
HOMOTOPY COHERENT STRUCTURES

EMILY RIEHL

Abstract. Naturally occurring diagrams in algebraic topology are commuta-
tive up to homotopy, but not on the nose. It was quickly realized that very
little can be done with this information. Homotopy coherent category theory
arose out of a desire to catalog the higher homotopical information required to
restore constructibility (or more precisely, functoriality) in such “up to homo-
topy” settings. The first lecture will survey the classical theory of homotopy
coherent diagrams of topological spaces. The second lecture will revisit the free
resolutions used to define homotopy coherent diagrams and prove that they
can also be understood as homotopy coherent realizations. This explains why
diagrams valued in homotopy coherent nerves or more general ∞-categories
are automatically homotopy coherent. The final lecture will venture into ho-
motopy coherent algebra, connecting the newly discovered notion of homotopy
coherent adjunction to the classical cobar and bar resolutions for homotopy
coherent algebras.
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Part I. Homotopy coherent diagrams

I.1. Historical motivation

If X is a G-space, for G a discrete group, and Y is homotopy equivalent to X,
then is Y a G-space? The action of a group element g ∈ G on Y can be defined
by transporting along the maps f : X → Y and f−1 : Y → X of the homotopy
equivalence:

Y X

Y X

f−1

g∗ g∗

f

This defines a continuous endomorphism of Y for every g ∈ G, as required by a
G-action, but these maps are not necessarily automorphisms (since f and f−1 need
not be homeomorphisms) nor is the composite of the actions associated to a pair
of elements g, h ∈ G equal to the action by their product: instead

g∗ ◦ h∗ = (f ◦ g∗ ◦ f−1) ◦ (f ◦ h∗ ◦ f−1) = f ◦ g∗ ◦ (f−1 ◦ f) ◦ h∗ ◦ f−1 and

(gh)∗ = f ◦ (gh)∗ ◦ f−1

are homotopic via the homotopy f−1 ◦ f ' idX .
So if Y is not a G-space, then what is it? The main aim of Part I is to develop

language to describe this sort of situation. A G-space X may be productively
considered as a diagram in the category of topological spaces indexed by a category
BG with a single object and with an endomorphism corresponding to each element
in the group.1

By contrast the “up to homotopy G-space” Y is instead a homotopy commutative
diagram. Modulo point-set topological considerations that we sweep under the
rug using a technique that will be described below, the category of topological
spaces is self-enriched, meaning that the set of continuous functions between any
pair of spaces X and Y is itself a space, which we denote by Map(X,Y ). The
points in Map(X,Y ) are the continuous functions f : X → Y while a path in
Map(X,Y ) between points f and g is a homotopy. Two parallel maps f, g : X →
Y are homotopic — in symbols “f ' g” — just when they are in the same
path component in π0Map(X,Y ). Importantly, composition of continuous functions
itself defines a continuous function between mapping spaces

Map(Y, Z)×Map(X,Y ) Map(X,Z)◦

so this relation of taking homotopy classes of maps is preserved by pre- and post-
composition with another continuous function. This defines the category hSpace of
spaces and homotopy classes of continuous functions as a quotient of the enriched
category Space of spaces and mapping spaces Map(X,Y ), the points in which are

1Here “diagram” is synonymous with “functor”: to define a functor whose domain is the
category BG is to specify an image for the single object together with and endomorphism g∗ for
each g ∈ G so that (gh)∗ = g∗h∗ and e∗ = id.
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continuous functions, the paths in which are homotopies, and the paths between
paths in which are higher homotopies.

Definition I.1.1. If A is an ordinary category then
• a diagram of spaces is just a functor A → Space
• a homotopy commutative diagram of spaces is a functor A → hSpace

Thus, the G-space X defines a diagram X : BG → Space while the “up-to-
homotopy” G-space Y defines a homotopy commutative diagram Y : BG → hSpace.
This terminology suggests a related question: is every “up-to-homotopy” G-space
realized by a homotopy equivalent G-space? Or more generally, when does a ho-
motopy commutative diagram F : A → hSpace admit a realization, i.e., a diagram
F ′ : A → Space together with homotopy equivalences Fa ' F ′a that define a nat-
ural transformation2 in hSpace.

Theorem I.1.2 ([DKS, 2.5]). A homotopy commutative diagram has a realization
if and only if it may be lifted to a homotopy coherent diagram. Moreover, equivalence
classes of realizations correspond bijectively with equivalences classes of homotopy
coherent diagrams.

Proof. This result is proven as a corollary of [DKS, 2.4] which demonstrates that
appropriately defined spaces of homotopy coherent diagrams and realizations (de-
fined slightly differently than above) are weak homotopy equivalent. �

In particular, since the homotopy commutative G-space Y is realized by the
G-space X, it must underlie a homotopy coherent diagram of shape BG. Our task
is now to work out what exactly the phrase homotopy coherent diagram means.

I.2. The shape of a homotopy coherent diagram

To build intuition for the general notion of a homotopy coherent diagram, it is
helpful to consider a special case. To that end, let

� := 0 1 2 3 · · ·

denote the category whose objects are finite ordinals and with a morphism j → k
if and only if j ≤ k.

A �-shaped graph in Space is comprised of spaces Xk for each k ∈ � together
with morphisms fj,k : Xj → Xk whenever j < k.3 This data defines a homotopy
commutative diagram � → hSpace just when fi,k ' fj,k ◦ fi,j whenever i < j < k.

To extend this data to a homotopy coherent diagram � → Space requires:
• Chosen homotopies hi,j,k : fi,k ' fj,k ◦ fi,j whenever i < j < k. This amounts

to specifying a path in Map(Xi, Xk) from the vertex fi,k to the vertex fj,k ◦ fi,j ,
which is obtained as the composite of the two vertices fi,j ∈ Map(Xi, Xj) and
fj,k ∈ Map(Xj , Xk).

2See Definition I.3.5.
3To simplify somewhat we adopt the convention that fj,j is the identity, making this data into

a reflexive directed graph with implicitly designated identities.
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• For i < j < k < `, the chosen homotopies provide four paths in Map(Xi, X`)

fi,` fk,` ◦ fi,k

fj,` ◦ fi,j fk,` ◦ fj,k ◦ fi,j

hi,k,`

hi,j,` fk,`◦hi,j,k

hj,k,`◦fi,j

We then specify a higher homotopy — a 2-homotopy — filling in this square.
• For i < j < k < ` < m, the previous choices provide 12 paths and six

2-homotopies in Map(Xi, Xm) that assemble into the boundary of a cube. We
then specify a 3-homotopy, a homotopy between homotopies between homo-
topies, filling in this cube.

• Etc.
Even in this simple case of the category �, this data is a bit unwieldy. Our task

is to define a category to index this homotopy coherent data arising from �: the
objects Xi, the functions Xi → Xj , the 1-homotopies hi,j,k, the 2-homotopies, and
so on. This data will assemble into a simplicial category whose objects are the same
as the objects of � but which will have n-morphisms in each dimension n ≥ 0, to
index the n-homotopies.

