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In this paper, we introduce a cofibrant simplicial category 
that we call the free homotopy coherent adjunction and 
characterise its n-arrows using a graphical calculus that 
we develop here. The hom-spaces are appropriately fibrant, 
indeed are nerves of categories, which indicates that all of the 
expected coherence equations in each dimension are present. 
To justify our terminology, we prove that any adjunction of 
quasi-categories extends to a homotopy coherent adjunction 
and furthermore that these extensions are homotopically 
unique in the sense that the relevant spaces of extensions are 
contractible Kan complexes.
We extract several simplicial functors from the free homotopy 
coherent adjunction and show that quasi-categories are closed 
under weighted limits with these weights. These weighted 
limits are used to define the homotopy coherent monadic 
adjunction associated to a homotopy coherent monad. We 
show that each vertex in the quasi-category of algebras for a 
homotopy coherent monad is a codescent object of a canonical 
diagram of free algebras. To conclude, we prove the quasi-
categorical monadicity theorem, describing conditions under 
which the canonical comparison functor from a homotopy 
coherent adjunction to the associated monadic adjunction is 
an equivalence of quasi-categories. Our proofs reveal that a 
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mild variant of Beck’s argument is “all in the weights”—much 
of it independent of the quasi-categorical context.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Quasi-categories, introduced by Boardman and Vogt [3], are now recognised as a 
convenient model for (∞, 1)-categories, i.e., categories weakly enriched over spaces. The 
basic category theory of quasi-categories has been developed by Joyal [11,13,12], Lurie 
[18,19] (under the name ∞-categories), ourselves [23], and others. Ordinary category 
theory can be understood to be a special case: categories form a full subcategory of 
quasi-categories and this full inclusion respects all (quasi-)categorical definitions. As a 
consequence, we find it productive to identify a category with its nerve, the corresponding 
quasi-category.

This paper is a continuation of [23], references to which will have the form I.x.x.x, 
which develops the category theory of quasi-categories using 2-categorical techniques 
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applied to the (strict) 2-category of quasi-categories qCat2. First studied by Joyal [12], 
qCat2 can be understood to be a quotient of the simplicially enriched category qCat∞ of 
quasi-categories; qCat2 is defined by replacing each hom-space of qCat∞ by its homotopy 
category. While our discussion focuses on quasi-categories, as was the case in [23] our 
proofs generalise without change to other similar “contexts”, subcategories of fibrant 
objects in model categories enriched over the Joyal model structure in which all fibrant 
objects are cofibrant. Examples include complete Segal objects (“Rezk objects”) in model 
categories permitting Bousfield localisation with sufficiently many cofibrant objects. This 
perspective will be explored more fully in the forthcoming [27].

1.1. Adjunction data

In [23], we develop the theory of adjunctions between quasi-categories, defined to be 
adjunctions in qCat2. Examples include adjunctions between ordinary, topological, or 
locally Kan simplicial categories; simplicial Quillen adjunctions; and adjunctions con-
structed directly on the quasi-categorical level from the existence of appropriate limits 
or colimits. Explicitly, the data of an adjunction

A
u

⊥ B

f

η : idB ⇒ uf ε : fu ⇒ idA

consists of two quasi-categories A, B; two functors f, u (maps of simplicial sets be-
tween quasi-categories); and two natural transformations η, ε represented by simplicial 
maps

B

i0

A
u

i0

B

f

B × Δ1
η

B and A× Δ1 ε
A

B

i1

f
A

u

A

i1

Because the hom-spaces BA and AB are quasi-categories, for any choices of 1-simplices 
representing the unit and counit, there exist 2-simplices

A× Δ2 α→ B and B × Δ2 β→ A

which witness the triangle identities in the sense that their boundaries have the form
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ufu

α

uε

fuf

β

εf

u

ηu

idu

u f

fη

idf

f

(1.1.1)

This elementary definition of an adjunction between quasi-categories has a very different 
form from the definition given by Lurie in [18], but they are equivalent (see I.4.4.5 for 
one implication and [27] for the converse).

