
understand the Yoneda embeddings of §4, which represent an element of an ∞-category A
as a module from A to 1 or 1 to A.

In §3.2, we prove that cartesian or cocartesian fibrations over a fixed base assemble
into an ∞-cosmos, with cosmological structure inherited from the sliced ∞-cosmos K/B.
This gives a new context for the results of [RV-VI] and allows to immediately apply the
main theorem of [RV-VII] to the large quasi-categories of cocartesian fibrations, cartesian
fibrations, or modules with a fixed base; see Examples 6.1.7 and 6.1.8.

3.1. Cartesian fibrations and modules. Cocartesian fibrations are isofibrations p : E �
B in an∞-cosmos K whose fibres depend functorially on the base, in a sense described by
a lifting property for certain 2-cells. Cartesian fibrations are cocartesian fibrations in the
dual ∞-cosmos Kco of Definition 2.3.2.

Cocartesian fibrations can be characterised internally to the∞-cosmos via adjoint func-
tors involving comma ∞-categories, for which we now establish notation.

3.1.1. Notation. For any isofibration p : E � B, there exist canonically defined functors

E
i

!!

∆ // E2

p2

"" ""

E2

k

""

p0

"" ""

p2

## ##

p ↓B // //

p0
����

B2

p0
����

p ↓B // //

p0
����

B2

p0
����

E p
// // B E p

// // B

Note, k is the map ↓(E, p, p) : E2 → p ↓B, so by Proposition 2.1.3 it is an isofibration.

3.1.2. Definition (IV.4.1.10). An isofibration p : E � B is a cocartesian fibration if either
of the following equivalent conditions hold:
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(i) The functor i : E → p ↓B admits a left adjoint in the slice ∞-cosmos K/B:

E

p
## ##

i

33 p ↓B

p1
zzzz

`

tt ⊥

B

(3.1.3)

(ii) The functor k : E2 → p ↓B admits a left adjoint right inverse in K:

E2

k

55 p ↓B
¯̀

vv ⊥ (3.1.4)

Recall from Lemma VII.2.2.1, that an object E ∈ K in an∞-cosmos is groupoidal if every
functor space FunK(X,E) with codomain E is a Kan complex. Intuitively, a groupoidal
cocartesian fibration is a cocartesian fibration whose fibres are groupoidal ∞-categories,
though for exotic ∞-cosmoi the following definition is somewhat stronger:

3.1.5.Definition (IV.4.2.7). An isofibration p : E � B is a groupoidal cocartesian fibration
if and only if either of the following equivalent conditions hold:

(i) It is a cartesian fibration and it is groupoidal as an object of the slice K/B.
(ii) The functor k : E2 → p ↓B is an equivalence.

3.1.6. Definition (IV.5.1.4). Given two cocartesian fibrations p : E � B and q : F � A
in K, then a pair of functors (g, f) in the following commutative square

F
g
//

q
����

E

p
����

A
f
// B

(3.1.7)

comprise a cartesian functor if and only if the mate of either (and thus both) of the
commutative squares

F
g
//

i
��

E

i
��

q ↓ A
↓(g,f,f)

// p ↓B

F 2 g2
//

k
����

E2

k
����

q ↓ A
↓(g,f,f)

// p ↓B

under the adjunctions of Definition 3.1.2 is an isomorphism.

Pullbacks provide an important source of cartesian functors.
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3.1.8. Proposition (IV.5.2.1 and IV.5.2.2). Consider a simplicial pullback

F

q
����

g
// E

p
����

A
f
// B

in K. If p : E � B is a (groupoidal) cocartesian fibration, then q : F � A is a (groupoidal)
cocartesian fibration and the pullback square defines a cartesian functor.

A module from A to B is an ∞-category upon which A acts covariantly and B acts
contravariantly. The calculus of modules, developed in §V.4, is not needed here.

3.1.9. Definition. In an∞-cosmos K, a module E from A to B is given by an isofibration
(q, p) : E � A×B such that

(i)
E

q �� ��

(q,p)
// A×B
π1zzzz

A

is a cartesian fibration in K/A; informally, “B acts on the right

of E, over A.”

(ii)
E

p �� ��

(q,p)
// A×B
π0zzzz

B

is a cocartesian fibration in K/B; informally, “A acts on the left

of E, over B.”
(iii) (q, p) : E � A×B is groupoidal as an object in K/A×B.

Note that (iii) implies in particular that (q, p) : E � A×B has groupoidal fibres and that
the sliced (co)cartesian fibrations in (i) and (ii) are both groupoidal.

3.1.10. Example (groupoidal (co)cartesian fibrations as modules). A module from 1 to A
is exactly a groupoidal cartesian fibration over A, while a module from A to 1 is exactly a
groupoidal cocartesian fibration over A.

3.1.11. Example (V.3.1.4). For any ∞-category A the arrow ∞-category A2 and its as-
sociated projections (p1, p0) : A2 � A × A give a module A2 from A to A called the unit
module on A.

3.1.12. Definition (bi-fibres of modules). Suppose that E is a module from A to B and
that g : C → A and f : D → B are functors in K. We may form the following pullback

E(f, g) //

(s,r)
����

E

(q,p)
����

C ×D
(g,f)
// A×B

and recall from V.3.1.6 that the left-hand vertical again defines a module E(f, g) from C
to D. We call this the bi-fibre of E over the pair (f, g).
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3.1.13. Example (hom-space modules). Given an∞-category A it is sometimes illuminat-
ing to write HomA for the module A2 and refer to it as the hom-space module. Functors
a : X → A and a′ : X ′ → A define a pair of generalised elements of A, so we may regard the
bi-fibre HomA(a, a′) of HomA as being the hom-space of arrows from a to a′ in A; this is, of
course, isomorphic to the comma object a ↓ a′. In the particular case of a quasi-category A
and objects a, a′ : ∆0 → A, the hom-space HomA(a′, a) is simply the usual hom-space Kan
complex of A, as for instance discussed in VI.7.1.1 or [L09, §1.2.2].

Given a functor f : A→ B of ∞-categories in K the commutative diagram

A A

f
��

A

A
f
// B A

f
oo

induces a functor f̄ : HomA → HomB(f, f) between modules in the slice K/A×A, as discussed
in Proposition 2.1.3; this is called the action of f on the hom-spaces of A. Pulling this map
back to K/X×X′ we obtain a map fa,a′ : HomA(a, a′) → HomB(fa, fa′) which we regard as
being the action of f on the hom-space between a and a′; it is otherwise describable as the
functor induced as in Proposition 2.1.3 by the commutative diagram:

X ′
a′ // A

f
��

X
aoo

X ′
fa′
// B X

fa
oo

In the case of a quasi-category A and objects a, a′ : ∆0 → A this construction simply gives
the usual action of f on the hom-space Kan complex between a and a′.

Observe also that if we apply the construction of Observation 2.4.3 to a diagram of the
following form

Y
b // A X

aoo

Y
b′
// A X

a′
oo

x�
β ^f α

then we obtain a functor HomA(α, β) : HomA(a, b)→ HomA(a′, b′) in K/X×Y , this being the
action on hom-spaces given by pre-composition with α and post-composition with β. When
A is a quasi-category and α and β are 2-cells between vertices ∆0 → A, then they correspond
to isomorphism classes of objects in the Kan complexes HomA(a′, a) and HomA(b, b′) (or
equivalently of arrows in A). Then the functor HomA(α, β) is a member of the isomorphism
class of maps of hom-space Kan complexes induced by choices of pre-/post-composition in
A by representatives of α and β.

We shall restrict our use of the notation HomA(a, a′) to situations where A is a quasi-
category and a and a′ is a pair of its objects. In all other cases, we shall continue to use
our established comma notation a ↓ a′ for this structure.
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3.1.14. Lemma (V.3.1.9, V.3.2.1). Let E be a module from A to B given by an isofibration
(q, p) : E � A×B.

(i) The right-hand leg p : E � B is a cartesian fibration, and the left-hand leg q : E �
A is a cocartesian fibration.

(ii) Given a second module determined by an isofibration (s, r) : F � A × B, and a
functor

E
g

//

(q,p) �� ��

F

(s,r)����

A×B
then g defines a cartesian functor between the right-hand cartesian fibrations and
also between the left-hand cocartesian fibrations.

3.1.15. Definition. Given a functor f : A→ B between ∞-categories, we say that:
(i) a module E from A to B is covariantly represented by f if it is equivalent, over

A×B, to the module B ↓ f , and
(ii) a module E from B to A is contravariantly represented by f if it is equivalent to

the module f ↓B.

3.2. ∞-cosmoi of (co)cartesian fibrations. Let ⌟ denote the category indexing a
cospan and write K⌟ for the simplicially enriched category of cospans in an ∞-cosmos
K. Thus, objects of K⌟ are pairs of maps

B

f
��

C g
// A

(3.2.1)

and 0-arrows are natural transformations
B

f
��

v

!!

C
g
//

w   

A

u
  

B′

f ′
��

C ′
g′
// A′

(3.2.2)

3.2.3. Observation. As with any enriched functor category, K⌟ inherits limits pointwise
from K. In particular, it has limits weighted by flexible weights, which are then preserved
by the simplicial projection functors K⌟ → K which evaluate at any object of ⌟.

In III.4, we introduced a subcategory of K⌟ (considered here in the dual) whose objects
are those diagrams (3.2.1) in which g admits an absolute left lifting through f in the ho-
motopy 2-category of K, in the sense of Definition 2.3.4 but with direction of the 2-cells
reversed. The 0-arrows in this simplicially enriched category are the left exact transforma-
tions dual to Definition 2.3.10.
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3.2.4. Definition. Let K⌟` denote the simplicial subcategory of K⌟ with:
• objects those diagrams (3.2.1) in which g admits an absolute left lifting through f ,
and
• n-arrows those n-arrows of K⌟ whose vertices are left exact transformations.

3.2.5. Lemma. The inclusion K⌟` ↪→ K⌟ is replete up to equivalence. That is, given any
natural transformation (3.2.2) between cospans in K that is a pointwise equivalence, then
if either cospan admits an absolute left lifting, the other also admits an absolute left lifting
defined in such a way that the transformation is left exact. Furthermore, any natural
transformation that it pointwise equivalent to a left exact transformation is itself left exact.

Proof. A pointwise equivalence (3.2.2) induces an isomorphism between the hom-categories
appearing in the 2-categorical representable characterisation (2.3.13) of absolute left lifting
diagrams: here if g admits an absolute lifting ` : C → B through f , then the absolute left
lifting of g′ through f ′ is defined to be the composite of ` with v and the equivalence inverse
to w. As the isomorphism of comma categories for g′ and f ′ is defined by transporting the
isomorphism for g and f along u, v, and w, this construction makes the transformation
(3.2.2) exact. The argument for repleteness of 0-arrows is similar. �

In [RV-III], we defined these simplicial categories in order to prove the following propo-
sition:

3.2.6. Proposition (III.4.9). The simplicial subcategory QCat ⌟` ↪→ QCat ⌟ is closed under
flexible weighted limits.

The proof of Proposition III.4.9 made use of Theorem I.6.1.4, which provides a special
pointwise characterisation of absolute left lifting diagrams between quasi-categories, but
nevertheless this result generalises fromQCat to any∞-cosmos. The proof uses the Yoneda
lemma to demonstrate that there is a pullback of simplicial categories:

K⌟
�̀ _

��

� � y
// (QCat ⌟` )K

op

� _

��

K⌟ � � y
// (QCat ⌟)K

op

which tells us that absolute left lifting diagrams in K can be characterised representably in
QCat in analogy with the 2-categorical representable characterisation of Observation 2.3.12.
Here, however, we require only a corollary of Proposition III.4.9 which generalises more
easily to a quasi-categorically enriched category, without any of the additional structures
of an ∞-cosmos. So rather than presenting the generalisation of Proposition III.4.9, we
instead pursue a proof of Proposition 3.2.12, which characterises flexible weighted limits
in the quasi-categorically enriched category of of right adjoint functors and exact squares.
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3.2.7. Definition. A commutative square between two parallel 0-arrows p and q admitting
left adjoints is exact if and only if its mate is an isomorphism.