Because of the convenience of the mechanism of simplicial categories, and to
avoid the point-set topology considerations alluded to above, we should now come
clean and admit that we prefer to assume that our “mapping spaces” are really
simplicial sets, or more precisely Kan complexes in the case of Space and similar
categories, about more which below.

Digression I.2.1 (a crash course on simplicial sets). There is a convenient category
whose objects model topological spaces (at least up to weak homotopy type): the
category sSet of simplicial sets. A simplicial set X is a graded set (Xn)n≥0 of
n-simplices together with maps

(I.2.2) X := X0 X1 X2 X3 · · ·

that fulfill two functions:
• The n+ 1 face maps Xn � Xn−1 identify the faces of an n-simplex.
• The n degeneracy maps Xn � Xn+1 define degenerate n + 1-simplices that

project onto a given n-simplex.
There is a slick way to make all of this precise. Let � denote the category of finite

non-empty ordinals [n] = {0, 1 . . . , n} and order-preserving maps. The maps in the
category � are generated under composition by the basic inclusions and surjections
displayed here:

� := [0] [1] [2] [3] · · ·

Now a simplicial set is just a contravariant functor X : �op → Set.
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The category sSet is generated by the standard n-simplices ∆n, which we think
of geometrically as an (ordered) n-simplex spanned by the vertices 0, . . . , n. The
standard n-simplex is the functor represented by the object [n] ∈ �. There are
various maps between these standard simplices

� := ∆0 ∆1 ∆2 ∆3 · · ·

each of the maps denoted by “�” given by an ordered injection of the vertices and
each of the maps denoted “�” given by an ordered surjection of the vertices. By
the Yoneda lemma, � is isomorphic to the full subcategory of sSet spanned by the
standard simplices; the functor ∆• : � ↪→ sSet sending [n] to the standard n-simplex
∆n is referred to as the Yoneda embedding.

The standard simplices and maps between them generate the category sSet under
gluing. That is, any simplicial set X may be thought of as a triangulated space
comprised of all of its simplices

∐
n Xn glued together along the face and degeneracy

maps (I.2.2). For a more leisurely introduction to simplicial sets, see [R1].

A simplicial category is typically thought of as a category with objects together
with mapping spaces (i.e., simplicial sets) between them. There is an alternate
presentation of this data which will also be convenient in which an n-simplex in a
mapping space from a to b is encoded as an n-arrow from a to b.

Definition I.2.3. A simplicial category A• is given by categories An for each
n ≥ 0 with a common set of objects obA and whose morphisms are called n-arrows
that assemble into a diagram �op → Cat of identity-on-objects functors.

(I.2.4) A• := A0 A1 A2 A3 · · ·

Proposition I.2.5. The following are equivalent:
• a simplicial category A• with object set obA
• a simplicially enriched category A with objects obA

Proof. For any x, y ∈ obA, an n-arrow in An(x, y) corresponds to an n-simplex in
the mapping space A(x, y). �

For any ordinary category A, we now introduce a simplicial category CA whose
n-arrows parametrize the data of a homotopy coherent diagram of shape A.4

Definition I.2.6 (free resolutions). Forgetting composition, let UA denote the
underlying reflexive directed graph of a category A, and let FUA denote the free
category on the underlying reflexive directed graph of A. It has the same objects
as A and its non-identity arrows are strings of composable non-identity arrows of
A.

4Cordier and Porter [CP1] write S(A) for the simplicial category CA. Here we use notation
that some readers might recognize from a related context. In Theorem II.2.4 to be proven in Part
II, we prove that the object is isomorphic to this one.
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We define a simplicial category CA• with obCA = obA and with the category
of n-arrows CAn := (FU)n+1A. A non-identity n-arrow is a string of composable
arrows in A with each arrow in the string enclosed in exactly n pairs of well-formed
parentheses. In the case n = 0, this recovers the previous description of the non-
identity 0-arrows in FUA, strings of composable non-identity arrows of A.

It remains to define the required identity-on-objects functors:5

CA• := FUA (FU)2A (FU)3A (FU)4A · · ·

For j ≥ 1, the face maps

(FU)kε(FU)j : (FU)k+j+1A → (FU)k+jA

remove the parentheses that are contained in exactly k others, while FU · · ·FUε
composes the morphisms inside the innermost parentheses. For j ≥ 1, the degen-
eracy maps

F (UF )kη(UF )jU : (FU)k+j+1A → (FU)k+j+2A

double up the parentheses that are contained in exactly k others, while F · · ·UFηU
inserts parentheses around each individual morphism.

Example I.2.7. In the case of a discrete group G regarded as a one-object category
BG, the free resolution CBG is defined by specifying the single endo-hom-set of each
category (FU)nBG, together with the composition action. The underlying graph
of BG is given by the non-identity elements of G, and thus (FU)BG is the group of
words in these letters, i.e., the free group on the non-identity elements of G. The
group (FU)2BG is then the group of words of words and so on.

Exercise I.2.8. Compute C� and show that its n-arrows enumerate the data de-
scribed above.6

The category A can also be thought of as a discrete simplicial category in which
the diagram (I.2.4) is constant at A, so the only n-arrows are degenerated 0-arrows.
There is a canonical “augmentation” map ε : CA → A determined by its degree zero
component ε : FUA → A which is just given by composition in A.

Proposition I.2.9. The functor ε : CA → A is a local homotopy equivalence of
simplicial sets. That is, for any pair of objects x, y ∈ A, the map ε : CA(x, y) →
A(x, y) is a homotopy equivalence: CA(x, y) is homotopy equivalent to the discrete
set A(x, y) of arrows in A from x to y.

5More concisely, the free and forgetful functors just described define an adjunction

rDirGph Cat
F

⊥
U

between small categories and reflexive directed graphs inducing a comonad FU on Cat; see Def-
inition III.4.1. The simplicial object CA• is defined by evaluating the comonad resolution for
(FU, ε, FηU) on a small category A. The face and degeneracy maps are whiskerings of the unit
and counit of the adjunction; hence the notation. This structure will reappear in Part III below.

6In fact, it has more n-arrows than the n-homotopies describe above. We will be able to explain
this when we return to this example in Part II.
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Proof. The augmented simplicial object

A (FU)A (FU)2A (FU)3A (FU)4A · · ·

is split at the level of reflexive directed graphs (i.e., after applying U). These
splittings are not functors, but that won’t matter. These directed graph morphisms
displayed here are all identity on objects, which means that for any x, y there is a
split augmented simplicial set

A(x, y) (FU)A(x, y) (FU)2A(x, y) (FU)3A(x, y) (FU)4A(x, y) · · ·

and now some classical simplicial homotopy theory proves the claim [M]. �

I.3. Homotopy coherent diagrams and homotopy coherent natural
transformations

Finally, we can give a precise definition of the key notion of a homotopy coherent
diagram:

Definition I.3.1. A homotopy coherent diagram of shape A is a functor CA →
Space.

Example I.3.2. A strictly commutative diagram F : A → Space gives rise to a
homotopy coherent diagram by composing with the augmentation map

(I.3.3) CA A Space.ε F

In this case, all n-homotopies are identities.