This 0-, 1-, and 2-dimensional data suffices to establish that the functors f and u form 
an adjunction of quasi-categories, but higher dimensional adjunction data certainly ex-
ists. For example, the 1-simplices fuε and ε in AA can be composed, defining a 1-simplex 
we might call εε. The 2-simplex witnessing this composition, the 2-simplex ε · σ0, and 
the 2-simplex fα combine to form a (3, 2)-horn in AA

fufu

fuε

εε

fu

fηu

ε idA

fu

ε

(1.1.2)

which may be filled to define a 3-simplex ω and 2-simplex μ witnessing that fηu composed 
with εε is ε.

An analogous construction replaces fuε with εfu and fα with βu. On account of the 
commutative diagram in the homotopy category h(AA)

fufu

εfu

fuε

εε

fu

ε

fu
ε

idA

(1.1.3)

we may choose the same 1-simplex εε as the composite of εfu with ε. Filling the 
(3, 2)-horn in AA

fufu

εfu

εε

fu

fηu

ε idA

fu

ε

(1.1.4)
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produces a 3-simplex τ together with another 2-simplex witnessing that ε = εε · fηu. 
But it is not immediately clear whether ω and τ may be chosen compatibly, i.e., with 
common 2-nd face.

As a consequence of our first main theorem, we will see that the answer is yes and, 
furthermore, compatible choices always exist “all the way up”. To state this result we 
require a new definition. To that end recall that in [28], Schanuel and Street introduce the 
free adjunction: a strict 2-category Adj which has the universal property that 2-functors 
Adj → K stand in bijective correspondence to adjunctions in the 2-category K. In honour 
of this result, their 2-category Adj is called the free adjunction.

Inspired by their pioneering insight, we define a simplicial category, which we also call 
Adj, for which we prove the following result:

4.3.9, 4.3.11. Theorem. Any adjunction of quasi-categories extends to a homotopy coher-
ent adjunction: any choice of low-dimensional adjunction data for an adjunction between 
quasi-categories can be extended to a simplicial functor Adj → qCat∞.

We then show, in theorems 4.4.11 and 4.4.18, that suitably defined spaces of all such 
extensions are contractible. These existence and homotopy uniqueness results provide 
us with the appropriate homotopy theoretic generalisation of the Schanuel–Street result 
to the quasi-categorical context. Consequently, we feel justified in calling our simplicial 
category Adj the free homotopy coherent adjunction.

1.2. The free homotopy coherent adjunction

We can say more about the relationship between our simplicial category Adj and the 
Schanuel–Street free adjunction. Indeed it is a somewhat unexpected and perhaps a little 
remarkable fact that these two are actually one and the same gadget. More precisely, if 
we look upon the Schanuel–Street free adjunction as a simplicial category, by applying 
the fully faithful nerve functor to each of its hom-categories, then it is isomorphic to our 
free homotopy coherent adjunction. This result, which appears here as corollary 3.3.5, 
explains our adoption of the common notation Adj to name both of these structures.

Now observe that, as a 2-category, the hom-spaces of our simplicial category Adj
are all quasi-categories, a “fibrancy” condition that indicates all possible composites of 
coherence data are present in Adj and thus picked out by a simplicial functor with this 
domain. But of course, these hom-spaces, as nerves of categories, have unique fillers for 
all inner horns, which says furthermore that this coherence data is “minimally chosen” 
or “maximally coherent” in some sense.

What is unexpected from this definition, and yet essential in order to prove the “free-
ness” of the homotopy coherent adjunction, is that Adj is also cofibrant in the sense of 
being a cofibrant object in the Bergner model structure on simplicial categories [1]. The 
cofibrant simplicial categories are exactly the simplicial computads, which we describe in 
section 2. This notion has antecedents in the computads of Street [30] and the descrip-
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tion of the cofibrant objects in the model structure described by Dwyer and Kan on the 
category simplicial categories with fixed object set [7].

