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Abstract

Let R = K[x1; : : : ; xn] and let f1; : : : ; fn be products of linear forms with fi of degree di.
Assume that the fi have d1; : : : ; dn common zeros. Then we determine the maximum number of
those zeros that a form of degree k can go through without going through all of them. This is a
version of a conjecture of Eisenbud, Green, and Harris. We suggest a possible method for using
this to explore the case where the fi are arbitrary forms of degree di with the right number of
common zeros.
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1. Introduction

While the properties of intersections of curves in space have been studied throughout
history, many recent advances have been described in the more advanced language of
algebra. In a 1996 paper of David Eisenbud, Mark Green, and Joe Harris, these devel-
opments were concluded in a series of conjectures suggesting further extensions to the
work of Cayley and Bacharach. See [3] for additional background on the conjectures.
One of these Cayley–Bacharach conjectures, which we reproduce below, suggested at
least a partial susceptibility to a more geometric attack.

Throughout, R denotes a polynomial ring in n variables over a Aeld K .
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Cayley–Bacharach Conjecture. Let � be a complete intersection of n quadratics in
Pn. If X ⊂ Pn is any hypersurface of degree k containing a subscheme �0 of degree
strictly greater than 2n − 2n−k , then X contains �.

In Section 2, we introduce a few special cases of the Eisenbud–Green–Harris con-
jecture and prove some results. In Section 3, we discuss areas for further generalization
and study.

2. Results

We simplify the Cayley–Bacharach conjecture to a question about the common
zeros of polynomials. We ask how many of these common zeros can also be roots
of another polynomial without that polynomial vanishing at all of them. In the spirit of
the conjecture, we begin by considering a set of quadratics with the maximum number
of common zeros. To illustrate, we describe a few simple cases.

In dimension 2, the intersections of the zeros of the quadratics x1(x1 − 1) and
x2(x2 − 1) are the vertices of a unit square embedded in the coordinate plane: (0; 0);
(0; 1); (1; 0); (1; 1). It is possible to And a quadratic that vanishes on any three of these
points without vanishing on the fourth (x1x2 is one example). This is clearly maximal
because only 1 point is missed.

Similarly in dimension 3, the cubic x1x2x3 is zero on seven of the eight vertices of
the unit cube formed by the common zeros of the quadratics x1(x1 − 1), x2(x2 − 1),
and x3(x3 − 1). However, when the dimension of the system of quadratics exceeds the
degree of the polynomial, it is no longer possible for a polynomial to vanish on all
but one of the common zeros. We prove a special case of a conjecture of Eisenbud,
Green, and Harris determining the minimum number of points that must be missed by
a degree k polynomial in dimension n below.

Theorem 1. Given the n quadratics in n variables x1(x1 − 1); : : : ; xn(xn − 1) with 2n

common zeros, the maximum number of those common zeros a polynomial P of
degree k can go through without going through them all is 2n − 2n−k .

Proof. We induct on the dimension n and show that the minimum number of missed
points is 2n−k . For our base case, we look at each degree k polynomial P in dimen-
sion k + 1 and show that at least two points must be missed. When k = 0 this is
obvious.

When k= j we have j+1 variables. If P misses only one point, then we can say by
symmetry that P is zero on all of the points in the face xj+1 = 0. We want to conclude
that by replacing P mod the xi(xi − 1) if necessary P is divisible by xj+1. This is true
because x1(x1 − 1); : : : ; xj(xj − 1); xj+1 have the maximum number of common zeros
that are allowed: namely the product of the degrees. Thus, by Bezout’s theorem each
zero is multiplicity one and R mod the ideal generated by x1(x1−1); : : : ; xj(xj−1); xj+1

is a direct sum of copies of the Aeld K . Since P is zero at every common zero, it must
be in the ideal. Thus P is congruent to pj+1xj+1 with pj+1 ∈R. Thus, by changing P
mod the ideal generated by the xi(xi − 1), we can assume that P is divisible by xj+1
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(see [1] for details in the projective case using the n dimensional analogue of Max
Noether’s Af + Bg theorem). We consider P divided by xj+1 to be a degree j − 1
polynomial in dimension j by restricting it to the xj+1 = 1 face. By hypothesis this
polynomial must miss at least two common zeros. Thus, any degree k polynomial P
in dimension k + 1 shares this property.