Not every homotopy commutative diagram can be made homotopy coherent.
The following counterexample was suggested by Thomas Kragh and communicated
by Hiro Tanaka.

Example I.3.4. Let p : E → B be a Serre fibration with i : F → E the inclusion
of the fiber over the basepoint ∗ of B. A diagram

X

F E

B

f e

∗

i

∗ p

is homotopy commutative if there exist homotopies α : e ' if and β : pe ' ∗, the
other two triangles being strictly commutative. The diagram is then homotopy
coherent if and only if there exists a 2-homotopy between pα : pe ' ∗ and β. If
this is the case, then since p is a Serre fibration it is possible to lift the 2-homotopy
along p to define a homotopy α′ : e ' if so that pα′ = β. Applying the universal
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property of the fiber F as the homotopy pullback of p along the inclusion of the
basepoint, the homotopy β induces a map g : X → F and the homotopy α′ then
implies that f and g are homotopic.

Applying these observations in the case of the Hopf fibration, consider the dia-
gram

S1

S1 S3

S2

n i

∗

i

∗ p

involving a map S1 → S1 of degree n. Since π1S
3 = 0, there exists a homotopy

α : i ' in. Both pi and pin equal the constant map ∗ at the basepoint of S2, but
pα is not 2-homotopic to the constant homotopy ∗, for if it were we would obtain a
homotopy between the map of degree n and the identity map S1 → S1, which does
not exist for most n. Thus, this homotopy commutative diagram cannot be made
homotopy coherent.

A natural transformation is a type of higher morphism between parallel functors.
Natural transformations are analogous to homotopies with the category [1] = 0 → 1
playing the role of the interval.

Definition I.3.5. Given a parallel pair of functors F,G : C → D, a natural trans-
formation α : F → G is specified by a functor α : C× [1] → D that restricts on the
“endpoints” of [1] to F and G as follows:

C

C× [1] D

C

0 F

α

1
G

This suggests the following definition of a homotopy coherent natural transfor-
mation.

Definition I.3.6. A homotopy coherent natural transformation α : F → G
between homotopy coherent diagrams F and G of shape A is a homotopy coherent
diagram of shape A× [1] that restricts on the endpoints of [1] to F and G as follows:

CA

C(A× [1]) Space

CA

0
F

α

1
G

Note that the data of a pair of homotopy coherent natural transformations
α : F → G and β : G → H between homotopy coherent diagrams of shape A does
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not uniquely determine a (vertical) “composite” homotopy coherent natural trans-
formation F → H because this data does not define a homotopy coherent diagram
of shape A × [2], where [2] = 0 → 1 → 2.7 This observation motivated Boardman
and Vogt to define, in place of a category of homotopy coherent diagrams and nat-
ural transformations of shape A, a quasi-category of homotopy coherent diagrams
and natural transformations of shape A.
Definition I.3.7. For any category A, let Coh(A,Space) denote the simplicial
set whose n-simplices are homotopy coherent diagrams of shape A × [n], i.e., are
simplicial functors

C(A× [n]) → Space,
where [n] ⊂ � denotes the category freely generated by the reflexive directed graph

[n] := 0 1 2 3 · · · n.

The simplicial category Space has an important property alluded to above: its
mapping spaces Map(X,Y ) are Kan complexes, simplicial sets in which any horn

Λn
k Map(X,Y )

∆n

with 0 ≤ k ≤ n may be filled to a simplex. Any simplicial category, such as
Space, extracted from a topologically-enriched category is automatically Kan com-
plex enriched because its mapping spaces are defined as total singular complexes of
topological spaces [R3, §16.1]. It is because of this property that:
Theorem I.3.8 ([BV]). Coh(A,Space) is a quasi-category, i.e., any inner horn

Λn
k Coh(A,Space)

∆n

with 0 < k < n admits a filler.
Proof. This can be checked directly, or deduced as an immediate consequence —
see Corollary II.2.8 — of a result that we will prove in Part II. �

This is the first example of a “weak Kan complex,” the name Boardman and Vogt
used those simplicial sets that admit fillers for inner horns, which Joyal rechristened
“quasi-categories.” Quasi-categories define a popular model of (∞, 1)-categories,
categories weakly enriched in topological spaces, about more which in Part III.

Any quasi-category has a homotopy category whose objects are the vertices
and whose morphisms are 1-simplices up to a homotopy relation f ' g between
parallel 1-simplices f, g : x → y witnessed by a 2-simplex with boundary:

y

x y

f

g

7In notation to be introduced in Part II, α and β define a diagram of shape C(A× Λ2
1) rather

than a diagram of shape C(A × [2]), where Λ2
1 is the shape of the generating reflexive directed

graph of the category [2].
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Composition relations are also witnessed by 2-simplices: the homotopy class of
f : x → y and the homotopy class of g : y → z compose to the homotopy class of
h : x → z if and only if there is a 2-simplex whose boundary has the form

y

x z

gf

h

The following result was first proven by Vogt and then generalized by Cordier
and Porter:

Theorem I.3.9 ([V, CP1]). The natural map SpaceA → Coh(A,Space) defined by
(I.3.3) induces an equivalence of homotopy categories

Ho(SpaceA) '−→ HoCoh(A,Space),
where Ho(SpaceA) is defined by localizing at the componentwise homotopy equiva-
lences.

Part II. Homotopy coherent realization and the homotopy coherent
nerve

Recall that a homotopy coherent diagram of shape A is a simplicial functor
indexed by a category CA defined as a free resolution of A, a construction that will
be reviewed momentarily. Explicitly, the data of such a diagram is comprised of
objects Xa for each object a ∈ A plus maps of simplicial sets

CA(a, b) → Map(Xa, Xb)

for each pair of objects that are functorial in the sense of commuting with the
composition functions:

CA(b, c)× CA(a, b) CA(a, c)

Map(Xb, Xc)×Map(Xa, Xb) Map(Xa, Xc)

◦

◦

Previously we interpreted Xa and Xb as spaces, but this interpretation is actually
not necessarily. What we do need is for Map(Xa, Xb) to be a space, by which we
mean a Kan complex, because it is in these mapping spaces that we are defining
homotopies (as 1-simplices) and higher homotopies (as higher simplices). So hence-
forth, we will extend our notion of homotopy coherent diagram to encompass
any simplicial functor CA → S whose codomain S is a category enriched in Kan
complexes.8 One choice is S = Space but there are others. Note that any topolog-
ical category can be made into a category enriched in Kan complexes so there are
many examples.

Indeed, many (large) quasi-categories — e.g., of spaces, of spectra, or whatever
— originate as categories enriched in Kan complexes by Theorem II.2.7 below. Our
aim today is to explain how diagrams that are valued in quasi-categories that arise
in this way are automatically homotopy coherent.

To justify this slogan, we offer a second perspective on the simplicial category
CA defined as the free resolution of a category A, explaining its relationship to the

8Categories enriched in Kan complexes are called “locally Kan” in much of the literature.
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famous homotopy coherent nerve functor. This work will also allow us to generalize
the indexing shapes for homotopy coherent diagrams to encompass simplicial sets
which may or may not be nerves of categories. This will allow us to distinguish,
e.g., between the ordinal category [2] and its generating reflexive directed graph
Λ2
1.