In section 3, we prove that Adj is a simplicial computad by presenting an ex-
plicit simplicial subcomputad filtration that is then employed in the proof that any 
quasi-categorical adjunction underlies a homotopy coherent adjunction. Our approach 
is somewhat roundabout. We defined Adj first as a simplicial category by introduc-
ing a graphical calculus for its n-arrows. This graphical calculus seamlessly encodes all 
the necessary simplicial structure, while highlighting a set of atomic arrows that freely 
generate the arrows in each dimension under horizontal composition. We then prove 
that this simplicial category is isomorphic to the 2-category Adj under the embedding 
2-Cat ↪→ sSet-Cat.

In section 4, we prove that any adjunction of quasi-categories extends to a homotopy 
coherent adjunction and moreover that homotopy coherent adjunctions Adj → qCat∞
extending a given adjunction of quasi-categories are “homotopically unique”. In fact, 
as our use of the subcomputad filtration of Adj makes clear, there are many extension 
theorems, distinguished by what we take to be the initial data of the adjunction of 
quasi-categories. We define spaces of extensions from a single left adjoint functor; from 
choices of both adjoints and a representative for the counit; from choices of both adjoints, 
representatives for the unit and counit, and a representative for one of the triangle 
identities; and so on, proving that each of these defines a contractible Kan complex.

1.3. Weighted limits and the formal theory of monads

The 2-category Adj has two objects, which we denote “+” and “−”; their images 
specify the objects spanned by the adjunction. The hom-category Adj(+, +) is Δ+—the 
“algebraist’s delta”—the category of finite ordinals and order-preserving maps. Ordinal 
sum makes Δ+ a strict monoidal category; indeed, it is the free strict monoidal cate-
gory containing a monoid. Hence, a 2-functor whose domain is the one-object 2-category 
with hom-category Δ+ is exactly a monad in the target 2-category. The hom-category 
Adj(−, −) is Δop

+ . In this way, the restrictions of the free adjunction Adj to the sub-
categories spanned by one endpoint or the other define the free monad and the free 
comonad.

Restrictions of a homotopy coherent adjunction to the subcategories Mnd and Cmd
spanned by + and − respectively define a homotopy coherent monad and a homotopy 
coherent comonad. Unlike the case for adjunctions, (co)monads in qCat2 are not auto-
matically homotopy coherent; a monad is an algebraically-defined structure whereas an 
adjunction encodes a universal property. However, as a corollary of our extension theo-
rem, any monad arising from an adjunction extends to a homotopy coherent monad, a 
simplicial functor with domain Mnd ↪→ Adj. In the body of this paper, except when dis-
cussing monads, we frequently omit the appellation “homotopy coherent” because in the 
other settings this interpretation is automatic: categories regarded as quasi-categories 
via their nerves automatically define homotopy coherent diagrams.
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In the second half of this paper, we present a “formal” re-proof of the quasi-categorical 
monadicity theorem that also illuminates the classical categorical argument. The starting 
insight is a characterisation of the quasi-category of algebras for a homotopy coherent 
monad as a weighted limit. In this context, a weight is a functor describing the “shape” of 
a generalised cone over a diagram indexed by a fixed small category. An object represent-
ing the set of cones described by a particular weight is called a weighted limit. The use 
of weighted limits can provide a useful conceptual simplification because calculations 
involving the weights reveal the reason why these results are true; cf. the expository 
paper [26].

To make use of weighted limits in the quasi-categorical context a preliminary result is 
needed because the simplicial subcategory qCat∞ ↪→ sSet is not complete. It is however 
closed under weighted limits whose weights are cofibrant in the projective model structure 
on the appropriate sSet-valued diagram category. We prove this result and provide a 
general review of the theory of weighted limits in section 5. We anticipate other uses of 
the fact that quasi-categories are closed under weighted limits with projectively cofibrant 
weights than those given here. In a supplemental paper [24], we prove that for any 
diagram of quasi-categories admitting (co)limits of shape X and functors that preserve 
these colimits, the weighted limit again admits (co)limits of shape X.