We induct on the dimension n to show that a polynomial P of degree k can miss
no fewer than 2n−k common zeros. Assume that P misses exactly p of the 2n points
with p¡ 2n−k and consider the set of p missed points. We note that our base case
shows it is impossible to miss fewer than two points in dimension k + 1, so when
n¿ k + 1; p¿ 2. Because these points are distinct, there exists at least one variable,
say xi, in which some points diJer. This partitions the p points into two non-empty
subsets: one contained in the plane xi=0, and the other in the plane xi=1. However, one
of these subsets contains fewer than 2n−k−1 points, and by our inductive hypothesis,
it is impossible for a form of degree k − 1 to be nonzero on fewer than 2n−k−1 points
without vanishing on all of the points in that subset. Thus, we conclude that there
does not exist a degree k polynomial that misses fewer than 2n−k of the 2n common
solutions to the quadratics x1(x1 − 1); : : : ; xn(xn − 1).

Now we need only show the existence of a polynomial of degree k that is zero on
2n−2n−k of the intersections. We consider the polynomial x1x2; : : : ; xk=0. When at least
one of the xi is zero, the polynomial is also zero. This occurs on exactly 2n − 2n−k

of the common zeros. On the remaining 2n−k points, when x1 = x2 = · · · = xk = 1,
the polynomial is not zero. Clearly, this polynomial satisAes our requirements for all
positive k. Thus, 2n−k is the minimum number of vertices that can be missed by any
polynomial that does not contain all 2n points.

While it is easy to think of the set of common zeros as the vertices of a hypercube,
the proof is equivalent in the case where we consider the common zeros of n quadratics
in n variables with the requirement that the quadratics intersect in 2n distinct points
and each quadratic can be factored into linear terms. This result is stated below.

Corollary 1. Given n quadratics in n variables f1; : : : ; fn with each quadratic fi=li1li2
the product of linear forms and 2n common zeros, the maximum number of common
zeros a polynomial P of degree k can go through without going through them all is
2n − 2n−k .

To generalize this result, we consider the set of common zeros of polynomials of any
degree. This can be thought of as a hypercube with multiple points on each side. In the
spirit of our last theorem, we choose polynomials fi that are products of linear forms
lij, where di is the degree of the polynomial. Before we can determine the minimum
number of common zeros a polynomial of degree k can miss, we must consider a
seemingly unrelated problem.

Lemma 1. Let d1; : : : ; dn, k ∈Z+ so that 1¡d16d26 · · ·6dn. Let di = d′i + ai
where d′i ; ai ∈Z with d′i¿ 1 and ai¿ 0. If Kai = k is 7xed, the product d′1 · · ·d′n is
minimized by maximizing a1, then a2, then a3, and so on.
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As an illustration, let d1 = 4, d2 = 5, d3 = 5, and d4 = 6, and k = 8. We subtract
as much as possible from the smallest di so d′1 = 1, d′2 = 1, d′3 = 4, and d′4 = 6. This
gives the product d′1 · · ·d′4 = 24 which is minimal.

Proof. For convenience, we call the algorithm described above the k reduction algo-
rithm and deAne it rigorously as follows. Let i be such that k¿d1 + · · · + di but
k ¡d1 + · · · + di + di+1. Then if d′i represents the remains of di at the algorithm’s
completion, d′i = · · · = d′i = 1, d′i+1 = di+1 − (k − (d1 + · · · + di − i)), and d′j = dj for
all i + 1¡j6 n.

We begin by proving that this algorithm minimizes the product in the case where
n= 2. With d1; d2; k ∈Z+ so that d16d2 and k6d1 + d+ 2 − 2, we let ai = d′i for
the k reduction algorithm and bi = d′i for some other reduction. Clearly bi ¿a1 and
a2¿b2. Also, b1 − a1 = a2 − b2 because a1 + a2 = b1 + b2 = d1 + d2 − k.

We see that we can simplify our problem to one where d1=b1; d2=a2, and k=b1−a1.
To do so we Arst demonstrate that a2¿ b1. We know that either a1 = 1 or a1 =d1 − k.
Because b2 is no less than d2 − k or 1 if k¿d2 (in which case a1 = 1), we conclude
that b2¿ a1. From b1 − a1 = a2 − b2 we see that a2¿ b1. Thus d16d2 and we can
proceed.