II.1. Free resolutions are simplicial computads

An arrow in a category is atomic if it is not an identity and if it admits no
non-trivial factorizations, i.e., if whenever f = g ◦ h then one or other of g and h is
an identity. A category is freely generated by a reflexive directed graph of atomic
arrows if and only if each of its non-identity arrows may be uniquely expressed as
a composite of atomic arrows.9

The following definition is due to Verity [RV6].10

Definition II.1.1 (simplicial computad). A simplicial category A is a simplicial
computad if and only if:
• each category An of n-arrows is freely generated by the graph of atomic n-arrows
• if f is an atomic n-arrow in An and α : [m] � [n] is an epimorphism in � then

the degenerated m-arrow f · α is atomic in Am.

Lemma II.1.2. A simplicial category A is a simplicial computad if and only if all
of its non-identity arrows f can be expressed uniquely as a composite

f = (f1 · α1) ◦ (f2 · α2) ◦ · · · ◦ (f` · α`)

in which each fi is non-degenerate and atomic and each αi ∈ � is a degeneracy
operator.

Proof. This characterization follows immediately from the definition by applying
the Eilenberg-Zilber lemma [GZ, II.3.1, pp. 26-27], which says that any degenerate
simplex in a simplicial set may be uniquely expressed as a degenerated image of a
non-degenerate simplex. �

Free resolutions define simplicial computads, whose atomic n-arrows index the
generating n-homotopies in a homotopy coherent diagram, such as enumerated for
the homotopy coherent simplex in §I.2.

Proposition II.1.3. The free resolution CA is a simplicial computad.

Proof. Recall CA is defined to be the free resolution of A, whose category of n-arrows
is (FU)n+1A. The category FUA is the free category on the underlying reflexive
directed graph of A. Its arrows are strings of composable non-identity arrows of
A; the atomic 0-arrows are the non-identity arrows of A. An n-arrow is a string of
composable arrows in A with each arrow in the string enclosed in exactly n pairs
of parentheses. The atomic n-arrows are those enclosed in precisely one pair of
parentheses on the outside. Since composition in a free category is by concatenation,
the unique factorization property is clear. Since degeneracy arrows “double up” on
parentheses, these preserve atomics as required. �

9This is the case just when the category is in the essential image of the free category functor
F : rDirGph → Cat.

10The reader familiar with model categorical intuition might find it helpful to note that the
simplicial computads are precisely the cofibrant objects in the Bergner model structure on simpli-
cially enriched categories; see [R3, §16.2] for proof.
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We will now do the homework assigned in Part I.

Example II.1.4. Recall the category

� := 0 1 2 3 · · ·
The free resolution C� has objects n ≥ 0.
• A 0-arrow from j to k is a sequence of non-identity composable morphisms from

j to k, the data of which is uniquely determined by the objects being passed
through. So 0-arrows from j to k correspond to subsets

{j, k} ⊂ T 0 ⊂ [j, k]

of the closed internal [j, k] = {t ∈ � | j ≤ t ≤ k} containing both endpoints.
• A 1-arrow from j to k is a once bracketed sequence of non-identity composable

morphisms from j to k. This data is specified by two nested subsets
{j, k} ⊂ T 1 ⊂ T 0 ⊂ [j, k]

the larger one T 0 specifying the underlying unbracketed sequence and the smaller
one T 1 specifying the placement of the brackets.11

• A n-arrow from j to k is an n times bracketed sequence of non-identity compos-
able morphisms from j to k, the data of which is specified by nested subsets

{j, k} ⊂ Tn ⊂ · · · ⊂ T 0 ⊂ [j, k]

indicating the locations of all of the parentheses.12

What then are the mapping spaces C�(j, k)? When j > k they are empty and
when k = j or k = j + 1 we have {j, k} = [j, k] so C�(j, k) ∼= ∆0 is comprised of a
single point. For k > j, there are k−j−1 elements of [j, k] excluding the endpoints
and so we see that C�(j, k) has 2k−j−1 vertices. The n-simplices of C�(j, k) are
given by specifying n + 1 vertices — each a subset {j, k} ⊂ T i ⊂ [j, k] — that
respect the ordering of subsets relation. From this we see that

C�(j, k) ∼= (∆1)k−j−1, 13

as displayed for instance in the case j = 0 and k = 4:

C�(0, 4) :=



{0, 4} {0, 1, 4}

{0, 3, 4} {0, 1, 3, 4}

{0, 2, 4} {0, 1, 2, 4}

{0, 2, 3, 4} {0, 1, 2, 3, 4}


11Note the face and degeneracy maps (C�)0 (C�)1 are the obvious ones, either dupli-

cating or omitting one of the sets T i.
12The nesting is because parenthezations should be “well formed” with open brackets closed

in the reverse order to that in which they were opened.
13More explicitly, this argument shows that the simplicial set Cω(j, k) is the nerve of the poset

of subsets {j, k} ⊂ T ⊂ [j, k] ordered by inclusion.
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The simplicial category C� is a simplicial computad whose atomic n-arrows
are those with a single outermost parenthezation: i.e., for which Tn = {j, k}.
Geometrically these are all the simplices in the hom space cube (∆1)k−j−1 that
contain the initial vertex {j, k}.

II.2. Homotopy coherent realization and the homotopy coherent
nerve

Employing topological notation, we write [n] ⊂ � for the full subcategory spanned
by 0, . . . , n.

[n] := 0 1 2 3 · · · n

These categories define the objects of a diagram � ↪→ Cat that is a full embedding:
the only functors [m] → [n] are order-preserving maps from [m] = {0, . . . ,m} to
[n] = {0, . . . , n}. Applying the free resolution construction to these categories we
get a functor C : � → sCat where C[n] is the full simplicial subcategory of C�
spanned by those objects 0, . . . , n. In particular, its hom spaces are the simplicial
cubes described in Example II.1.4.

Definition II.2.1 (homotopy coherent realization and nerve). The homotopy co-
herent nerve N and homotopy coherent realization C are the adjoint pair of functors
obtained by applying Kan’s construction [R3, 1.5.1] to the functor C : � → sCat to
construct an adjunction

sSet sCat
C

⊥
N

The right adjoint, called the homotopy coherent nerve, is defined at a simpli-
cial category S by defining the n-simplices of the simplicial set NS to be homotopy
coherent diagrams of shape [n] in S. That is

NSn := {C[n] → S}.

The left adjoint is defined by pointwise left Kan extension along the Yoneda
embedding of I.2.1:

� sSet

sCat

∆•

C
∼=

C

That is, C∆n is defined to be C[n] — a simplicial category that we call the homo-
topy coherent n-simplex — and for a generic simplicial set X, CX is defined to
be a colimit of the homotopy coherent simplices indexed by the category of simplices
of X.14

Because of the formal similarity with the geometric realization functor, another
left adjoint defined by Kan’s construction, we refer to C as homotopy coherent
realization.