In section 6, we define the quasi-category of algebras B[t] associated to a homotopy 
coherent monad t on a quasi-category B as a limit weighted by the restriction along 
Mnd ↪→ Adj of the covariant simplicial functor represented by the object −. The ho-
motopy coherent monadic adjunction f t � ut : B[t] → B is then defined formally: it is 
simply a reflection in qCat∞ of an adjunction between the weights whose limits iden-
tify the two quasi-categories involved. In particular, the monadic forgetful functor ut is 
induced from a natural transformation between weights that is a projective cofibration 
and “constant on dimension zero” in an appropriate sense. It follows that the induced 
map of weighted limits is conservative (reflects isomorphisms).

We give an explicit description of the vertices in the quasi-category of algebras for 
a homotopy coherent monad, unpacking the weighted limit formula. A calculation on 
weights—reminiscent of our proof in [23] that for any simplicial object in a quasi-category 
admitting an augmentation and a splitting the augmentation defines the colimit—proves 
that these vertices are “codescent objects”.

6.3.17. Theorem. Any vertex in the quasi-category B[t] of algebras for a homotopy co-
herent monad is the colimit of a canonical ut-split simplicial object of free algebras.

In section 7, we compare a general homotopy coherent adjunction extending f �
u : A → B with the induced monadic adjunction defined from its homotopy coherent 
monad t = uf . A map between weights, this time indexed on the simplicial category 
Adj, induces a canonical simplicial natural transformation from the homotopy coherent 
adjunction to the monadic adjunction. The monadicity theorem gives conditions under 
which the non-identity component of this map is an equivalence of quasi-categories.
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7.2.4, 7.2.7. Theorem. There is a canonical comparison functor defining the component 
of a simplicial natural transformation between any homotopy coherent adjunction f � u

and its monadic homotopy coherent adjunction f t � ut.

A
u

B[t]

ut

B
f

ft

If A admits colimits of u-split simplicial objects, then the comparison functor admits a 
left adjoint. If u preserves colimits of u-split simplicial objects and reflects isomorphisms, 
then this adjunction defines an adjoint equivalence A � B[t].

2. Simplicial computads

Cofibrant simplicial categories are simplicial computads, a definition we introduce in 
§2.1 together with some important examples. The notion of simplicial computad provides 
a direct characterisation of those simplicial categories that are cofibrant that is useful 
for inductive arguments: a simplicial functor whose domain is a simplicial computad is 
defined by specifying images of the atomic non-degenerate n-arrows. In §2.2, we study 
simplicial subcomputads in order to describe what will be needed for the “induction 
steps” in the proofs of section 4, which require extensions along simplicial subcomputad 
inclusions.

2.1. Simplicial categories and simplicial computads

2.1.1. Notation (Simplicial categories). It will be convenient to identify simplicially 
enriched categories, simplicial categories henceforth, as simplicial objects in Cat. The 
category of simplicial categories is isomorphic to the full subcategory of CatΔ

op
of those 

simplicial objects A : Δop → Cat for which the simplicial set obtained by composing with 
the object functor obj : Cat → Set is constant. In other words, a simplicial object in Cat
is a simplicial category just when each of the categories in the diagram has the same set 
of objects and each of the functors is the identity on objects.

Given a simplicial category A : Δop → Cat, an n-arrow is an arrow in An; an n-arrow 
f : a → b is precisely an n-simplex in the simplicial set A(a, b). We write ∅ for the initial 
simplicial category on no objects and 1 for the terminal simplicial category on a single 
object. We adopt the same terminology for large simplicial categories K, using the size 
conventions detailed in I.2.0.1.

2.1.2. Notation (Whiskering in a simplicial category). For each vertex in a simplicial set 
and for each n > 0, there is a unique degenerate n-simplex on that vertex obtained by 
acting via the simplicial operator [n] → [0]. If f : a → b is an n-arrow in a simplicial 
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category A, and x : a′ → a and y : b → b′ are 0-arrows, we write fx : a′ → b and 
yf : a → b′ for the n-arrows obtained by degenerating x and y and composing in A. We 
refer to this operation as whiskering the n-arrow f with x or y; in the special case where 
the simplicial category is a 2-category, this coincides with the usual notion.

2.1.3. Example (The generic n-arrow). For any simplicial set X, let 2[X] denote the 
simplicial category with two objects 0 and 1 and whose only non-trivial hom-space is 
2[X](0, 1) := X. Here we define 2[X](1, 0) = ∅ and 2[X](0, 0) = 2[X](1, 1) = ∗.