E

p
��

f
// F

q
��

E
f
// F

:=
⇑η

E
f
//

p
��

F
⇑ε

q
��

F

B

` a

DD

g
// A

k`

ZZ

B

`

DD

g
// A

k

ZZ
∼=

εf`·kgη

[c

B

`
>>

B g
// A

k

?? (3.2.8)

3.2.9. Definition. For a quasi-categorically enriched category C, let Radj(C) ↪→ C2 denote
the simplicial subcategory of the simplicially-enriched category of arrows C2 with:
• objects those morphisms that admit a left adjoint in the homotopy 2-category of C,
and
• n-arrows those n-arrows of C2 whose 0-arrow vertices are exact squares.

Substituting the dual Cco of Definition 2.3.2 for C exchanges right adjoints with left
adjoints: Radj(Cco) ∼= Ladj(C). In this way, all of the results appearing below will have
duals with “left” exchanged with “right.”

3.2.10. Proposition. The simplicial subcategory admits and the inclusion Radj(QCat ) ↪→
QCat 2 is closed under flexible weighted limits. Moreover, the inclusion Radj(QCat ) ↪→
QCat 2 is replete up to equivalence on objects and 0-arrows.

Proof. By Example 2.3.8, p : E → B admits a left adjoint if and only if the cospan

⇑η

E

p
��

B

`
>>

B

admits an absolute left lifting. A square (3.2.8) is exact if and only if the triple (g, f, g)
defines a left exact transformation from the cospan (p, idB) to the cospan (q, idA), the
induced 2-cell (2.3.11) being the desired mate. This proves that we have a pullback diagram
of simplicial categories

Radj(QCat ) //

��

QCat ⌟`� _

��

QCat 2
C
// QCat ⌟

where the functor C is given by precomposing with the surjective functor ⌟→ 2 that sends
one of the arrows to the identity on the codomain object. Proposition 3.2.6 proves that the
right-hand vertical functor creates flexible weighted limits, and since these are pointwise
defined in QCat , the functor C preserves them. A stricter special case of Lemma 3.2.5 tells
us that the right-hand vertical functor (and hence also the left-hand vertical functor) is an
isofibration. It follows as in the proofs of Lemma VI.4.1.11 and Proposition VII.2.2.3 that
Radj(QCat ) admits and Radj(QCat )→ QCat 2 creates all flexible weighted limits.
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Now this pullback and Lemma 3.2.5 tells us that the inclusion Radj(QCat ) ↪→ QCat 2 is
similarly replete. �

The extension of Proposition 3.2.10 to any quasi-categorically enriched category C makes
use of the following representable characterisation of adjunctions.
3.2.11. Proposition. Let C be a quasi-categorically enriched category. Then

Radj(C)
� _

��

� � y
// Radj(QCat )C

op

� _

��

C2 � � y
// (QCat 2)C

op

is a pullback diagram of simplicial categories.
Proof. On objects, the pullback asserts that

(i) A functor u : A→ B admits a left adjoint if and only if for each X ∈ C, the functor
MapC(X, u) : MapC(X,A) → MapC(X,B) admits a left adjoint and moreover for
each e : Y → X, the square

MapC(X,A)

MapC(X,u)

��

MapC(e,A)
// MapC(Y,A)

MapC(Y,u)

��

MapC(X,B)

aLX

GG

MapC(e,B)
// MapC(Y,B)

` LY

WW

is exact.
On 0-arrows, the pullback asserts that moreover:

(ii) a commutative square between functors admitting left adjoints is exact in C if
and only if each MapC(X,−) carries this square to an exact square between quasi-
categories.

The vertical inclusions are full on n-arrows for n > 0, so we need only prove the statements
(i) and (ii).

The preservation halves of each statement are clear, and the converse direction of (ii)
is easy: to test whether a square (3.2.8) is exact, we need to show that a single 2-cell is
invertible, and this 2-cell is represented by a 1-arrow in MapC(B,F ). If the square in the
image of MapC(B,−) is exact, then this 1-arrow, as a component of an invertible natural
transformation, is an isomorphism, which is what we wanted to show.

For the converse to (i), we use the left adjoint LB : MapC(B,B)→ MapC(B,A) to define
` : B → A to be LB(idB). Exactness tells us that for any b : X → B, LX(b) ∼= `b : X → A,
from which we infer that the adjointness of LX a MapC(X, u) implies that MapC(X, `) a
MapC(X, u) for all X, with any e : Y → X defining an adjunction morphism, by which we
mean a strict exact transformation. Specialising to X = A and X = B, we can extract
1-simplices representing the counit and unit of ` a u as components of the counit and
unit at idA and idB. The adjunction morphisms corresponding to precomposition with
u : A→ B and ` : B → A are used to verify the triangle identities. �
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3.2.12. Proposition. For any quasi-categorically enriched category C, Radj(C) ↪→ C2 is
closed under any flexible weighted homotopy limits in C2 that are preserved by the evaluation
functors dom, cod: C2 → C. Moreover, if the flexible weighted limit in C2 is strict then so
is the flexible weighted limit in Radj(C).

Proof. Consider a diagram

A D // Radj(C)
� _

��

� � y
// Radj(QCat )C

op

� _

��

C2 � � y
// (QCat 2)C

op

so that the diagram D : A → C2 admits a flexible W -weighted homotopy limit u : L→ K.
The hypothesis that this limit is preserved by the domain and codomain functors tells us
that the limit cone induces the horizontal natural equivalences

MapC(X,L)
∼ //

MapC(X,u)

��

{W,MapC(X, domD−)}

��

MapC(X,K)
∼ // {W,MapC(X, codD−)}

`

WW
(3.2.13)

By Proposition 3.2.10, the W -weighted limit of yD : A → Radj(QCat )C
op exists and is

created by the inclusion into (QCat 2)C
op , where it is preserved by the evaluation functors

to QCat . Thus, we conclude that MapC(−, u) ∈ (QCat 2)C
op is naturally equivalent to a

diagram whose components at each X ∈ C, displayed as the right-hand verticals of (3.2.13),
admit right adjoints and for which the transformations induced by each e : Y → X are
exact. The repleteness statement of Proposition 3.2.10 tells us that an object of (QCat 2)C

op

that is naturally equivalent to an object of Radj(QCat )C
op is also in Radj(QCat )C

op . Hence,
each component MapC(X, u) : MapC(X,L) → MapC(X,K) admits a right adjoint and the
transformations induced by each e : Y → X are exact. Now the pullback of Proposition
3.2.11 tells us that the flexible weighted homotopy limit u : L → K is present in Radj(C).
A similar analysis shows that the legs of the limit cone are exact. �

When K is an ∞-cosmos the previous results restrict to the quasi-categorically enriched
categories of arrows or right adjoints in K that are isofibrations, for which we re-appropriate
the previous notation. If K is an ∞-cosmos, let K2 denote the ∞-cosmos of isofibrations
of Proposition 2.1.4.

3.2.14. Proposition. When K is an ∞-cosmos, Radj(K) is an ∞-cosmos and Radj(K) ↪→
K2 is a cosmological functor, creating isofibrations and simplicially enriched limits.

Proof. By Proposition 3.2.12, isofibrations and strict simplicially enriched limits in Radj(K)
are inherited from K2. This proves that the inclusion is a cosmological functor. �

3.2.15. Notation. For any ∞-category A in an ∞-cosmos K, let coCart(K)/A ↪→ K/A
denote the quasi-categorically enriched subcategory with
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• objects cocartesian fibrations in K with codomain A, and
• n-arrows those n-arrows of K/A whose vertices are cartesian functors.
Let coCartgr(K)/A ↪→ coCart(K)/A denote the full subcategory spanned by the groupoidal

cocartesian fibrations in K with codomain A; since any functor between groupoidal cocarte-
sian fibrations is cartesian, the inclusion coCartgr(K)/A ↪→ K/A is also full. Since groupoidal
cocartesian fibrations define groupoidal objects in the∞-cosmos K/A, this full subcategory
is in fact enriched over Kan complexes. The subcategories Cartgr(K)/A ↪→ Cart(K)/A ↪→ K/A
are defined similarly.

Finally, for any A,B ∈ K let AMod(K)B ⊂ K/A×B denote the full subcategory of modules
from A to B. As modules are groupoidal objects, this subcategory is also enriched in Kan
complexes.

3.2.16. Proposition. For any ∞-cosmos K, the subcategories coCart(K)/B and Cart(K)/B
admit and the inclusions

coCart(K)/B ↪→ K/B and Cart(K)/B ↪→ K/B
are closed under flexible weighted homotopy limits.

Proof. We prove the statements for cocartesian fibrations, the results for cartesian fibra-
tions being dual. We first argue that there is a pullback of quasi-categorically enriched
categories:

coCart(K)/B //
� _

��

Radj(K/B)
� _

��

K/B
K

// (K/B)2

(3.2.17)

where K is the functor that carries an isofibration p : E � B to the isofibration EI � p↓B
over B defined by restricting the Leibniz cotensor 〈p0, p〉 : E2 � p ↓ B along EI � E2;
recall our convention that the objects in each of these four categories are isofibrations.

We must argue that the claimed pullback relationship holds on objects and 0-arrows. On
objects, this follows from Definition 3.1.2(i), which tells us that p : E → B is cocartesian
if and only if the functor E → p ↓ B admits a left adjoint over B. This map factors as an
equivalence E ∼−−→ EI followed by the map EI � p ↓ B, so the composite admits a left
adjoint in K/B if and only if the map EI � p ↓ B does. On 0-arrows, this follows from
Definition 3.1.6, which tells us that a functor

E

p     

f
// F

q����

B
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between cocartesian fibrations is cartesian if and only if the induced outer square

E

∼ ��

f
// F

∼��
EI f I

//

����

F I

����

p ↓B
(f,id)
// q ↓B

is exact, and this is the case if and only if the lower square is exact. This tells us that
a 0-arrow between cocartesian fibrations in K/B defines a cartesian functor if and only if
its image under the functor K defines an exact square. Since the pairs of subcategories
are full on n-arrows for n > 0, the claimed pullback relationship follows from this pair of
results.

Now Proposition 3.2.12 tells us that Radj(K/B) ↪→ (K/B)2 creates flexible weighted
homotopy limits. The functor K : K/B → (K/B)2 preserves them since its construction
involves a weighted limit, that commutes with these flexible weighted limits. It follows as
in the proof of that result that coCart(K)/B admits flexible weighted limits and both legs of
the pullback cone preserve them. In particular the inclusion coCart(K)/B ↪→ K/B creates
flexible weighted limits as claimed, proving the claim. �

Proposition 3.2.16 has an interesting and important corollary.

3.2.18. Proposition. For any ∞-category B in an ∞-cosmos K, the quasi-categorically
enriched subcategories coCart(K)/B,Cart(K)/B ⊂ K/B spanned by the (co)cartesian fibra-
tions and cartesian functors define ∞-cosmoi, with isofibrations and limits inherited from
K/B. The Kan-complex-enriched subcategories of groupoidal objects are, respectively, the
subcategories

coCart(K)gr
/B ↪→ coCart(K)/B and Cart(K)gr

/B ↪→ Cart(K)/B

of groupoidal (co)cartesian fibrations.