14The simplicial set X is obtained by gluing in a ∆n for each n-simplex ∆n → X of X. The
functor C preserves these colimits, so CX is obtained by gluing in a C[n] for each n-simplex of X.
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Left Kan extensions are computed as colimits, providing a formula for the ho-
motopy coherent realization CX of a simplicial set X as the colimit of a diagram of
homotopy coherent simplices C[n]. However, this does not give very much insight
into the mapping space of CX, colimits of simplicial categories being rather com-
plicated. Work of Dugger and Spivak [DuSp], redeveloped in [RV6, §4], fills this
gap; see also [R3, §16.2-16.4].

Proposition II.2.2 ([RV6, 4.4.7]). For any simplicial set X, its homotopy coherent
realization CX is a simplicial computad in which:
• objects obCX = X0, the vertices of the simplicial set X
• atomic 0-arrows are non-degenerate 1-simplices of X, the source being the initial

vertex and the target being the final vertex of the simplex
• atomic 1-arrows are the non-degenerate k-simplices of X for k > 1, the source

being the initial vertex and the target being the final vertex of the simplex
• atomic n-arrows are pairs comprised of a non-degenerate k-simplex in X for

some k > n together with a set of proper inclusions

(II.2.3) {0, k} = Tn ( Tn−1 · · · ( T 0 = [0, k]

the data of which defines an atomic n-arrow in C∆k from 0 to k that is not in
the image of any of the face maps. This source of this n-arrow is the initial
vertex of the k-simplex, while the target is the final vertex of the simplex.

Note that the description of atomic n-arrows subsumes those of the atomic
0-arrows and atomic 1-arrows. The data of a non-degenerate atomic n-arrow from
x to y in CX is given by a “bead,” that is a non-degenerate k-simplex in X from
x to y, together with the additional data of a sequence of proper subset inclusions
(II.2.3), which Dugger and Spivak refer to as a “flag of vertex data.” Non-atomic
n-arrows are then “necklaces,” that is strings of beads in X joined head to tail,
together with accompanying “vertex data” for each simplex.

Proof sketch. This can be proven inductively using the skeletal decomposition of
the simplicial set X and will reveal that for any inclusion of simplicial sets X ⊂ Y ,
the functor CX ↪→ CY of homotopy coherent realizations is a simplicial subcom-
putad inclusion: a functor of simplicial computads that is injective on objects
and faithful and also preserves atomic arrows. This is proven by verifying directly
that C∂∆k ↪→ C∆k is a simplicial subcomputad inclusion and then arguing that
such inclusions are closed under coproduct, pushout, and transfinite composition
in simplicial categories. It follows that CX is a simplicial computad, and moreover
the analysis of what happens when attaching an k-simplex provides the descrip-
tion of atomic n-arrows given above. The data (II.2.3) represents an n-arrows in
C∆k(0, k) that is atomic (since Tn = {0, k}) and not contained in any face (since
T 0 = [0, k]). �

Applying Kan’s construction to the embedding � ↪→ Cat of the ordinal categories
yields an adjunction

sSet Cat
Ho

⊥
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the right adjoint of which is called the nerve and the left adjoint of which, defined
by pointwise left Kan extension along the Yoneda embedding:

� sSet

Cat

∆•

∼= Ho

defines the homotopy category of a simplicial set, via a mild generalization of the
construction introduced for quasi-categories at the end of Part I. For a category
A, an n-simplex in the nerve of A is simply a functor [n] → A, i.e., a string of
n-composable morphisms in A. Note that by fullness of � ↪→ Cat, the nerve of the
ordinal category [n] is the standard n-simplex ∆n.

The nerve functor defines a fully faithful embedding Cat ↪→ sSet of categories
into simplicial sets that lands in the subcategory spanned by the quasi-categories.
In quasi-category theory, it is very convenient to conflate a category with its nerve,
which is why we have not introduced notation for this right adjoint.15

With this convention, we now have two simplicial categories we have denoted
CA for a small category A: the free resolution of A and the homotopy coherent
realization of the nerve of A. This would be confusing were these objects not
naturally isomorphic:16

Theorem II.2.4 ([R2, 6.7]). For any category A, CA ∼= CA. That is, its free
resolution is naturally isomorphic to the homotopy coherent realization of its nerve.
Remark II.2.5. Note C∆n ∼= C[n] is tautologous. The left Kan extension along the
Yoneda embedding is defined so as to agree with C : � → sCat on the subcategory
of representables. Many arguments involving simplicial sets can be reduced to a
check on representables, with the extension to the general case following formally
by “taking colimits.” This result, however, is not one of them since we are trying to
prove something for all categories and the embedding Cat ↪→ sSet does not preserve
colimits.
Proof. Proposition II.1.3 and Proposition II.2.2 reveal that both simplicial cate-
gories are simplicial computads. We will argue that they have the same objects
and non-degenerate atomic n-arrows.

Both have obA as objects, these being the vertices in the nerve of A. Atomic
0-arrows of the free resolution are morphisms in A; while atomic 0-arrows in the
coherent realization are non-degenerate 1-simplices of the nerve — these are the
same thing. Atomic non-degenerate 1-arrows of the free resolution are sequences of
at least two morphisms (enclosed in a single set of outer parentheses), while atomic
1-arrows of the coherent realization are non-degenerate simplices of dimension at
least two — again these are the same. Finally a non-degenerate atomic n-arrow
is a sequence of k composable morphisms with (n − 1) non-repeating bracketings;
this non-degeneracy necessitates k > n. This data defines a k-simplex in the nerve
together with a non-degenerate atomic n-arrow in C[k](0, k), i.e., an atomic n-arrow
in the coherent realization. �

15Note that the nerve of the category BG with a single object and elements of the group g as
its endomorphisms is the Kan complex that typically goes by this name.

16Corollary II.2.6, which implies Theorem II.2.4, is stated without proof in [CP1]. The argu-
ment given here appears in [R2], though it is highly probable that an earlier proof exists in the
literature.
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Because the homotopy coherent realization was defined to be the left adjoint to
the homotopy coherent nerve, it follows immediately:

Corollary II.2.6.
(i) Homotopy coherent diagrams of shape A in a simplicial category S correspond

to maps from the nerve of A to the homotopy coherent nerve of S: i.e., there
is a natural bijection between simplicial functors CA → S and simplicial maps
A → NS.

(ii) Hence, the simplicial set Coh(A,S) is isomorphic to the simplicial set NSA

defined using the internal hom in sSet.

Note that the homotopy coherent realization functor is defined on all simplicial
sets X. Extending previous terminology, we refer to a simplicial functor CX → S
as a homotopy coherent diagram of shape X in S.

The simplicial computad structure of Proposition II.2.2 can also be used to prove
the following important result:

Theorem II.2.7 ([CP1, 2.1]). If S is Kan complex enriched, then NS is a quasi-
category.