For any simplicial category K, a simplicial functor F : 2[X] → K is completely deter-
mined by the following data:

• a pair of objects B and A in K and
• a simplicial map f : X → K(B, A).

On account of the canonical bijection between simplicial functors 2[Δn] → K and 
n-arrows of K, we refer to the simplicial category 2[Δn] as the generic n-arrow.

2.1.4. Definition (Relative) simplicial computads. The class of relative simplicial com-
putads is the class of all simplicial functors which can be expressed as a transfinite 
composite of pushouts of coproducts of

• the unique simplicial functor ∅ ↪→ 1, and
• the inclusion simplicial functor 2[∂Δn] ↪→ 2[Δn] for n ≥ 0.

A simplicial category A is a simplicial computad if and only if the unique functor ∅ ↪→ A
is a relative simplicial computad.

2.1.5. Observation (An explicit characterisation of simplicial computads). An arrow f
in an unenriched category is atomic if it is not an identity and it admits no non-trivial 
factorisations, i.e., if whenever f = g ◦ h then one or other of g and h is an identity. 
A category is freely generated (by a reflexive directed graph) if and only if each of its 
non-identity arrows may be uniquely expressed as a composite of atomic arrows. In this 
case, the generating graph is precisely the subgraph of atomic arrows.

An extension of this kind of characterisation gives an explicit description of the sim-
plicial computads. Specifically, A is a simplicial computad if and only if:

• each non-identity n-arrow f of An may be expressed uniquely as a composite f1 ◦
f2 ◦ · · · ◦ f� in which each fi is atomic, and

• if f is an atomic n-arrow in An and α : [m] → [n] is a degeneracy operator in Δ then 
the degenerated m-arrow f · α is atomic in Am.

On combining this characterisation with the Eilenberg–Zilber lemma, we find that A is 
a simplicial computad if and only if all of its non-identity arrows f can be expressed 
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uniquely as a composite

f = (f1 · α1) ◦ (f2 · α2) ◦ · · · ◦ (f� · α�) (2.1.6)

in which each fi is non-degenerate and atomic and each αi ∈ Δ is a degeneracy operator.

2.1.7. Observation. A simplicial functor is called a trivial fibration of simplicial categories 
if it has the right lifting property with respect to the generating set of simplicial functors 
of definition 2.1.4. A simplicial functor P : E → B is a trivial fibration if and only if 
it is surjective on objects and its action E(A, B) → B(PA, PB) on each hom-space is 
a trivial fibration of simplicial sets. A simplicial functor is said to be a cofibration of 
simplicial categories if it is a retract of a relative simplicial computad. These are the 
classes appearing in Bergner’s model structure on simplicial categories [1].

The characterisation of observation 2.1.5 reveals that all retracts of simplicial com-
putads are again simplicial computads and hence that the cofibrant objects in Bergner’s 
model structure are precisely the simplicial computads: no retracts are needed.

2.1.8. Example. The simplicial categories 2[X] defined in example 2.1.3 are simplicial 
computads, with every simplex in X an atomic arrow.

2.1.9. Example (Free simplicial resolutions define simplicial computads). There is a free-
forgetful adjunction

Cat
U

⊥ Gph
F

between small categories and reflexive directed graphs inducing a comonad FU on Cat. 
The comonad resolution associated to a small category C is a simplicial computad FU•C

FUC FηU FUFUC
FUε

εFU

FUFηU

FηUFU
FUFUFUC · · ·FUεFU

εFUFU

FUFUε

called the standard resolution of C in [7]. The category FUC is the free category on the 
underlying graph of C. Its arrows are (possibly empty) strings of composable non-identity 
arrows of C. The atomic 0-arrows are the non-identity arrows of C. An n-arrow is a 
string of composable arrows in C with each arrow in the string enclosed in exactly n
pairs of parentheses. The atomic n-arrows are those strings enclosed in a single pair of 
“outermost” parentheses.