Proof. Proposition 3.2.16 proves axiom 2.1.1(a). The closure properties of the isofibrations
enumerated in axiom (b) are inherited from the sliced ∞-cosmos. �

3.2.19. Remark. The Kan-complex-enriched category AMod(K)B of modules from A to B
in an ∞-cosmos K is also the category of groupoidal objects in an ∞-cosmos, namely the
∞-cosmos of two-sided fibrations

Cart(coCart(K)/A)/π : A×B�A ∼= coCart(Cart(K)/B)/π : A×B�B

that will be introduced in a forthcoming paper [RV19].

4. Comprehension and the Yoneda embedding

The (external) Yoneda embedding carries an element a : 1 → A of an ∞-category A to
the module p0 : A ↓ a � A from 1 to A, a groupoidal cartesian fibration over A. This is
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the assignment on objects of a functor from Fun(1, A), the underlying quasi-category of the
∞-category A, to the quasi-category of modules from 1 to A. Our aim in this section is to
review the construction of this functor.

In §4.1, we describe the general comprehension construction, which is the subject of
[RV-VI]. The comprehension construction associates to any∞-categoryA and any (co)cartesian
fibration p : E � B a functor from the quasi-category Fun(A,B) to the quasi-category of
(co)cartesian fibrations and cartesian functors over A. On objects, the comprehension
construction carries a functor a : A→ B to the pullback of the fibration p:

Ea

pa
����

`a // E

p
����

A a
// B

Importantly, the construction of the comprehension functor provided by Theorem 4.1.2
may be used for ∞-categories in any ∞-cosmos. In §4.2, we exploit this versatility to
define the co- and contravariant Yoneda embeddings as specialisation of the comprehension
functor to an appropriate sliced ∞-cosmos. These functors will be used to prove our
completeness and cocompleteness results in §6.

4.1. The comprehension functor. In this section, we review the construction of the
comprehension functor from [RV-VI] that will be specialised in §4.2 to define the Yoneda
embedding.

4.1.1. Notation. Any ∞-cosmos K admits a maximal (∞, 1)-categorical core g∗K, the
subcategory with the same objects and with functor spaces

Fung∗K(A,B) := gFun(A,B)

defined to be the maximal groupoid cores of the functor quasi-categories; see Definition
VII.2.2.6. By [CP86, 2.1] the homotopy coherent nerve of a Kan-complex-enriched category
is a quasi-category, so we let:
• K/A denote the quasi-category N(g∗(K/A)),
• coCart(K)/A denote the quasi-category N(g∗(coCart(K)/A)),
• Cart(K)/A denote the quasi-category N(g∗(Cart(K)/A)),
• coCartgr(K)/A denote the quasi-category N(coCartgr(K)/A),
• Cartgr(K)/A denote the quasi-category N(Cartgr(K)/A), and
• AMod(K)B denote the quasi-category N(AMod(K)B).

With this notation in hand, we a may now introduce the comprehension functor.

4.1.2. Theorem (VI.6.1.13). For any cocartesian fibration p : E � B in an ∞-cosmos K
and any ∞-category A ∈ K, there is a functor

FunK(A,B)
cp,A−−→ coCart(K)/A
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defined on 0-arrows by mapping a functor a : A→ B to the pullback:

Ea

pa
����

`a // E

p
����

A a
// B

Its action on 1-arrows f : a → b is defined by lifting f to a p-cocartesian 1-arrow as
displayed in the diagram

A

A
B

b

44

a

))
fw�

Eb

Ea
E

`b̂

55

`â

))

pb

����

pa

����
p

����

Ef &&
`f̂{�

and then factoring its codomain to obtain the requisite ∞-functor Ef : Ea → Eb between
the fibres over a and b.

A key advantage of Theorem 4.1.2 is that it may be interpreted in any ∞-cosmos and
in particular applies to slices and duals.

4.1.3. Remark (dual case). A cartesian fibration p : E � B in K defines a cocartesian
fibration in Kco. The comprehension construction in Kco defines a functor

FunKco(A,B)→ coCart(Kco)/A ⊂ Kco
/A

Because the duality isomorphism Kco
/A
∼= (K/A)co interchanges cocartesian and cartesian

fibrations, it follows that coCart(Kco)/A is isomorphic to Cart(K)co
/A. Consequently the com-

prehension construction can be rewritten as
FunK(A,B)op → Cart(K)co

/A ⊂ Kco
/A

4.1.4. Remark (groupoidal case). If p : E � B is a groupoidal (co)cartesian fibration,
then Proposition 3.1.8 demonstrates that its pullbacks are again groupoidal (co)cartesian
fibrations. So in this instance, the comprehension functors land in the full sub quasi-
categories coCartgr(K)/A or Cartgr(K)co

/A spanned by the groupoidal objects.

4.2. The Yoneda embedding. In this section, we specialise the comprehension con-
struction to define the covariant and contravariant Yoneda embeddings. This makes use
of the hom module (p1, p0) : A2 � A× A of Example 3.1.11 associated to the ∞-category
A. As recalled in Definition 3.1.9, the domain-projection functor defines a cartesian fi-
bration and the codomain-projection functor defines a cocartesian fibration in the sliced
∞-cosmos K/A. Applying a special case of the comprehension construction in each of these
instances defines the co- and contravariant Yoneda embeddings as full and faithful func-
tors internal to the ∞-cosmos of (large) quasi-categories: the underlying quasi-category
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FunK(1, A) of A is embedded covariantly into Cart(K)gr
/A
∼= 1Mod(K)A and contravariantly

into (coCart(K)gr
/A)co ∼= AMod(K)co

1 . A generalisation of this construction, where the termi-
nal ∞-category 1 is replaced by a generic ∞-category, will be used in the §6 to prove our
general limit and colimit construction theorems.

4.2.1. Definition (covariant Yoneda embedding). For any object A in an ∞-cosmos K,
the cotensor (p1, p0) : A2 � A× A defines a (groupoidal) cocartesian fibration

A2 (p1,p0)
// //

p0     

A× A

π0
||||

A

(4.2.2)

in the slice ∞-cosmos K/A; see Lemma V.3.1.3. The comprehension construction defines a
functor:

FunK/A

 A

A

idA���� ,
A× A

A

π0
����

 −→ coCart(K/A)/ idA
∼= K/A, (4.2.3)

the isomorphism because cocartesian fibrations over the terminal object are just objects in
the ∞-cosmos, in this case K/A. Now the domain of this comprehension functor receives a
map

FunK(1, A)→ FunK/A(idA, π0),

defined on objects by sending a : 1→ A to

A ∼= 1× A a×idA−−−→ A× A.
Composing with (4.2.3) defines a functor Y : FunK(1, A) → K/A. This acts on a vertex
a : 1→ A to return the pullback of A2 � A×A along a× idA : 1×A→ A×A, that being
the module p0 : A ↓ a � A from 1 to A of Definition 3.1.15. Consequently, the codomain
of the functor Y restricts to define a functor

Y : FunK(1, A)→ 1Mod(K)A ⊂ K/A

which is the covariant Yoneda embedding.

The contravariant Yoneda embedding is an instance of the covariant Yoneda embedding
in an appropriate dual.

4.2.4. Definition (contravariant Yoneda embedding). By applying the covariant Yoneda
construction described above in the dual ∞-cosmos Kco we obtain a dual functor, which
this time maps each a : 1→ A to the groupoidal cocartesian fibration p1 : a ↓A� A. This
gives rise to an embedding

Y : FunKco(1, A)→ 1Mod(Kco)A ⊂ Kco
/A.

Because the duality isomorphism Kco
/A
∼= (K/A)co interchanges cocartesian and cartesian

fibrations, it carries modules from 1 to A to modules from A to 1. Hence, it follows
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that 1Mod(Kco)A is isomorphic to AMod(K)co
1 . Consequently the embedding above can be

rewritten as
Y : FunK(1, A)op → AMod(K)co

1 ⊂ Kco
/A

and this is known as the contravariant Yoneda embedding.

4.2.5. Definition (generalised Yoneda embeddings). The covariant Yoneda embedding can
be generalised to replace the terminal ∞-category 1 in Definition 4.2.1 by a generic ∞-
category D ∈ K. Indeed, we can make this generalisation simply by applying the covariant
Yoneda construction to the promoted object π1 : D × A � D in the slice ∞-cosmos K/D.
On observing that the iterated slice (K/D)/π1 : D×A�D is isomorphic to the slice K/D×A, we
find that this gives us the covariant generalised Yoneda embedding which is of the following
form:

Y : FunK(D,A) ∼= FunK/D

 D

D

idD���� ,
D × A

D

π1
����

 −−−→ (K/D)/π1 : D×A�D ∼= K/D×A

By the explicit description of the action of Yoneda on vertices given in Definition 4.2.1, this
acts on a 0-arrow f : D → A to carry it to the representable fibration on (id, f) : D → D×A
in K/D. A simple computation reveals that this is simply the object A ↓ f � D × A,
so it follows that our generalised embedding restricts to the full simplicial subcategory
DMod(K)A ⊂ KD×A of modules in its codomain.

The corresponding contravariant generalised Yoneda embedding is obtained analogously
by applying the construction of Definition 4.2.4 to the object π0 : A×D � D in the sliced
∞-cosmos K/D. This gives a functor of quasi-categories of the following form:

Y : FunK(D,A)op −−−→ AMod(K)co
D ⊂ Kco

/A×D

4.2.6. Remark (generalised Yoneda in explicit terms). The generalised Yoneda embedding
Y : FunK(D,A)→ DMod(K)A carries each a : D → A to the module (p1, p0) : A↓a� D×A.
Furthermore, Theorem 4.1.2 tells us that it acts on a 1-arrow α : a → b in FunK(D,A) by
forming the following cartesian lift

D × A

D × A
A× A

b×A

44

a×A

**α×id
��

A ↓ b

A ↓ a
A244
))

p0

����

p0

����

(p1,p0)

����

Y(α)

��

χα×idA

��

along (p1, p0) : A2 � A×A regarded as a cartesian fibration in the slice K/A. The resulting
functor Y (α) : A↓a→ A↓b could also be annotated as A↓α, since it may also be described
as having been induced by the 2-cell α : a⇒ b in the manner described in Observation 2.4.3.
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4.2.7. Proposition (generalised Yoneda and cosmological functors). For any cosmologi-
cal functor G : K → L is a cosmological functor and ∞-categories A and D in K, the
generalised Yoneda embeddings fit into an essentially commutative square:

FunK(D,A)
Y //

G
��

∼=

DMod(K)A

G
��

FunL(G(D), G(A))
Y
//
G(D)Mod(L)G(A)

Proof. Any cosmological functor preserves comma objects, adjunctions, and groupoidal
objects, so it follows that it preserves (co)cartesian fibrations, (co)cartesian arrows, carte-
sian functors, and modules. In other words, it preserves all of the structures used in the
comprehension construction. Furthermore, if A is an object in K then G carries the co-
cartesian fibration (4.2.2) used to define the Yoneda embedding Y : FunK(1, A) → K/A,
as in Definition 4.2.1, to the cocartesian fibration used to define the Yoneda embedding
Y : FunL(1, G(A))→ L/G(A). These facts, combined with the essential uniqueness property
of the comprehension construction, Observation VI.6.1.9, lead us to the conclusion that
there exists an essentially commutative square

FunK(1, A)
Y //

G
��

∼=

K/A

G

��

FunL(1, G(A))
Y
// L/G(A)

relating the Yoneda embeddings associated with A in K and G(A) in L (see also Propo-
sition VI.6.1.10). By applying this result to the induced cosmological functor of slices
G : K/D → L/G(D) this result extends to generalised Yoneda embeddings, giving an essen-
tially commutative square:

FunK(D,A)
Y //

G
��

∼=

K/D×A

G

��

FunL(G(D), G(A))
Y
// L/G(D)×G(A)

Since the cosmological functor G carries modules in K to modules in L. It follows that we
may restrict the square above to give the essentially commutative square of the statement.