Proof. By adjunction, to extend along an inner horn inclusion Λn
k ↪→ ∆n mapping

into the homotopy coherent nerve NS is to extend along simplicial subcomputad
inclusions CΛn

k ↪→ C∆n mapping into the Kan complex enriched category S. This
is the simplicial subcomputad generated by all arrows whose beads are supported
by simplices in Λn

k ⊂ ∆n. The only missing ones are in the mapping space from 0
to n, so we are asked to solve a single lifting problem

CΛn
k (0, n) Map(X0, Xn)

C∆n(0, n)

In Example II.1.4, we have seen that C∆n(0, n) ∼= (∆1)n−1 is a cube. One can
similarly check that CΛn

k (0, n) is a cubical horn. Cubical horn inclusions can be
filled in the Kan complex Map(X0, Xn), completing the proof. �

Corollary II.2.8. Coh(A,S) ∼= NSA is a quasi-category.

Proof. By the adjunction of Definition II.2.1, a simplicial functor CA → S is the
same as a simplicial map A → NS. So Coh(A,S) ∼= NSA and since the quasi-
categories define an exponential ideal in simplicial sets, the fact that NS is a quasi-
category implies that NSA is too. �

Remark II.2.9 (all diagrams in homotopy coherent nerves are homotopy coherent).
This corollary explains that any map of simplicial sets X → NS transposes to
define a simplicial functor CX → S, a homotopy coherent diagram of shape X in
S. While not every quasi-category is isomorphic to a homotopy coherent nerve of a
Kan complex enriched category, a hard theorem shows that every quasi-category is
equivalent to a homotopy coherent nerve; one proof appears as [RV6, 7.2.2]. This
explains the slogan introduced at the beginning of this lecture, that all diagrams
in quasi-categories are homotopy coherent.
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II.3. Further applications

Using similar techniques, where a homotopy coherent realization problem is
transposed along the adjunction C a N to an extension problem in simplicial sets
mapping into the homotopy coherent nerve, one can show:

Proposition II.3.1 ([CP2, §2]). Given a homotopy coherent diagram F : CA → S
in a locally Kan simplicial category and a family of homotopy equivalences fa : Fa →
Ga for all a ∈ A, there is a homotopy coherent diagram G and coherent map
f : F → G that moreover defines an isomorphism in Coh(A,S).

Proof. By colimits reduce to the case A = ∆n and construct the desired extension

∆n × Λ1
1 ∪ sk0∆

n ×∆1 NS

∆n ×∆1

See [CP2, §2] for a very explicit description of what this filling process looks like in
low dimensions. �

Proposition II.3.2 ([CP2, §3]). Given a homotopy coherent map f : F → G of
homotopy coherent diagrams F,G : CA → S in a locally Kan simplicial category
and a family of homotopies fa ' ga : Fa → Ga for all a ∈ A, there is a homotopy
coherent map g : F → G extending these component maps together with a coherent
homotopy of homotopy coherent maps H : C(A× [2]) → S.

Proof. The argument is analogous to the previous inductive one solving the lifting
problems:

∆n × Λ2
0 ∪ sk0∆

n ×∆2 NS

∆n ×∆2

�

Part III. Homotopy coherent algebra

In §II.2, we learned that if A is a category, then its nerve defines the shape of
a homotopy coherent diagram taking values in a quasi-category. Today we will
extend this principle, to argue that if A is a 2-category, then its “local nerve”
(taking the nerve of the hom-categories to produce a simplicial category) defines the
shape of homotopy coherent categorical structure in a quasi-categorically enriched
category — at least in the case where the local nerve of A happens to be a simplicial
computad. We will pursue this line of thought in two particular examples, where
A indexes a monad or an adjunction.

III.1. From coherent homotopy theory to coherent category theory

We have argued that any category of suitably defined spaces is enriched over
Kan complexes, simplicial sets in which any horn can be filled to a simplex. Writing
Map(X,Y ) for the mapping objects in such a category S, we interpret the 0-arrows
as functions X → Y . The Kan complex property implies that all n-arrows for
n > 0 are “invertible” in a suitable sense, so we interpret an n-arrow in a mapping
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Kan complex Map(X,Y ) as an n-homotopy, with the case n = 1 defining ordinary
homotopies between parallel functions f, g : X → Y . The totality of the data of S
may be thought of as defining an (∞, 1)-category, meaning a category with objects
and morphisms in each dimension, all but the lowest of which are invertible.

There is another context in which we are used to having multiple dimensions of
morphisms, namely category theory itself. Famously, the category Cat of ordinary
categories and functors is a 2-category. Here the morphisms between morphisms
are the natural transformations of Definition I.3.5. As mentioned there, natural
transformations are analogous to homotopies in the sense that they can be expressed
as functors H : C × [1] → D defined using the interval category [1] = 0 → 1, but
unlike homotopies natural transformations are not typically invertible, an important
amount of extra flexibility.

Thus, the appropriate context for homotopy coherent category theory will be
a category that is simplicially enriched but with two non-invertible dimensions of
morphisms rather than just one. More precisely, a categorical context for homo-
topy coherent category theory is a simplicial category K that is quasi-categorically
enriched as opposed to Kan complex enriched, in which case it is traditional to
write Fun(X,Y ) for the function complexes instead of Map(X,Y ).
Example III.1.1. The categories of quasi-categories, Segal categories, complete
Segal spaces, and naturally marked simplicial sets (1-complicial sets) are all enriched
over quasi-categories.
Example III.1.2. Suitably defined categories of fibrations (isofibrations, cartesian
fibrations, cocartesian fibrations) of any of these over a fixed base are also enriched
over quasi-categories.

In each category just mentioned, the objects are a model of an (∞, 1)-category —
which, in deference to Lurie, most people call ∞-categories — or a fibered variant
of the above. So if we develop homotopy coherent category theory in the context
of any category enriched over quasi-categories, we are doing “model independent
∞-category” in a rather strict framework.
Digression III.1.3 (on model independent ∞-category theory). Some people use
“model independent ∞-category theory” to refer either to some sort of hand-wavy
∞-category theory or to something that is secretly quasi-category theory but pre-
sented in somewhat different language. The idea in both cases is that an expert
could make everything precise. As an aesthetic and expository philosophy, this
approach makes a lot of sense, but my concern at present is that there may be too
few “experts.”17

While the field remains in its infancy, I prefer a more conservative deployment
of model independent ∞-category theory that refers to mathematics that can be:
• specialized to the case of quasi-categories and so recover a theory that is com-

patible with the theory of Joyal and Lurie and
• specialized to other models of (∞, 1)-categories and recover something equivalent

to this in the sense that it is preserved and reflected by “change of universe
functors.”18

17A quick test to gauge the level of expertise of an interlocutor is to ask whether they can
construct a model of the Yoneda embedding.

18The right Quillen equivalences between quasi-categories, Segal categories, complete Segal
spaces, and 1-complicial sets established by Joyal and Tierney [JT] all define biequivalences of
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This is the sense in which “model independent ∞-category” will be used here,
referring to constructions and theorems that can be used for a variety of models
of (∞, 1)-categories in exactly the same way in each instance and without relying
upon any details of the models, except to know that each category of ∞-categories
is enriched of quasi-categories.19

A final example of a quasi-categorically enriched category is worth mentioning:

Example III.1.4. The category Cat of categories is self-enriched: for any pair of
small category C and D, we may define the category DC of functors and natural
transformations. Passing to the nerve, this defines a quasi-categorically enriched
category of categories, since nerves of ordinary categories are quasi-categories.