2.1.10. Example. The simplicial computad FU•C is isomorphic to the image of the nerve 
of C under the left adjoint to the homotopy coherent nerve
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sSet-Cat
N

⊥ sSet
C

cf. [21, 6.7]. Indeed, for any simplicial set X, CX is a simplicial computad. This follows 
from the fact that C � N defines a Quillen equivalence between the model structures of 
Bergner and Joyal, but we prefer to give a direct proof.

The arrows in CX admit a simple geometric characterisation due to Dugger and Spivak 
[5]: n-arrows in CX are necklaces in X, i.e., maps Δn1 ∨ Δn2 ∨ · · · ∨ Δnk → X from a 
sequence of standard simplices joined head-to-tail, together with a nested sequence of 
n − 1 sets of vertices. The atomic arrows are precisely those whose necklace consists of 
a single simplex.

2.1.11. Example. In particular, the simplicial category CΔn whose objects are integers 
0, 1, . . . , n and whose hom-spaces are the cubes

CΔn(i, j) =

⎧⎪⎪⎨⎪⎪⎩
(Δ1)j−i−1 i < j

Δ0 i = j

∅ i > j

is a simplicial computad. In each hom-space, the atomic arrows are precisely those whose 
simplices contain the initial vertex in the poset whose nerve defines the simplicial cube.

2.2. Simplicial subcomputads

The utility of the notion of simplicial computad is the following: if A is a simplicial 
computad and K is any simplicial category, a simplicial functor A → K can be defined 
inductively simply by specifying images for the non-degenerate, atomic n-arrows in a 
way that is compatible with previously chosen faces. Let us now make this idea precise.

2.2.1. Definition (Simplicial subcomputad). If A is a simplicial computad then a simplicial 
subcomputad B of A is a simplicial subcategory that is closed under factorisations: i.e.,

• if g and f are composable arrows in A and g ◦ f is in B, then both g and f are in B.

This condition is equivalent to postulating that B is a simplicial computad and that 
every arrow which is atomic in B is also atomic in A.

2.2.2. Observation (Simplicial subcomputads and relative simplicial computads). If B is a 
simplicial subcomputad of the simplicial computad A, then the inclusion functor B ↪→ A
is a relative simplicial computad. Indeed, every relative simplicial computad may be 
obtained as a composite of pushouts of simplicial subcomputad inclusion. Furthermore, 



E. Riehl, D. Verity / Advances in Mathematics 286 (2016) 802–888 813
if C is a simplicial subcategory of B then C is a simplicial subcomputad of B if and only 
if it is a simplicial subcomputad of A.

2.2.3. Example. If X is a simplicial subset of Y , then 2[X] is a simplicial subcomputad 
of 2[Y ], and CX is a simplicial subcomputad of CY .

2.2.4. Definition. The simplicial subcomputad generated by a set of arrows X in a simpli-
cial computad A is the intersection X of all of the simplicial subcomputads of A which 
contain X. Note that arbitrary intersections of simplicial subcomputads are again simpli-
cial subcomputads. The simplicial subcomputad X can be formed by inductively closing 
X up to the smallest subset of A containing it which satisfies the closure properties:

• if f ∈ X and α is a simplicial operator then f · α ∈ X, and
• if g ◦ f is a composite in A, then g ◦ f ∈ X if and only if g and f are both in X.

2.2.5. Example ((Co)skeleta of simplicial categories). The r-skeleton skr A (r ≥ −1) of 
a simplicial category A is the smallest simplicial subcategory of A which contains all 
of its arrows of dimension less than or equal to r. We say that a simplicial category 
A is r-skeletal if skr A = A, i.e., when all of its arrows of dimension greater than r
can be expressed as composites of degenerate arrows. When A is a simplicial computad, 
an arrow f is in skr(A) if and only if each arrow fi in the decomposition of (2.1.6)
has dimension at most r. In this case, the skeleton skr A is the simplicial subcomputad 
of A generated by its set of r-arrows. By convention, we write sk−1 A for the discrete 
simplicial subcategory which contains all of the objects of A.