�

One application of Proposition 4.2.7 is particularly worth of note:
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4.2.8. Lemma. Suppose that A is an object and f : C → D is a functor in K. Then there
exists an essentially commutative square of generalised Yoneda embeddings:

FunK(D,A)
Y //

FunK(f,A)
��

∼=

DMod(K)A

(f×A)∗

��

FunK(C,A)
Y
//
CMod(K)A

Proof. The generalised Yoneda embeddings in the statement may be constructed by pro-
moting A to an object D×A� D (resp. C ×A� C) in the sliced ∞-cosmos K/D (resp.
K/C) and applying the Yoneda embedding construction of Definition 4.2.1 there. Pullback
along f : C → D defines a cosmological functor f ∗ : K/D → K/C which carries D×A� D
to C × A � C, and it is easily checked that Proposition 4.2.7 specialises in the case of
the cosmological functor f ∗ and the Yoneda embedding derived from D × A � D to the
square given in the statement. �

5. The formal theory of ∞-categories

The motivation for ∞-cosmology is that it enables us to develop the theory of ∞-
categories “formally”; in particular, independently of the semantics of any particular model.
In this section, which is part review and part new material, we introduce those aspects of
the formal theory of ∞-categories that we will need later in this paper.

In §5.2, we review the definitions of limits and colimits of diagrams valued in an ∞-
category, introducing the main subject of this paper. There is one new result which appears
in this section: Proposition 5.2.9, which demonstrates that fully faithful and strongly
generating functors preserve all limits that exist in their domain and codomain. In §5.1 we
define these notions and prove the theorems which allow us to find examples of∞-functors
with these properties.

5.1. Fully faithful and strongly generating functors. In this section, we say what it
means for a functor between ∞-categories to be fully faithful and strongly generating and
then provide alternate characterisations of these notions in the quasi-categorical model,
which will allow us to develop examples.

5.1.1. Definition (fully-faithful). We say that a functor of ∞-categories f : A → B is
fully-faithful if the functor f̄ = ↓(1, f, 1) : A2 → f ↓ f induced, as in Proposition 2.1.3, by
the commutative diagram

A A

f
��

A

A
f
// B A

f
oo

is an equivalence.
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5.1.2. Definition (strong generator). We say that a functor of ∞-categories f : A→ B is
strongly generating if it satisfies the property that a 2-cell

X

h

))

k

55⇓β B

is invertible whenever the functor f ↓ β : f ↓ h→ f ↓ k, as described in Observation 2.4.3,
is an equivalence.

Our next aim is to provide concrete characterisations of those functors f : A → B of
quasi-categories that satisfy the abstract properties described in Definitions 5.1.1 and 5.1.2.
These both rely upon the well-known fibre-wise characterisation of equivalences between
(co)cartesian fibrations developed in the next proposition, which we now recall:

5.1.3. Proposition. A cartesian functor

E
g

//

p �� ��

F

q����

B
between cocartesian fibrations of quasi-categories is an equivalence in QCat/B if and only
if it is a fibrewise equivalence, meaning that for each object b ∈ B the functor gb : Eb → Fb
induced between corresponding fibres is an equivalence.

Proofs can be found in [L09, 3.3.1.5], [AF17, 2.9], or [RV18b, 4.3.2]. Our interest in this
result arises from the following corollary:

5.1.4. Corollary (equivalences of modules are determined fibre-wise). Suppose that we are
given two modules E,F from A to B between quasi-categories and a functor

E
g

//

(q,p) �� ��

F

(s,r)����

A× B

between them in the slice QCat/A×B. Then g is an equivalence in QCat/A×B if and only if
it is a fibre-wise equivalence, in the sense that for each pair of objects a ∈ A and b ∈ B the
induced map of bi-fibres gb,a : E(b, a)→ F(b, a) is an equivalence of Kan complexes.

Proof. We know, by Lemma 3.1.14, that the left-hand legs q : E � A and s : F � A of
the given modules are cocartesian fibrations and that our functor g : E→ F is a cartesian
functor between them. It follows, by Proposition 5.1.3, that g is an equivalence if and
only if its action on the fibres gidB,a : E(idB, a) → F(idB, a) over each object a ∈ A is an
equivalence. Now E(idB, a) and F(idB, a) are modules from 1 to B so their right-hand legs
are cartesian fibrations and gidqB ,a is a cartesian functor between them. Consequently, we
may apply the manifest dual of Proposition 5.1.3 to show that gidB,a is an equivalence if
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and only if its action gb,a : E(b, a) → F(b, a) on the fibres over each object b ∈ B is an
equivalence. The stated result follows immediately. �

Now we may proceed to characterising the fully-faithful and strongly generating functors
between quasi-categories in terms of the hom-space modules of Example 3.1.13, specialising
Definitions 5.1.1 and 5.1.2:

5.1.5. Proposition (fully-faithful functors of quasi-categories). A functor f : A→ B in the
∞-cosmos QCat of quasi-categories is fully-faithful if and only if for all objects a, b ∈ A its
action fa,b : HomA(a, b)→ HomB(fa, fb) on hom-spaces is an equivalence of Kan complexes.

Proof. The induced functor f̄ : A2 → f ↓ f introduced in Definition 5.1.1 is a map in the
slice QCat/A×A between the modules A2 and f ↓ f . Furthermore, its action on the bi-fibre
over objects a, b ∈ A is the action fa,b : HomA(a, b) → HomB(fa, fb) of f on the hom-
space between a and b defined in Example 3.1.13. Consequently, the stated result follows
immediately from Corollary 5.1.4. �

5.1.6. Proposition (generalised Yoneda is fully-faithful). For any ∞-categories D and A
the generalised Yoneda embeddings

Y : FunK(D,A) −−−→ DMod(K)A and Y : FunK(D,A)op −−−→ AMod(K)co
D

are fully faithful as functors of quasi-categories.

Proof. Theorem VI.7.2.22 proves that the covariant and contravariant Yoneda embeddings
are fully faithful, in the sense that their actions on hom-spaces are equivalences of Kan
complexes. Proposition 5.1.5 then tells us that they are indeed fully-faithful as functors in
the ∞-cosmos QCat in the sense of Definition 5.1.1. Since Definition 4.2.5 constructs the
generalised Yoneda embedding functors as a special case of the ordinary Yoneda embed-
dings, this establishes the general result. �

5.1.7. Proposition (strongly generating functors of quasi-categories). A functor f : A→ B
in the ∞-cosmos QCat of quasi-categories is strongly generating if and only if an arrow
β : b → c in B is invertible precisely when its action by post-composition on hom-spaces
HomB(fa, β) : HomB(fa, b) → HomB(fa, c) is an equivalence of Kan complexes for all ob-
jects a ∈ A.

Proof. Given functors h, k : X → B and a 2-cell β : h ⇒ k in QCat we know, by the
discussion in Example 3.1.13, that the action of the induced map f ↓ β : f ↓ h→ f ↓ k on
the fibres over objects a ∈ A and x ∈ X is the action of the component βx : hx → gx ∈ B
by post-composition on hom-spaces HomB(fa, βx) : HomB(fa, hx) → HomB(fa, kx). So
we know, by Corollary 5.1.4, that f ↓ β is an equivalence if and only if HomB(fa, βx)
is an equivalence of Kan complexes for all objects a ∈ A and x ∈ X. Note also that
Corollary I.2.3.12 tells us that β is an invertible 2-cell if and only if for each object x ∈ X
its component βx : hx → kx is an isomorphism in B. The stated result now follows from
combining these facts. �
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5.1.8. Observation. The characterisation of the Proposition 5.1.7 reveals that a functor
f : A→ B of quasi-categories is strongly generating iff the set of vertices {fa ∈ B0 : a ∈ A0}
has the property that “homming” out of the vertices in that set detects isomorphisms in
B. In particular, this characterisation says nothing about the rest of the structure of the
functor f .

In the quasi-categorical setting, we say that some set X of vertices in a quasi-category
B is strongly generating if it has this isomorphism detection property. Then we observe
that a functor f : A→ B is strongly generating iff it maps surjectively onto some strongly
generating set X ⊆ B0.

To find further examples of fully faithful and strongly generating functors between quasi-
categories, recall from Definition VII.6.2.5 that a simplicial functor F : C → D between
Kan-complex-enriched categories is

(i) homotopically fully-faithful if its action F : MapC(A,B)→ MapD(FA, FB) on each
hom-space is an equivalence of Kan complexes, and

(ii) homotopically strongly generating if a 0-arrow e : A → B in D is an equivalence
if and only if for all objects C in C the map MapD(FC, e) : MapD(FC,A) →
MapD(FC,B) is an equivalence of Kan complexes.

5.1.9. Proposition. Consider a simplicial functor F : C → D of Kan-complex-enriched
categories together with the functor of quasi-categories f : C→ D constructed by application
of the homotopy coherent nerve construction. Then

(i) f is fully-faithful if and only if F is homotopically fully-faithful, and
(ii) f is strongly generating if and only if F is homotopically strongly generating.

Proof. Recall from Corollary VI.7.1.9 that there are canonical equivalences MapC(A,B) ∼−−→
HomC(A,B) between mapping spaces of C and hom-spaces of its homotopy coherent nerve
C, which are natural in the sense that the square

MapC(A,B)
F //

'
��

MapD(FA, FB)

'
��

HomC(A,B)
f

// HomD(FA, FB)

commutes for each pair of objects A,B ∈ C. So by composition and cancellation of equiva-
lences of Kan complexes, it follows that the upper horizontal in this square is an equivalence
if and only if the lower horizontal is; thus establishing (i) via Proposition 5.1.5.

Now observe that a 0-arrow e : A → B is an equivalence in D if and only if it is an
isomorphism in the quasi-category D. Also observe that the square

MapD(FC,A)
MapC(FC,e)

//

'
��

MapD(FC,B)

'
��

HomD(FC,A)
HomC(FC,e)

//

∼=

HomD(FC,B)
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commutes up to isomorphism for each C ∈ C. This result follows straightforwardly from
the concrete construction of the vertical equivalences in this square given in Proposi-
tions VI.7.1.7 and VI.7.1.4. Here again it follows that the upper horizontal map MapC(FC, e)
is an equivalence of Kan complexes if and only if HomC(FC, e) is an equivalence of Kan
complexes. Combining these observations we establish (ii) via Proposition 5.1.7. �

5.1.10. Lemma. If A is a quasi-category then the set of representable cartesian fibrations
{pA : A ↓ a � A | a ∈ A} is homotopically strongly generating in 1Mod(QCat )A. Conse-
quently, this set of representables is strongly generating in the corresponding quasi-category
1Mod(qCat)A.

Proof. Suppose that we are given a 0-arrow

E
g

//

p �� ��

F

q����

B

in M := 1Mod(QCat )A = Cart(QCat )gr
/A with the property that for all vertices a : 1 → A

the map
FunM(Y (a), g) : FunM(Y (a), p : E� B)→ FunM(Y (a), q : F� B)

is an equivalence of Kan complexes. The Yoneda lemma for groupoidal cartesian fibrations,
Corollary IV.6.2.13, applies to show that this map of functor spaces is equivalent to the
action ga : Ea → Fa of g on fibres over a, and so we may apply Proposition 5.1.3 to infer
that g is an equivalence as required. The conclusion follows from Proposition 5.1.9. �

5.2. Limits and colimits in an ∞-category. Via the nerve embedding, diagrams in-
dexed by small categories are among the diagrams indexed by small simplicial sets. The
simplicial cotensors of axiom 2.1.1(a) are used to define ∞-categories of diagrams.

5.2.1. Definition (diagram ∞-categories). If J is a small simplicial set and A is an ∞-
category, then the ∞-category AJ is naturally thought of as being the ∞-category of
J-indexed diagrams in A.