With this simpliAcation, the k reduction algorithm subtracts all of k from d1, while
the other algorithm subtracts k from d2. More concretely, the k reduction algorithm
reduces the product by multiplying d1d2 by (1−1=d1)(1−1=(d1−1)) · · · (1−1=(d1−k)).
The other algorithm multiplies d1d2 by (1− 1=d2)(1− 1=(d2 − 1)) · · · (1− 1=(d2 − k)).
Because d16d2 each factor (1 − 1=(d1 − i)) is no greater than (1 − 1=(d2 − i)) and
the product d′1d

′
2 is minimized by the k reduction algorithm.

In the general case, we consider adjacent pairs d′id
′
i+1 in some reduced sequence

and deAne a pair to be k reduced if the di follow the k reduction algorithm for
k = di − d′i + di+1 − d′i+1.

We start with d′1d
′
2 and And the Arst pair that is not k reduced. We then redistribute

the k within that pair so that it matches the k reduction algorithm, minimizing the
product of those d′i (and reducing the overall product d′1 · · ·d′n). We then return to
d′1d

′
2 and repeat the process. When all adjacent pairs are k reduced, the algorithm

matches the k reduction algorithm, and the product d′1 · · ·d′n is minimized.

We apply this lemma to the question of common zeros of polynomials to achieve
the following result.

Theorem 2. Let f1; : : : ; fn be polynomials of degree d1; : : : dn where fi = li1 · · · lidi
with lij of degree 1 so that there are d1 · · ·dn common zeros. The minimum number
of common zeros that a polynomial P of degree k can miss without vanishing on them
all is the product achieved by subtracting k from the degrees of the polynomials di
with the k reduction algorithm.

Proof. We prove this result by induction and use the result from Corollary 1, in which
each di=2, for our base case. To do so, we note that the k reduction algorithm subtracts
1 from the Arst kdi, leaving 2n−k as the desired product.
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We induct on d=d1 · · ·dn in the general case. Without loss of generality, we assume
that d16d26 · · ·6dn. We consider the hyperplanes l11 = 0; : : : ; l1d1 = 0. Either the
minimum number of missed points is achieved either when the polynomial P vanishes
on all of the points in at least one of these planes or when P misses the minimum
number of points in each plane.

In the Arst case if P passes through all of the points in one face, then it is divisible by
the equation of that face by an argument identical to the one given earlier. This reduces
the degree of f1 by one and the degree of P to k − 1. This reduction is in accordance
with the k reduction algorithm and by the inductive hypothesis the minimum number
of missed points will be found by its continuation.

Now, we need only show that it is not more eMcient for a polynomial P to miss
the minimum number of common zeros in each linear face. In this case, the minimum
number of points missed in each face is the product achieved by subtracting a total of
k from d2; : : : ; dn. Because these points are missed in each of the d1 faces, the total
number of points is d1 times this product. However, by Lemma 1 this is greater than
or equal to the product achieved by subtracting k from d1; : : : ; dn so the k reduction
algorithm minimizes the number of missed common zeros.

3. Further study

We see two directions to take this result. The Arst would be to remove the restriction
that the fi are products of linears. One could suMciently And some deformation of the
situation where f1, the form of lowest degree, had just one linear factor. A related
deformation occurs in the proof of Bezout’s theorem found in Mumford [5]. Note that
the deformation will be more delicate here. If we take two cubics in two variables
that have nine common zeros but with no three of them in a line, then the Cayley–
Bacharach theorem (see [4] for details) says that the maximum number of the 9 zeros
a quadric can go through without going through all of them is 5. But if we deform
the situation so that one of the fi has a linear factor the three of the zeros lie on a
line and the number of common zeros a quadric can go through is 6—namely the 6
not on that line. Thus we note that for general fi the minimum will not always be
attained.

The other direction to generalize is to have more than one additional form. We
conjecture that if we have fi of degree di and additional forms gj of degree ej that
the number of common zeros of the f’s and g’s should be the length of R mod the
lex plus powers ideal (see [2]) formed by the power of xi being di and then All in the
ideal by taking the earliest thing in lex order of degree ej.
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