III.2. Monads in category theory

A monad on a category B is a syntactic way of encoding “algebraic structure”
that might be borne by objects in B. Various other mechanisms for describing
finitary algebraic operations satisfying equations exist — for instance operads or
Lawvere theories — but monads are able to capture more general varieties of alge-
braic structure.

Definition III.2.1. A monad on B is given by an endofunctor T : B → B together
with a pair of natural transformations η : idB → T and µ : T 2 → T so that the
following “associativity” and “unit” diagrams commute.

T 3 T 2 T T 2 T

T 2 T T

Tµ

µT µ

Tη

µ

ηT

µ

Example III.2.2. Let {Pn}n∈N be a symmetric operad in sets. Then if B has
finite products and the colimits displayed below, the associated monad is defined
for b ∈ B by

Tb :=
∑
n∈N

Pn ×Σn bn.

We will review the definition of an algebra for a monad T on B later on. For
now, suffice it to mention that the algebras for the monad construction in Example
III.2.2 are equivalent to the algebras for the operad.

There are also more exotic monads. To mention just one example, there is a
monad on the large quasi-category

∏
obB Qcat whose algebras are those obB-indexed

families of quasi-categories that assemble into the fibers for a cartesian fibration over
the quasi-category B [RV7].

III.3. Homotopy coherent monads

A monad, as just defined, is a diagram inside Cat whose image is comprised of
• a single object, the category B on which the monad acts,
• a 0-arrow T , the monad endofunctor,

quasi-categorically enriched categories: functors that are surjective on objects up to equivalence
and define a local equivalence of quasi-categories.

19For a considerably more detailed account of what it means to develop ∞-category theory
“model independently” from this point of view see [RV].
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• a pair of 1-arrows η : idB → T and µ : T 2 → T , the monad natural transforma-
tions,

satisfying the axioms of Definition III.2.1.
Let us try to naively conjure the data of a homotopy coherent monad before

stating the full definition. That is, let us try to define a simplicial computad
Mnd so that simplicial functors Mnd → K valued in a quasi-categorically enriched
category define a monad on an object in K.

Firstly, Mnd should have a single object, which we denote by +, whose image
identifies the object of K on which the monad acts. Since Mnd has a single object
we only need to describe the simplicial set Mnd(+,+) of endo-arrows.

There is a single generating 0-arrow t, whose image defines the endofunctor of
the monad. Then the 0-arrows are tn for all n ≥ 0 with t0 = id+.

Among the generating 1-arrows we should have η : id+ → t and µ : t2 → t. But
our intuition is that to define a “homotopy coherent” algebraic structure, we should
avoid making unnecessary choices. This suggests that it would be better to have a
generating 1-arrow µn : t

n → t for all n ≥ 0, the n-ary multiplication map, where
the case µ1 = idt and µ0 we think of as the unit η.

By “horizontally” composing the atomic 1-arrows µi1 , . . . , µim we obtain com-
posite 1-arrows t

∑
j ij → tm defined as follows:

+ + + + +

ti1

↓µi1

t

ti2

↓µi2

t

· · ·
tim

↓µim

t

Because each of the generating 1-arrows µn has codomain t, these composite 1-arrows
are uniquely determined by interpreting the codomain tm as m copies of t each of
which receives some map µi. The data of the map µ[α] : tn → tm is then given by
an order-preserving map α : {0, . . . , n− 1} → {0, . . . ,m− 1}, which can be thought
of as a specification of the cardinality of the fiber over each j ∈ {0, . . . ,m − 1}.
This gives a complete description of the 1-arrows in Mnd(+,+).

What 2-arrows should there be in Mnd(+,+)? Associativity says that “all maps
from tn to t should agree.”. In a homotopy coherent context, relations become data
witnessed by arrows of the next dimension up. This suggests that for any n,m ≥ 0
and any simplicial map α : {0, . . . , n−1} → {0, . . . ,m−1} we should have a 2-arrow
with boundary

tm

tn t

µmµ[α]

µn

None of these relations implies the other so they should all be generating. The
composite 2-arrows are then of the form

tm

tn tk

µ[β]µ[α]

µ[γ]

for k > 1 whenever γ and βα define the same function [n− 1] → [k − 1]. A similar
description can be given for the m-arrows for m ≥ 3.
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So what is Mnd(+,+)? It has 0-arrows indexed by natural numbers n ≥ 0,
1-arrows corresponding to all order preserving functions, 2-arrows corresponding to
composable pairs of order preserving functions, etc. So we see that Mnd(+,+) is
isomorphic to the nerve of the category �+ of finite ordinals and order-preserving
maps.

Definition III.3.1 (the free homotopy coherent monad). Let Mnd denote the
quasi-categorically enriched category with a single object + and whose endo-hom
quasi-category

Mnd(+,+) := �+

is the nerve of the category of finite ordinals and order-preserving maps. Compo-
sition is given by the ordinal sum

Mnd(+,+)× Mnd(+,+)
⊕−→ Mnd(+,+).

Ignoring the nerve, we can think of Mnd as a strict 2-category. It has a universal
property that is well-known:

Proposition III.3.2. 2-functors Mnd → Cat correspond to monads.

Proof. A 2-functor Mnd → Cat picks out a category B as the image of +, and
then defines a strictly monoidal functor Mnd(+,+) = �+ → BB. The category
�+ has a universal property: strictly monoidal functors out of �+ correspond to
monoids in the target, and a monad on B is just a monoid in the category BB of
endofunctors! �

Thus reassured, we may define a notion of a homotopy coherent monad act-
ing on an object in a quasi-categorically enriched category K. On account of the
examples listed in III.1.1, III.1.2, and III.1.4, we might think of the objects in a
quasi-categorically enriched category as being “∞-categories” in some sense.

Definition III.3.3 ([RV2]). A homotopy coherent monad in a quasi-categor-
ically enriched category K is a simplicial functor Mnd → K whose domain is the
simplicial computad Mnd. Explicitly, it picks out:
• an object B ∈ K.
• a homotopy coherent diagram �+ → Fun(B,B) that is strictly monoidal with

respect to composition. It sends the generating 0-arrow t : + → + to a 0-arrow
T : B → B and identifies 1-arrows that assemble into a diagram

idB T T 2 T 3 · · ·η

ηT

Tη

µ

We interpret the simplicial functor �+ → Fun(B,B) defined by a homotopy
coherent monad as being a homotopy coherent version of the monad resolution for
(T, η, µ).

III.4. Homotopy coherent adjunctions

This definition of a homotopy coherent monad seems reasonable but are there
any examples? One way to present a monad in classical category theory is via an
adjunction.
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Definition III.4.1. An adjunction in Cat is comprised of a pair of categories A
and B together with functors U : A → B and F : B → A and natural transformations
η : idB → UF and ε : FU → idA, called the unit and counit respectively, so that
the diagrams

(III.4.2)
FUF UFU

F F U U

εF UεFη ηU

commute.