5.2.2. Definition. An ∞-category A admits all limits of shape J if the constant diagram
functor ∆: A→ AJ ,constructed by applying the contravariant functor A(−) to the unique
simplicial map J → ∆0, has a right adjoint:

AJ

lim

22⊥ A
∆

rr

This definition is insufficiently general since many ∞-categories will have some, but
not all, limits of diagrams of a particular indexing shape. The “partial adjunctions” of
Definition 2.3.4 precisely address this problem:
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5.2.3. Definition (limits of families). If J is a small simplicial set and A and D are
∞-categories then we can regard a functor d : D → AJ as being an family of J-indexed
diagrams in A. We say that the members of such a family admits a family of limits
` : D → A if there exists an absolute right lifting diagram:

⇓λ

A

∆A
��

D
d
//

`

>>

AJ

(5.2.4)

In the case where D is taken to be the terminal ∞-category 1, we think of d as being a
single diagram of shape J , ` as its limit, and λ as the limiting cone.

5.2.5. Definition (∞-categories of cones). For any diagram d : 1 → AJ of shape J in an
∞-category A, the ∞-category of cones over d is the comma ∞-category p0 : ∆ ↓ d � A
formed by the pullback

∆ ↓ d //

(p1,p0)

����

AJ×2

(p1,p0)
����

1× A
d×∆
// AJ × AJ

Dually, the ∞-category of cones under d is the comma ∞-category p1 : d ↓∆� A.

The following result recasts Definition 5.2.3 in terms of fibred equivalences of comma
∞-categories by specialising Proposition 2.4.6:

5.2.6. Proposition (I.5.1.8). Given a small simplicial set J and ∞-categories D and A,
then a family d : D → AJ of J-indexed diagrams admits a family of limits ` : D → A if and
only if the the ∞-category of cones ∆ ↓ d is equivalent to A ↓ ` over D × A.

Colimits are characterised dually by absolute left lifting diagrams ; that is to say a triangle

⇑λ

B

f
��

C

`
??

g
// A

(5.2.7)

in which the direction of the 2-cell is switched relative to that in (2.3.5) and which enjoys a
universal property akin to that in (2.3.6) but with the sense of all 2-cells reversed. Propo-
sitions 2.4.6 and 5.2.6 dualise to characterise absolute left lifting diagrams and colimits as
fibred equivalences between comma ∞-categories.

5.2.8. Proposition. A fully faithful functor f : A→ B reflects any limits or colimits that
exist in A.

Proof. The statement for limits asserts that given any family of diagrams d : D → AJ of
shape J in A, any functor ` : D → A and cone λ : ∆`⇒ d as below-left so that the whiskered
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composite with fJ : AJ → BJ displayed below is an absolute right lifting diagram

A B

D AJ BJ

⇓λ
∆

f

∆`

d fJ

then (`, λ) defines an absolute right lifting of d : D → AJ through ∆: A → AJ . By
Proposition 2.4.6 applied to Definition 5.1.1, to say that f is fully faithful is to say that
idA : A → A defines an absolute right lifting of f through itself. So by Lemma 2.3.9 and
the hypothesis just stated, the composite diagram below-left is an absolute right lifting
diagram, and by 2-functoriality of the simplicial cotensor with J , the diagram below-left
coincides with the diagram below-right:

A A

A B AJ

D AJ BJ D AJ BJ

f ∆

⇓λ
∆

f

∆

=
⇓λ

fJ`

d fJ d

`

fJ

By Definition 5.1.1 to say that f is fully faithful is to say that f̄ : A2 ∼−−→ f ↓ f is a fibred
equivalence over A×A. Applying (−)J : K → K, yields a fibred equivalence f̄J : (AJ)2 ∼−−→
fJ ↓fJ over AJ ×AJ , proving that if f : A→ B is fully faithful, then fJ : AJ → BJ is also.
Hence by Proposition 2.4.6, idAJ : AJ → AJ defines an absolute right lifting of fJ through
itself. Applying Lemma 2.3.9 again, we now conclude that (`, λ) is an absolute right lifting
of d through ∆ as required. �

5.2.9. Proposition. Suppose that we are given a functor of ∞-categories f : A→ B which
is both fully-faithful and strongly generating. Assume also that d : D → AJ is a fam-
ily of J indexed diagrams which admits a limit in A and that the transformed diagram

D
d //AJ

fJ
//BJ admits a limit in B. Then the functor f preserves the limit of the

family of diagrams d.

Proof. Consider the following diagrams in the homotopy 2-category h∗K

⇓λ

A
f
//

∆
��

B

∆
�� ⇓λ′

B

∆
��

D
d
//

`

;;

AJ
fJ
// BJ D

fJd

//

`′
;;

BJ

in which the triangles display ` and `′ as the limits of the diagrams d and fJd respec-
tively and the commutative square expresses the naturality of the family of diagonal maps
∆: A → AJ . Applying the universal property of the right-hand lifting diagram to the
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pasted diagram on the left we obtain a unique 2-cell α : f` ⇒ `′ with λ′ ·∆α = fJλ, and
our result follows if we can show that α is invertible. To that end consider the following
diagrams

D
` // A

f
��

A

D
f`
// B A

f
oo

D
`′ // B

∆��

A
f
oo

D
fJd

// BJ A
∆f
oo

y�
α

y�
λ′

(A)

D
` // A

∆��

A

D
d
// AJ

fJ
��

A
∆
oo

D
fJd

// BJ A
fJ∆

oo

y�
λ

(B) (5.2.10)

the rows of which are diagrams of the form discussed in Observation 2.4.3. These give rise
to the following diagram of comma objects and induced functors between them

A ↓ `
(a)
��

(c)
// f ↓ f`

(e)
// f ↓ `′

(b)
��

∆ ↓ d
(d)
// fJ∆ ↓ fJd ∆f ↓ fJd

∼=

(5.2.11)

in the slice over D × A. Here the functors on the path along the top and then down the
right-hand side are those induced by the successive rows of diagram (A) in (5.2.10). Those
on the path down the left-hand side and then along the bottom are those induced by the
successive rows of diagram (B) in (5.2.10). Notice, however, that each pasting composite
of a column of (A) is equal to the pasting composite of the corresponding column of (B),
which for the right hand columns follows from the defining equality λ′ ·∆α = fJλ of α. So
the functoriality comments of Observation 2.4.3 apply to give the invertible 2-cell relating
the two legs of the square in (5.2.11). Considering the functors labelled (a)–(d) in (5.2.11)
we see that each one is an equivalence because it

(a) is the functor induced by the absolute lifting λ : ∆`⇒ d,
(b) may be constructed by taking the equivalence B ↓ `′ → ∆ ↓ fJd induced by the

absolute lifting λ′ : ∆B`′ ⇒ fJd and pulling it back along the functorD×f : D×A→
D ×B,

(c) may be constructed by taking the induced functor A2 → f ↓ f , which is an equiva-
lence by the assumption that f fully-faithful, and pulling it back along the functor
`× A : D × A→ A× A,

(d) may be constructed by taking the induced functor (AJ)2 → fJ ↓ fJ , which is
an equivalence because it may be constructed by applying the comma preserving
functor (−)J to the equivalence f : A2 → f ↓f , and pulling it back along the functor
d×∆: D × A→ AJ × AJ .

Applying the composition and cancellation rules for equivalences to (5.2.11), we may infer
that the functor labelled (e) there is also an equivalence. This latter functor is that induced
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by α : f` → `′ as in Definition 5.1.2, from which it follows, by the strong generation
assumption on f , that α is an isomorphism as required. �

6. Construction of limits and colimits

We are finally ready to assemble the results of the previous sections and prove our
main theorems, extending results proven for quasi-categories by Lurie in [L09, §6]. Our
contribution is to supply proofs independent of his that apply natively to arbitrary ∞-
cosmoi. An alternate approach might be to use the Yoneda lemma to extend Lurie’s
results to the general ∞-cosmological setting.

In §6.1, we give a comprehensive review of the main theorems from [RV-VII] which allow
us to verify that the codomain of the generalised Yoneda embedding is a complete quasi-
category and explicitly calculate its quasi-categorical limits as pseudo homotopy limits in
a Kan-complex-enriched category, with an expanded array of applications. In §6.2, we use
this result to show that the generalised Yoneda embedding Y : FunK(D,A) → DMod(K)A
for any pair of∞-categories in any∞-cosmos preserves those limits in FunK(D,A) derived
from the limit of a diagram d : D → AJ in K. We apply these results in §6.3 to prove
Theorem 6.3.9 and its dual: reducing the question of whether an∞-category A is complete
to the question of whether it has products and pullbacks.

6.1. Complete and cocomplete quasi-categories. We recall the main theorem from
§VII.6 together with a few of its consequences.

6.1.1. Theorem (VII.6.1.4,VII.6.2.7). For any Kan-complex-enriched category C and sim-
plicial set X, if a homotopy coherent diagram D : C[X] → C admits a pseudo homotopy
limit in C, then the corresponding limit cone C[∆0?X]→ C transposes to define a limit cone
over the transposed diagram d : X → C in the homotopy coherent nerve of C. Conversely,
if the diagram d admits a limit in the quasi-category C, then the limit cone ∆0 ? X → C
transposes to define a pseudo homotopy limit cone over D in C.

Consequently, the quasi-category C is complete if and only if C admits pseudo homotopy
limits for all simplicial sets X.

This result is essentially the same as Lurie’s [L09, 4.2.4.1], though employ a different
model for the point-set level homotopy limits, similar to the homotopy limits explored
in [S11], that we find particular amenable to the sort of analysis we require here. In
particular, the data of a pseudo homotopy limit cone is the direct transpose of the data of
a quasi-categorical limit cone.

In classical homotopy theory, a homotopy coherent diagram is a simplicial functor CX →
C whose domain is the homotopy coherent realisation of the simplicial set X, a simplicial
category formed as the left adjoint to the homotopy coherent nerve:

sSet-Cat
N

22⊥ sSet
C

rr

The pseudo homotopy limits in the statement of Theorem 6.1.1 refer to a flexible weighted
homotopy limit with a particular weight WX appropriate to diagrams of this shape, with
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the property that a homotopy coherent diagram of shape X and a WX-shaped cone over
that diagram together assemble into a simplicial functor C[∆0 ? X]→ C (see §VII.5.2).

6.1.2. Definition (VII.5.2.8, VII.5.2.9). For any simplicial set X, the weight for the pseudo
limit of a homotopy coherent diagram of shape X is the functor

CX
WX // SSet given by WX(x) := FunC[∆0?X](⊥, x).

Lemma VII.5.2.9 verifies that this is a flexible weight. The WX-weighted limit of a homo-
topy coherent diagram of shape X is then referred to as the pseudo limit of that diagram.

Theorem 6.1.1 implies its dual by replacing the Kan-complex-enriched category with its
opposite. Thus, it also enables us to deduce cocompleteness results, such as the following
theorem, first proven by Barnea, Harpaz, Horel [BHH17, 2.5.9].

6.1.3. Proposition (VII.6.2.3). IfM is a simplicial model category then the quasi-category
M, defined as the homotopy coherent nerve of the full simplicial subcategory of fibrant-
cofibrant objects, is small complete and cocomplete.

The groupoidal objects in an ∞-cosmos define a Kan-complex-enriched category that
is again an ∞-cosmos (Proposition VII.2.2.3) and in particular admits flexible weighted
limits. Consequently:

6.1.4. Proposition (VII.6.2.2). For any∞-cosmos K, the large quasi-category SK of group-
oidal ∞-categories in K is complete and closed under all small limits in the quasi-category
K.

Recall from Notation 4.1.1 that the quasi-category K := Ng∗K of∞-categories in an∞-
cosmos K is defined by passing to the (∞, 1)-categorical core before applying the homotopy
coherent nerve. In VII.4.2, we prove:

6.1.5. Proposition (VII.4.2.7). The (∞, 1)-core of an ∞-cosmos admits flexible weighted
homotopy limits.

Consequently:

6.1.6. Proposition (VII.6.2.1). For any ∞-cosmos K, the large quasi-category K of ∞-
categories in K is small complete.

Szumiło proves a similar result in the context of (unenriched) cofibration categories [S14].

6.1.7. Example (completeness of quasi-categories of cartesian fibrations). In Proposition
3.2.18, we demonstrated that the categories Cart(K)/B and coCart(K)/B of (co)cartesian
fibrations and cartesian functors over an object B support an ∞-cosmos structure created
by the inclusions Cart(K)/B ↪→ K/B and coCart(K)/B ↪→ K/B. Consequently, Propositions
6.1.6 and 6.1.4 apply to show that the Kan-complex-enriched categories g∗(Cart(K)/B) and
g∗(coCart(K)/B) and their subcategories of groupoidal objects Cart(K)gr

/B and coCart(K)gr
/B

are closed in g∗(K/B) under flexible weighted limits, and thus that the corresponding quasi-
categories Cart(K)/B, coCart(K)/B, Cart(K)gr

/B and coCart(K)gr
/B are complete and closed

under limits in the quasi-category K/B.
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6.1.8. Example. Definition 3.1.9 tells us that AMod(K)B may be expressed as an intersec-
tion of three simplicial subcategories g∗(Cart(K/A)/A×B→A), g∗(coCart(K/B)/A×B→B) and
Kgr
/A×B in the ∞-cosmos K/A×B. As noted in the Example 6.1.7 and Proposition 6.1.4,

each of these simplicial subcategories is closed in g∗(K/A×B) under flexible weighted limits.
It follows that AMod(K)B is also closed in g∗(K/A×B) under small flexible weighted limits
and so Theorem 6.1.1 applies to show that the quasi-category AMod(K)B is closed in K/A×B
under small limits.
6.1.9. Remark. Any cosmological functor F : K → L induces corresponding simplicial func-
tors between the respective Kan-complex-enriched categories of (co)cartesian fibrations,
groupoidal (co)cartesian fibrations and modules. Since F preserves the products, pull-
backs, and sequential limits used to construct the flexible weighted limits in each of those
categories, cosmological functors preserve flexible weighted limits. Consequently the corre-
sponding functors of the complete quasi-categories constructed by applying the homotopy
coherent nerve construction all preserve small limits.

By Propositions 2.2.4 and 6.1.5, ∞-cosmoi and their groupoidal cores admit pseudo
(homotopy) limits of homotopy coherent diagrams. In preparation for §6.3, we calculate
pseudo homotopy limits — applying Definition 2.2.5 to the weight of Definition 6.1.2 —
for simple but important diagram shapes. Consider as the indexing 1-category J either:
• a discrete category,
• the pullback shape ⌟, or
• the category ωop indexing inverse sequences.

In each case, J is a free category on an underlying graph G ↪→ J of “atomic” arrows, which
we regard as a 1-skeletal simplicial set. As the following lemma explains, in such contexts,
strictly diagrams J→ C are automatically “homotopy coherent.”
6.1.10. Lemma. Let J be a 1-categorically freely generated by the graph G ↪→ J.

(i) The homotopy coherent realisation C[G] is isomorphic to J, regarded as a simplicial
category with discrete hom sets. Hence diagrams J→ C in a Kan complex enriched
category, correspond bijectively to diagrams G → NC in the homotopy coherent
nerve.

(ii) For any Kan complex enriched category C, the quasi-categories NCJ and NCG

of diagrams are equivalent. Hence up to equivalence, we can represent a quasi-
categorical diagram J→ NC by a point-set diagram J→ C.

Proof. The isomorphism C[G] ∼= J of (i) is easily recognised from the explicit description of
the homotopy coherent realisation functor given in Proposition VII.5.1.12: the homotopy
coherent realisation of any 1-skeletal simplicial set is the free discrete category generated by
this graph. Hence, diagrams J ∼= C[G]→ C in a Kan complex enriched category, correspond
bijectively to diagrams G→ NC in the homotopy coherent nerve.

For (ii), since NC is a quasi-category and G ↪→ J is inner anodyne when considered as
a monomorphism of simplicial sets, the quasi-categories NCJ and NCG of diagrams are
equivalent. So, up to equivalence, we can represent any diagram J→ NC by its restriction
G ↪→ J→ NC, which transposes to a strictly commuting diagram in C by (i). �
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6.1.11. Definition. When J is the free category generated by a graph G, a strictly com-
muting pseudo cone over a diagram F : J ∼= C[G]→ C is formed by restricting a strict cone
α : ∆L⇒ F (−), presenting as a simplicial natural transformation α : 1→ MapC(L, F (−)),
along the unique map WG → 1 of weights:

WG
! // 1

α // MapC(L, F−).

We have the following result:

6.1.12. Proposition. In the case where, J is a discrete category, the pullback shape ⌟,
or ωop with generating subgroup G ↪→ J, the strictly commuting pseudo cone formed from
the limit cone π : ∆ lim(F ) → F (−) over a diagram F : J → K valued in an ∞-cosmos
K presents presents lim(F ) as a pseudo homotopy limit of the diagram F in the (∞, 1)-
categorical core g∗K.

Proof. GivenX ∈ K, post-composition by the weighted cone π! : WG → FungK(lim(F ), F−)
determines a map

Fung∗K(X, lim(F )) // {WG,Fung∗K(X,F−)} (6.1.13)

of Kan complexes, and our task is to show that this is an equivalence. Notice, however,
that we have
Fung∗K(X, lim(F )) = g(FunK(X, lim(F ))) ∼= g(lim(FunK(X,F−)))

∼= lim(g(FunK(X,F−))) = lim(Fung∗K(X,F−)) ∼= {1,Fung∗K(X,F−)}
in which the first isomorphism follows because lim(F ) is a simplicially enriched limit in K
and the second because the groupoid core functor is a right adjoint on underlying categories.
Under this isomorphism it is easily checked that the map in (6.1.13) is isomorphic to the
map

{1,Fung∗K(X,F−)} // {WG,Fung∗K(X,F−)}
induced by the unique map of weights ! : WG → 1. It follows that it is enough to show
that for any diagram F : J → Kan of the appropriate kind in Kan complexes the induced
map {!, F} : {1, F} → {WG, F} from the strict limit of F to the pseudo limit of F is an
equivalence, which is achieved by the next three lemmas. �

6.1.14. Lemma. For any family of objects {Ai} in a simplicial category with products, the
strict limit cone π :

∏
iAi � Ai defines a pseudo homotopy limit cone.

Proof. In this case the result is trivial because the weight for the pseudo limit of a discrete
diagram is isomorphic to the terminal weight. �

In particular, Lemma 6.1.14 applies to the ∞-cosmos Kan of Kan complexes.



ON THE CONSTRUCTION OF LIMITS AND COLIMITS IN ∞-CATEGORIES 45

6.1.15. Lemma. The strict pseudo cone formed from the pullback cone over a diagram of
Kan complexes and Kan fibrations

P //

����

C
p
����

B
f
// A

defines a pseudo homotopy limit cone in Kan .

Proof. Unpacking Definition 6.1.2, the weight W⌟ : C⌟ ∼= ⌟→ SSet for pseudo limits over
the pullback shape is given by the simplicial functor which maps the outer objects of ⌟ to
∆0 and the middle object to ⌟op. From the pullback diagram in the statement, we derive
the following diagram

C
p
// // A A

∆'
��

A B
f

oo

C p
// // A A⌟

op

'
oooo

'
// // A B

f
oo

Here the upper row is a wide pullback diagram whose limit is simply the pullback of the
original diagram. The lower row is the wide pullback diagram whose limit is the end that
computes the limit weighted by W⌟. The middle component of the transformation from
top to bottom is an equivalence because ⌟ is contractible in the Kan model structure and A
is a Kan complex; since pullbacks of isofibrations are equivalence invariant constructions, it
follows that the induced map between the wide pullbacks of these diagrams is an equivalence
as required. �

6.1.16. Lemma. The strict pseudo cone formed from the limit cone over a sequence of Kan
fibrations between Kan complexes

· · · pn
// //An

pn−1
// //· · · p1 // //A1

p0 // //A0

defines a pseudo homotopy limit cone.

Proof. The diagram shape in the statement is the ordered set Nop with objects n and non-
identity edges n + 1 → n and the weight WNop : CNop ∼= ωop → SSet maps each object n
to the 1-skeletal simplicial set N with connecting map from one integer to its predecessor
given by the successor map s : N→ N. From the given sequence of Kan fibrations we may
derive the following commutative diagram:

· · · An
pn−1
// //

∆'
��

· · · A2
p1 // //

∆'
��

A1

∆'
��

A1

∆'
��

p0 // // A0

∆'
��

A0

∆'
��

· · · AN
n

pNn−1

// //
Asn
oooo · · · AN

2
pN1

// //
As2
oooo AN

1 AN
1

pN0

// //
As1
oooo AN

0 AN
0As0

oooo

Here the upper row is a wide pullback diagram whose limit is simply the limit of the original
diagram. The lower row is the wide pullback diagram whose limit is the end that computes
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the limit weighted by WNop . The component of the transformation from top to bottom are
equivalences because N is contractible in the Kan model structure and each An is a Kan
complex. Again it follows from the equivalence invariance of pullbacks of isofibrations and
limits of towers of isofibrations that the induced map between the wide pullbacks of these
diagrams is an equivalence as required. �

6.2. Preservation of limits by generalised Yoneda. As the last stop on our tour
of limit preservation properties we study classes of limits which are preserved by gener-
alised Yoneda embeddings, this time in the setting of a general ∞-cosmos, not necessarily
biequivalent to QCat .

6.2.1. Observation. Suppose that A and D are objects of the∞-cosmos K and that K and
J are simplicial sets. Then transposition under cotensoring provides a bijection between
triangles

⇓λ

AK

∆
��

D
d
//

`

::

(AK)J

!
⇓λ̂

FunK(D,A)

∆
��

K
d̂

//

ˆ̀
99

FunK(D,A)J
(6.2.2)

in K and QCat respectively. Moreover, the triangle on the left is a right lifting diagram in
K if and only if the triangle on the right is a right lifting diagram in QCat .

Notice here that we have, as yet, said nothing about whether these lifts are absolute. To
rectify this omission, we first introduce the following definitions:

6.2.3. Definition. Suppose that A and D are objects of the ∞-cosmos K, that K and J
are simplicial sets and that we are given an absolute lifting diagram

⇓λ̂

FunK(D,A)

∆
��

K
d̂

//

ˆ̀
99

FunK(D,A)J

which presents a limit of a K-indexed family d of diagrams of shape J in the functor
space FunK(D,A). We say that this family of limits is stable under precomposition in
K iff for each functor f : C → D in K it is preserved by the precomposition functor
FunK(f, A) : FunK(D,A)→ FunK(C,A): i.e.,

⇓λ̂

FunK(D,A)

∆
��

FunK(f,A)
// FunK(C,A)

∆
��

K
d̂

//

ˆ̀
99

FunK(D,A)J
FunK(f,A)J

// FunK(C,A)J

is a right lifting diagram in QCat .
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6.2.4. Definition. Suppose that A and D are objects of the ∞-cosmos K, that K and J
are simplicial sets, then we say that a triangle

⇓λ

AK

∆
��

D
d
//

`

::

(AK)J

(6.2.5)

in K displays a pointwise limit in AK iff for each simplicial map g : L→ K it is preserved
the functor Ag : AK → AL: i.e.,

⇓λ

AK

∆
��

Ag // AL

∆
��

D
d
//

`

::

(AK)J
(Ag)J

// (AL)J

is a right lifting diagram in K.