Lemma III.4.3. Any adjunction induces a monad (UF, η, UεF ) on B.

Proof. An exercise in diagram chasing. �

There is a free-living 2-category Adj containing an adjunction in the sense of a
universal property analogous to Proposition III.3.2. It has two objects + and −
and the four hom-categories displayed:

+ −
�−∞∼=�op

∞

�+ ⊥ �op
+

�∞∼=�op
−∞

Here �∞,�−∞ ⊂ � ⊂ �+ are the subcategories of order-preserving maps that
preserve the top or bottom elements, respectively, in each ordinal. The composition
maps in Adj are all restrictions of the ordinal sum operation.

Proposition III.4.4 ([SS]). 2-functors Adj → Cat correspond to adjunctions in
Cat.

We saw in Definition III.3.3 that the free homotopy coherent monad Mnd is
in fact the free 2-category containing a monad: when this 2-category is regarded
as a simplicial category by identifying its hom-category �+ with its nerve, this
simplicial category turns out to be a simplicial computad whose atomic n-arrows
are those n-simplices whose final vertex is the 0-arrow t. The following result tells
us that the same is true for adjunctions: the 2-category Adj, when regarded as
a simplicial category, is a simplicial computad that defines the free homotopy
coherent adjunction. Moreover, we present a convention graphical description
of its n-arrows that establishes this simplicial computad structure.

Proposition III.4.5 ([RV2]). The 2-category Adj, when regarded as a simplicial
category via the nerve, is a simplicial computad with:

• two objects + and −
• two atomic 0-arrows f : + → − and u : − → +
• n-arrows given by strictly undulating squiggles on (n+ 1)-lines
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6

5

4

3

2

1

−

+

0

1

2

3

4

5

6

that are atomic if and only if there are no “instances of + or −” in their interiors.

Proof. An n-arrow lies in Adj(−,+) if starts in the space labeled - on the right
and ends in the space labeled + on the left; the description of the other hom
simplicial sets is similar. The face and degeneracy maps act on the simplicial sets
Adj(+,+), Adj(−,+), Adj(+,−), and Adj(+,+) by removing and duplicating lines.
Composition is by horizontal juxtaposition, which makes the simplicial computad
structure clear. �

Remark III.4.6. Note this gives a graphical calculus on the full subcategory Mnd ↪→
Adj. The n-arrows are strictly undulating squiggles on (n+ 1)-lines that start and
end at the space labeled +; these are atomic if and only if there are no instances
of + in their interiors. This condition implies that if all the lines are removed
except the bottom one, a process that computes the final vertex of the n-simplex,
the resulting squiggle looks like a single hump over one line, which is the graphical
representation of the 0-arrow t. Because atomic arrows in Mnd may pass through
−, Mnd ↪→ Adj is not a subcomputad inclusion.

Definition III.4.7. A homotopy coherent adjunction in a quasi-categorically
enriched category K is a simplicial functor Adj → K. Explicitly, it picks out:
• a pair of objects A,B ∈ K.
• homotopy coherent diagrams

�+ → Fun(B,B), �op
+ → Fun(A,A), �∞ → Fun(A,B), �op

∞ → Fun(B,A)

that are functorial with respect to the composition action of Adj.
The 0- and 1-dimensional data of the first and third of these may be depicted as
follows

idB UF UFUF UFUFUF · · ·η

ηUF

UFη

UεF

U UFU UFUFU UFUFUFU · · ·
ηU

Uε UFη

ηUF

UεF

UFUε

the remaining two diagrams being dual. We interpret the homotopy coherent
diagrams �+ → Fun(B,B), �op

+ → Fun(A,A), �∞ → Fun(A,B), and �op
∞ →

Fun(B,A) as defining homotopy coherent versions of the bar and cobar resolutions
of the adjunction (F,U, η, ε).
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Any homotopy coherent adjunction has an underlying adjunction in the following
sense. A quasi-categorically enriched category K has an associated homotopy
2-category defined by applying the homotopy category functor Ho to each hom-
category. Now, an adjunction in a quasi-categorically enriched category is
an adjunction the homotopy 2-category obtained by taking the hom-categories of
the function complexes. Explicitly, an adjunction is given by:
• a pair of objects A and B,
• a pair of 0-arrows U : A → B and F : B → A,
• a pair of 1-arrows η : idB → UF and ε : FU → idA

so that there exist 2-arrows whose boundaries have the form displayed in (III.4.2).
The upshot is that an adjunction in a quasi-categorically enriched category is

not so hard to define in practice and this low-dimensional data may be extended
to give a full homotopy coherent adjunction:
Theorem III.4.8 ([RV2, 4.3.11,4.3.13]). Any adjunction in a quasi-categorically
enriched category extends to a homotopy coherent adjunction.

Moreover extensions from judiciously chosen basic adjunction data are homo-
topically unique [RV2, §4.4].
Remark III.4.9. It is also fruitful to consider simplicial functors Adj → S valued in
a Kan complex enriched category. Because all 1-arrows in S are invertible, the unit
and counit in this case are natural isomorphisms and this data is more properly
referred to as a homotopy coherent adjoint equivalence. Theorem III.4.8
implies that any adjoint equivalence in a Kan complex enriched category extends
to a homotopy coherent adjoint equivalence. Paired with the familiar 2-categorical
result that says that any equivalence can be promoted to an adjoint equivalence,
we conclude that any equivalence in a Kan complex enriched category extends to
a homotopy coherent adjoint equivalence.

III.5. Algebras for a homotopy coherent monad

Finally, we connect these homotopy coherent notions to “algebra.”
Definition III.5.1. Let (T, η, µ) be a monad acting on a category B. A T -algebra
is a pair (b, β : Tb → b) so that

b Tb T 2b
η

β Tη

ηT

µ

Tβ

defines a truncated split augmented simplicial object.20

T -algebras in B and T -algebra homomorphisms define the category of alge-
bras, traditionally denoted by BT .
Proposition III.5.2. Let (T, η, µ) be a monad acting on a category B. There is
an adjunction

B BT

FT

⊥
UT

20The shape of this diagram is given by the full subcategory of �∞ spanned by the objects [0],
[1], and [2].
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whose underlying monad is T .

If B ∈ K is thought of as an ∞-category and Mnd → K is a homotopy coherent
monad on B, then the ∞-category of T -algebras in B may be recovered as an
appropriately defined flexible weighted limit of the diagram Mnd → K. This limit
computes the value of the right Kan extension along Mnd ↪→ Adj at the object − and
so in fact constructs the entire homotopy coherent adjunction. All of the examples
of quasi-categorically enriched categories K mentioned above are ∞-cosmoi, in which
such limits exist.

A full description of the ∞-category of algebras for a homotopy coherent monad
is given in [RV2, §6], but we can at least give an informal description here. To
a rough approximation, a homotopy coherent T -algebra for a homotopy coherent
monad acting on an object B ∈ K is a homotopy coherent diagram of shape �∞ in
B satisfying various functoriality conditions, which are suggested by the picture

b Tb T 2b T 3b · · ·
η

β Tη

ηT

µ

Tβ
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