Using these definitions:

6.2.6. Lemma. Consider a transposed pair of triangles

⇓λ

AK

∆

��

D
d
//

`

::

(AK)J

!
⇓λ̂

FunK(D,A)

∆
��

K
d̂

//

ˆ̀
99

FunK(D,A)J

as in (6.2.2).
(i) The triangle on the left is an absolute right lifting if and only if the transposed

triangle on the right is an absolute right lifting diagram that is stable under pre-
composition in K.

(ii) The triangle on the right is an absolute right lifting if and only if the transposed
triangle on the left is an absolute right lifting diagram that displays a pointwise
limit.

Proof. The simplicially enriched cotensor/hom adjunction descends to a 2-adjunction be-
tween the homotopy 2-categories h∗K and h∗QCat . The remaining details are a straight-
forward exercise in adjoint transposition across a 2-adjunction. �

Our terminology of “pointwise limit” is explained by the following observation:

6.2.7. Lemma (pointwise limits are determined pointwise). A triangle of the form displayed
in (6.2.5) displays a family of pointwise limits in AK iff for all vertices k ∈ K the composite
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triangle

⇓λ

AK

∆

��

Ak // A

∆

��

D
d
//

`

::

(AK)J
(Ak)J

// AJ

is an absolute right lifting diagram displaying a family of limits in A.

Proof. Using Lemma 6.2.6 we may transform this problem into a corresponding one in
the world of quasi-categories. Specifically we must show that the dual family of diagrams
d̂ : K → FunK(D,A)J admits a limit that is stable under precomposition in K if and only
if for each k ∈ K the individual diagram dk ∈ FunK(D,A) possesses a limit which is stable
under precomposition. This result, however, follows easily from Proposition I.5.2.11. �

The synthetic theory of∞-categories developed in §5 a result first proven by Lurie [L09,
5.1.3.2].

6.2.8. Lemma (preservation of limits by quasi-categorical Yoneda). For any quasi-category
A, the Yoneda embedding Y : A ∼= FunQCat (1,A) → 1Mod(qCat)A is fully-faithful, strongly
generating and it preserves all families of small limits that exist in A.

Proof. The first two properties posited in the statement are given by Proposition 5.1.6
and Lemma 5.1.10 respectively. Since Example 6.1.8 demonstrates that 1Mod(qCat)A is
complete, those results allow us to apply Proposition 5.2.9 to establish limit preservation.

�

We use Lemma 6.2.8 to prove the analogous result for ∞-categories in an arbitrary
∞-cosmos which are considerably more subtle to establish.

6.2.9. Proposition (preservation of limits by generalised Yoneda). The generalised Yoneda
embedding Y : FunK(D,A) → DMod(K)A preserves any family of limits which is stable
under precomposition in K.

By Lemma 6.2.6, Proposition 6.2.9 asserts that those limit diagrams in Fun(D,A) in
the∞-cosmos of quasi-categories that arise from corresponding limit diagrams in A in the
∞-cosmos K are the ones preserved by the generalised Yoneda embedding—even despite
the fact that this “external” Yoneda embedding is a functor of quasi-categories rather than
a functor in K. The upshot is that the generalised Yoneda embedding respects the limits
it recognises arise from the original ∞-cosmos.
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Proof. Given a functor f : C → D in K we contemplate the following diagram:

FunK(D,A)
Y //

��

FunK(f,A)

**

DMod(K)A

��

∼=

FunK(C,−)f

uu

FunQCat (FunK(C,D),FunK(C,A))
Y //

��

FunK(C,D)Mod(qCat)FunK(C,A)

��

∼=

FunK(C,A) ∼= FunQCat (1,FunK(C,A))
Y

//
1Mod(qCat)FunK(C,A)

(6.2.10)
Here the upper square arises by applying Proposition 4.2.7 to the cosmological functor
FunK(C,−) : K → QCat and the lower square is constructed by applying Lemma 4.2.8 to
the map f : 1→ FunK(C,D) that picks out the functor f : C → D.

By inspection we see that the left-hand vertical composite in the diagram above is simply
the precomposition functor FunK(f, A) : FunK(D,A)→ FunK(C,A). Its right-hand vertical
composite acts to carry a module (q, p) : E � D × A to a groupoidal cartesian fibra-
tion pf : FunK(C,E)f � FunK(C,A) whose total space is the fibre given by the following
pullback:

FunK(C,E)f //

��

pf

,, ,,
FunK(C,E)

FunK(C,q)
����

FunK(C,p)
// // FunK(C,A)

1
f

// FunK(C,D)

Correspondingly, this functor carries a module map

E
g

//

(q,p) �� ��

F

(v,u)����

D × A
to the induced map of fibres FunK(C, g)f : FunK(C,E)f → FunK(C,F )f . Consequently, we
shall use the notation FunK(C,−)f to denote that right-hand vertical composite.

Now given a module map as above we know, from Lemma 3.1.14, that the legs q : E � D
and v : F � D are cocartesian fibrations in K, so they are carried to cocartesian fibra-
tions FunK(C, q) : FunK(C,E) � FunK(C,D) and FunK(C, v) : FunK(C,F ) � FunK(C,D)
of quasi-categories by the cosmological functor FunK(C,−) : K → QCat . It follows that
we may apply Proposition 5.1.3 to show that the functor FunK(C, g), which is a carte-
sian functor between FunK(C, q) and FunK(C, v), is an equivalence if and only if each of
its fibres FunK(C, g)f : FunK(C,E)f → FunK(C,F )f is an equivalence. Furthermore equiva-
lences are defined representably in K, that is g : E → F is an equivalence in K if and only if
FunK(C, g) : FunK(C,E)→ FunK(C,F ) is an equivalence of quasi-categories for all objects
C ∈ K. Combining these two facts we find that g : E → F is an equivalence of modules in
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DMod(K)A (or equally an isomorphism in the quasi-category DMod(K)A) if and only if for
all objects C and arrows f : C → D the map FunK(C, g)f : FunK(C,E)f → FunK(C,F )f is
an equivalence of quasi-categories. Thus, we have shown that the family of functors

{FunK(C,−)f : DMod(K)A → 1Mod(qCat)FunK(C,A) | C ∈ K, f ∈ FunK(C,D)0}
is jointly conservative. What is more, by Remark 6.1.9, each functor FunK(C,−)f preserves
all small limits, so it follows that the family of them jointly reflects all small limits.

At this point we may summarise what we know about the essentially commutative square
depicted in (6.2.10) as follows:
• For each f : C → D in K, the the members of the family of lower horizontal Yoneda
embeddings preserve any small limits that exist, by Lemma 6.2.8.
• For each f : C → D in K, the left-hand vertical functor preserves any family of limits
in FunK(D,A) that is stable under precomposition in K, directly from Definition 6.2.3.
• As f : C → D is allowed to range over all functors in K with codomain D, the family
of right-hand vertical functors FunK(C,−)f jointly reflects small limits in DMod(K)A.

It follows that the composite of the left-hand vertical and lower horizontal functors preserve
any family of small limits in FunK(D,A) that are stable under precomposition in K. So the
same is true for the isomorphic composites of the upper horizontal map Y : FunK(D,A)→
DMod(K)A and the right-hand vertical maps. But as f : C → D varies over all functors with
codomain D, that latter family of maps jointly reflects all small limits, so by cancellation
we infer that the generalised Yoneda embedding Y : FunK(D,A) → DMod(K)A preserves
any such family of small limits that is stable under precomposition in K as required. �

6.3. Colimits of diagrams. It is commonplace in category theory to study generating
classes for important closed classes of (co)limits. The canonical result in this regard is
the construction of all limits from products and equalisers; Lurie establishes the quasi-
categorical analogue in [L09, 4.4.2.6]. In this subsection, we establish an analogous con-
struction for limits and colimits in an ∞-category A of an ∞-cosmos K.

6.3.1. Remark. Suppose that we are given a diagram J : Jop → SSet which is a coproduct,
pushout, or countable composite diagram in which certain connecting maps are expected
to be inclusions of simplicial sets, in the sense dual to the cosmological limit types of axiom
2.1.1(a). For instance, the diagram (1.0.1) is built out of iterating diagrams of this type.

We may take the colimit J> of this diagram, with colimit cocone π : J ⇒ ∆J>, and
observe that certain components of that cocone are inclusions as specified (dually) in
2.1.1(b). Then, given an∞-category A, this then implies that the functors πc : AJ> → AJc

defined by restricting along the legs of the cone are isofibrations.

6.3.2. Lemma. Let J> be a simplicial set defined as a coproduct, pushout of a monomor-
phism, or countable composite of monomorphisms of simplicial sets, presented as the colimit
of a diagram J : Jop → SSet with colimit cone π : J ⇒ ∆J>. Suppose further that we are
given an ∞-category A ∈ K along with a fixed diagram d : D → AJ> and consider the

restricted diagrams dc : D
d //AJ>

Aπc //AJc for each c ∈ J.
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(i) The ∞-categories of cones ∆Jc ↓ dc over the restricted diagrams assemble into a
canonical diagram ∆J∗ ↓d∗ : J→ DMod(K)A of one of the cosmological limit types.

(ii) Moreover there is a canonical cosmological limit type cone over this diagram in
DMod(K)A whose summit is the ∞-category ∆J> ↓ d of cones over d.

Proof. Given an arrow f : c→ c′ in J we may construct a transformation of diagrams

D
dc // AJc

AJ(f)

��

A
∆Jcoo

D
dc′
// AJc

′
A

∆Jc′
oo

which induces a unique map ↓(A,AJ(f), D) : ∆Jc ↓ dc → ∆Jc′ ↓ dc′ as discussed in Propo-
sition 2.1.3. This construction is clearly functorial, and so provides us with a diagram
∆J∗ ↓ d∗ : J → DMod(K)A as stipulated in (i). What is more if J(f) : Jc′ ↪→ Jc is an
inclusion of simplicial sets then AJ(f) : AJc � AJc

′ is an isofibration and it follows, by
Proposition 2.1.3, that ↓(A,AJ(f), D) : ∆Jc ↓ dc � ∆Jc′ ↓ dc′ is also an isofibration. So this
diagram satisfies the isofibration condition required of the cosmological limit type diagrams
of 2.1.1(a).

Equally each transformation

D
d // AJ>

Aπc

��

A
∆J>oo

D
dc

// AJc A
∆Jc

oo

induces a projection ↓(A,Aπc , D) : ∆J> ↓ d → ∆Jc ↓ dc, and this family provides us with
a cone ∆J> ↓ d ⇒ ∆J∗ ↓ d∗. For the same reason, the monomorphic legs of the colimit
cone π convert to isofibration legs in the cone in DMod(K)A, and hence this cone is also a
cosmological limit type cone. �

As strongly suggested by the set up of Lemma 6.3.2, we can in fact show that the cones
just constructed are limit cones.

6.3.3. Lemma. The cone of Lemma 6.3.2 displays ∆J> ↓d as a limit of the diagram ∆J∗ ↓d∗
in DMod(K)A.

Proof. The functor (−)2 : K → K2, which carries each object A to the associated isofibra-
tion A2 � A × A, is a cosmological functor. In particular, it preserves the cosmological
limit types, a fact which follows easily from the observations that these limit types are
jointly created by dom, cod: K2 → K and that they commute with the limits A × A and
A2 in K. Furthermore the functor A(−) : SSet op → K carries coproducts, pushouts of
inclusions, and countable composites of inclusions to the corresponding limit types in K.
It follows, therefore, that these functors carry the diagram J : Jop → SSet and its col-
imiting cocone π : J ⇒ ∆J> to a diagram (AJ∗)2 : J → K2 and a limit cone with apex
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(AJ>)2 � AJ> × AJ> , and that these satisfy the conditions specified in 2.1.1(b) in the
∞-cosmos K2.

We may apply the construction of Proposition VII.2.1.9 to the limit derived in the last
paragraph—pulling back the codomains of the arrows in the image of the diagram in K2

to the codomain of the limit object—to give a diagram Aπ∗ ↓ Aπ∗ : J → K/AJ>×AJ> which
maps each object c ∈ J to the isofibration Aπc ↓Aπc � AJ>×AJ> and a cone which displays
(AJ>)2 � AJ> × AJ> as its limit in the ∞-cosmos K/AJ>×AJ> of one of the cosmological
limit types. Finally we may pull his latter diagram and limit cone back along the arrow
d×∆J> : D×A→ AJ>×AJ> to give the diagram and cone in K/D×A. The required result
follows on recalling that pullback along that arrow determines a cosmological functor,
which therefore carries our limit to a limit in the ∞-cosmos K/D×A and hence in its full
subcategory DMod(K)A as required. �

We shall show that the limits we have constructed in Lemma 6.3.3 give rise to corre-
sponding limits in the quasi-category of modules DMod(K)A.

6.3.4. Corollary. The limit derived in Lemma 6.3.3 presents the module ∆J> ↓d as a limit
of the diagram ∆J∗ ↓ d∗ of shape J in the quasi-category of modules DMod(K)A.

Proof. By Theorem 6.1.1 applied in the context of Example 6.1.8, limits in the quasi-
category of modules DMod(K)A are constructed as pseudo homotopy limits in the Kan-
complex-enriched category DMod(K)A. In the case of the diagrams under consideration
at present—products, pullbacks, and limits of towers of isofibrations—Proposition 6.1.12
reveals that such limits are given by the strict pseudo cones of Definition 6.1.11 formed from
the corresponding 1-categorical limits cones. These coincide with the cones constructed in
Lemma 6.3.2. �

6.3.5. Observation. Continuing in the context of Lemma 6.3.2, now assume for each c ∈ J

that the restricted diagram dc : D
d //AJ>

Aπc //AJc admits a limit `c : D → A as displayed
by the following absolute right lifting diagram:

⇓λc

A

∆Jc

��

D
dc

//

`c

==

AJc

!

A ↓ `c
' //

"" ""

∆Jc ↓ dc

{{{{

D × A

(6.3.6)

Equivalently, by Proposition 5.2.6, we know that `c provides a fibred equivalence of modules
∆Jc ↓ dc as depicted on the right of the display above. These are otherwise isomorphisms
in the quasi-category DMod(K)A of modules between the vertices of the diagram ∆J∗ ↓
d∗ : J → DMod(K)A and the covariantly represented modules A ↓ `c. Transferring the
arrows in the J-shaped diagram ∆J∗ ↓d∗ constructed in Lemma 6.3.2 along these pointwise
isomorphisms, we may extend them to a natural isomorphism whose domain is a functor
A ↓ `∗ : J→ DMod(K)A extending our family of represented modules.

A represented module A ↓ `c is simply the image of the functor `c : D → A under the
generalised Yoneda embedding Y : FunK(D,A) → DMod(K)A. Furthermore generalised
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Yoneda is fully-faithful, by Proposition 5.1.6, so it follows that the functor A ↓ `∗ factors
through it to endow the family of covariant representatives `c with the structure of a functor
`∗ : J→ FunK(D,A). We may summarise these various functors and their relationships in
the following diagram:

J

∆J∗↓d∗
++

A↓`∗

33

`∗
%%

∼ =
∼ =

DMod(K)A

FunK(D,A)

Y

77

When expressed in terms lifting properties this functor `∗ : J → FunK(D,A) carries an
arrow f : c → c′ in J to a representative of the unique 2-cell `f induced by the lifting
property of the right hand triangle in the following diagram:

⇓λc

A

∆Jc

��

A

∆Jc′
��

D
dc

//

`c

==

AJc
AJ(f)

// AJc
′

=

A

⇓λc′
`f⇒

A

∆Jc′
��

D

`c

??

D
dc′
//

`c′

==

AJc
′

(6.3.7)

Note that the functor of quasi-categories `∗ : J → FunK(D,A) may dually be regarded
as being a functor `∗ : D → AJ inside the ∞-cosmos K. This all leads us to the following
result:

6.3.8.Proposition. Let J> be a simplicial set defined as a coproduct, pushout of a monomor-
phism, or countable composite of monomorphisms of simplicial sets, presented a colimit of
a diagram J : Jop → SSet . Consider a fixed diagram d : D → AJ> in an ∞-category A with

the property that the restricted diagrams dc : D
d //AJ>

Aπc //AJc for each c ∈ J have limits
`c : D → A.

Then a functor ` : D → A is a limit of the diagram d : D → AJ> if and only if it is a
limit of the diagram `∗ : D → AJ formed from the limit functors in Observation 6.3.5.

Proof. Suppose first that ` : D → A is a limit of the diagram `∗ : D → AJ. By Lemma
6.2.6, this is the case if and only if ` : 1 → FunK(D,A) is the limit of the dual diagram
`∗ : 1 → FunK(D,A)J of quasi-categories and this limit is stable under precomposition.
Proposition 6.2.9 tells us that this limit is preserved by the generalised Yoneda embed-
ding Y : FunK(D,A) → DMod(K)A. By construction, however, the diagram Y `∗ : J →
DMod(K)A is isomorphic to the diagram A ↓ `∗ : J → DMod(K)A which is in turn isomor-
phic to the diagram ∆J∗ ↓ d∗ : J → DMod(K)A, as depicted in (6.3.7); it follows that the
limits of the diagrams Y `∗ and ∆J∗ ↓ d∗ are isomorphic when they exist. In this case the
limit of the former diagram is Y ` ∼= A ↓ `, since generalised Yoneda preserves the limit `,
and the limit of the latter is ∆J> ↓ d, as demonstrated in Corollary 6.3.4, so the resulting
isomorphism A ↓ ` ∼= ∆J> ↓ d in the quasi-category DMod(K)A provides an equivalence
A ↓ ` ' ∆J> ↓ d over D × A which presents ` as a limit of d : D → AJ> .
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Conversely, suppose ` : D → A is a limit of d : D → AJ> and recall again that the
diagrams Y `∗ and ∆J∗ ↓ d∗ are isomorphic and so the limit ∆J> ↓ d of the second of these
diagrams in DMod(K)A, as supplied by Corollary 6.3.4, is also a limit of the first diagram.
However our assumption that ` is a limit of the family of diagrams d : D → AJ⊥ may
otherwise be read as saying that this limit is covariantly represented by the functor `; in
other words, we have shown that the diagram Y `∗ : J→ DMod(K)A has the module Y ` as its
limit in the quasi-category of modules DMod(K)A. Since the generalised Yoneda embedding
Y : FunK(D,A)→ DMod(K)A is fully faithful by Proposition 5.1.6, the cone presenting this
limit factors through the generalised Yoneda embedding to give a cone in FunK(D,A) that
displays ` as a limit of `∗ : J → FunK(D,A). Now Lemma 6.2.6 tells us that we are done
if we can show that this limit is stable under precomposition, or in other words that it is
preserved by the precomposition functor FunK(f, A) : FunK(D,A)→ FunK(C,A) associated
with any functor f : C → D in K. To see this, we use the essentially commutative diagram

FunK(D,A)
Y //

FunK(f,A)
��

∼=

DMod(K)A

(f×A)∗

��

FunK(C,A)
Y
//
CMod(K)A

of Lemma 4.2.8. The limit under consideration is preserved by the top Yoneda embedding
(since it was reflected from DMod(K)A), and preserved by the right-hand vertical functor
by Remark 6.1.9. It is then reflected by the bottom Yoneda embedding by Proposition
5.2.8, since this functor is fully faithful, and thus it must be preserved by the left-hand
vertical as required. �

6.3.9. Theorem (limit constructions). Suppose that κ is a regular cardinal and that A is
an ∞-category in an ∞-cosmos K that admits products of cardinality < κ and pullbacks.
If X is a κ-presentable simplicial set then A admits all limits of diagrams of shape X.

6.3.10. Remark. Here the phrase admits all limits of diagrams of shape X should be taken
to mean that the diagonal functor ∆X : A → AX admits a right adjoint as in Definition
5.2.2, which is equivalent to postulating that every family of diagrams d : D → AX admits
a limit. In QCat , Corollary I.6.1.8 tells us that this is equivalent to postulating that every
diagram d : 1→ AX has a limit, because the quasi-category 1 acts as a “generator” for the
∞-cosmos QCat in a suitable sense, but this reduction to the case D = 1 is not possible
in all ∞-cosmoi.

Proof. Our proof proceed by induction on the skeleta of the simplicial set X. We note first
that a simplicial set is κ-presentable if and only if it has a set of non-degenerate simplices
of cardinality < κ.

When X is 0-skeletal it comprises a disjoint set of vertices of cardinality < κ and so it
follows that the limit of any family of diagrams d : D → AX exists by our assumption that
A admits all products of cardinality < κ.

So fix a natural number n and adopt the inductive hypothesis that the result of the
statement holds for all (n− 1)-skeletal κ-presentable simplicial sets. Suppose that X is a
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n-skeletal κ-presentable simplicial set, then we may express it as a pushout∐
LnX

∂∆n � � //

��

∐
LnX

∆n

��

skn−1X
� � // X

(6.3.11)

in which LnX denotes the set of non-degenerate n-simplices of X, which has cardinality
< κ.

The diagonal A → A∆n always admits a right adjoint given by precomposition with
the map ∆{0} ↪→ ∆n. In other words A admits all limits of diagrams of shape ∆n and
these are given by evaluating at 0; see Propositions V.5.3.6 and Lemma V.5.3.7. It follows
immediately that the functor ALnX → A

∐
LnX

∆n

determined by precomposition with the
projection π :

∐
LnX

∆n ∼= LnX ×∆n → LnX also admits a right adjoint. What is more
the diagonal A → ALnX admits a right adjoint, by our hypothesis that A possesses all
products of cardinality < κ, and composing these adjunctions

A
∆
,,

⊥ ALnX
∆ ..

jj ⊥ A
∐
LnX

∆n

ll

we see that A admits all limits of shape
∐

LnX
∆n. Furthermore the simplicial sets skn−1X

and
∐

LnX
∂∆n are both (n − 1)-skeletal and κ-presentable so the inductive hypothesis

suffices to show that A admits all limits of diagrams of those shapes. In this way we
have established the hypothesis required to apply Proposition 6.3.8 to the diagram whose
pushout is depicted in (6.3.11) to infer that A admits all limits of diagrams of shape X as
required.

It remains only to prove that this result also holds when X is a κ-presentable simplicial
set which is not n-skeletal for any n. In that case κ > ω, because a finitely presentable
simplicial set is always n-skeletal for some n, and it follows that A admits all limits of
countable sequences since their diagram shape is a 2-skeletal and κ-presentable simplicial
set. Now the simplicial set X may be expressed as the countable composite of its skeleta
inclusions

sk0X
� � // sk1X

� � // sk1X
� � // · · · � � // sknX

� � // skn+1X
� � // · · · (6.3.12)

and each of these skeleta is κ-presentable; furthermore, the inductive argument above also
applies to show that A admits all limits of diagrams of shape sknX. In this way we have
established the hypothesis required to apply Proposition 6.3.8 to the diagram depicted
in (6.3.12) to infer that A admits all limits of diagrams of shape X as required. �

For the reader’s convenience, we explicitly derive the dual:

6.3.13. Theorem (colimit constructions). Suppose that κ is a regular cardinal and that A is
an ∞-category in an ∞-cosmos K that admits coproducts of cardinality < κ and pushouts.
If X is a κ-presentable simplicial set then A admits all colimits of diagrams of shape X.
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Proof. Colimits of X-indexed diagrams valued in an ∞-category A in an ∞-cosmos K
coincide with limits of Xop-indexed diagrams in A in the∞-cosmos Kco of Definition 2.3.2.
Thus Theorem 6.3.9 applies. �
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