Each r-skeleton functor has a right adjoint

sSet-Cat
coskr

⊥ sSet-Cat
skr

which as ever we call the r-coskeleton. The 0-coskeleton cosk−1 A is the chaotic sim-
plicial category on the objects of A. The r-coskeleton of A is defined by applying the 
usual simplicial r-coskeleton functor coskr : sSet → sSet to each hom-space A(A, B). 
The consequent hom-spaces (coskr A)(A, B) := coskr(A(A, B)) inherit a compositional 
structure from that of A by dint of the fact that the simplicial r-coskeleton functor is 
right adjoint and thus preserves all finite products. A simplicial category A is r-coskeletal
if and only if the adjoint transpose A → coskr A of the inclusion skr A ↪→ A is an iso-
morphism. So a simplicial category is (−1)-coskeletal when all of its hom-spaces are 
isomorphic to the one point simplicial set Δ0 and it is r-coskeletal precisely when each 
of its hom-spaces is r-coskeletal in the usual sense for simplicial sets.

2.2.6. Proposition. If A is a simplicial computad, a simplicial functor F : A → K is 
uniquely specified by choosing
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• an object F (A) in K for each of the objects A of A, and
• an arrow F (f) in K for each of the non-degenerate and atomic arrows f of A

subject to the conditions that

• these choices are made compatibly with the dimension, domain, and codomain oper-
ations of A and K, and

• whenever f is a non-degenerate and atomic arrow and its face f · δi is decomposed 
in terms of non-degenerate and atomic arrows fi as in (2.1.6) then the face F (f) · δi
is the corresponding composite of degenerate images of the F (fi).

Proof. We induct over the skeleta of A. The specification of objects defines F : sk−1 A →
K. If F : skr−1 A → K is a simplicial functor, then extensions of F to a simplicial functor 
skr A → K are uniquely specified by the following data:

• an r-arrow F (f) in K for each atomic non-degenerate r-arrow f in A subject to the 
condition that F (f) ·δi = F (f ·δi) for each elementary face operator δi : [r−1] → [r]
in Δ.

This condition on the faces of the chosen arrow F (f) makes sense because the faces f ·δi
of any r-arrow are (r − 1)-arrows and are thus elements of skr−1 A to which we may 
apply the un-extended simplicial functor F : skr−1 A → K.

To construct a simplicial functor from this data we simply decompose each arrow f
of skr(A) as in (2.1.6) and then observe that F (fi) is defined for each component of 
that decomposition either because fi is in skr−1 A or because it is a non-degenerate and 
atomic r-arrow and thus has an image in K given by the extra data supplied above. This 
then provides us with a value for F (f) given by the composite

F (f) := (F (f1) · α1) ◦ (F (f2) · α2) ◦ · · · ◦ (F (f�) · α�) (2.2.7)

and it is easily checked, using the uniqueness of these decompositions in A, that this 
action is functorial and that it respects simplicial actions. In other words, this result 
tells us that we may build the skeleton skr(A) from the skeleton skr−1(A) by glueing 
on copies of the category 2[Δr] along functors 2[∂Δr] → skr−1(A), one for each atomic 
non-degenerate r-arrow of A. �
3. The generic adjunction

In this section, we introduce a simplicial category Adj via a graphical calculus devel-
oped in §3.1, from which definition it will be immediately clear that we have defined 
a simplicial computad. This result, when combined with proposition 2.2.6, will make it 
relatively easy to construct simplicial functors whose domain is Adj. In §3.2 and §3.3, 
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we then show that Adj is isomorphic to the simplicial category obtained by applying 
the nerve to each hom-category in the free 2-category containing an adjunction [28]. 
To emphasise the interplay between 2-categories and simplicial categories, an important 
theme of our work, our proof strategy is somewhat indirect. In §3.2, we show that the 
hom-spaces of Adj satisfy the Segal condition; thus Adj is isomorphic to some 2-category 
under the embedding 2-Cat ↪→ sSet-Cat. In §3.3, we show that Adj has the same uni-
versal property as the Schanuel and Street 2-category, proving that these gadgets are 
isomorphic and justifying our decision not to notationally distinguish between them.

3.1. A graphical calculus for the simplicial category Adj

To define a small simplicial category, thought of as an identity-on-objects simplicial 
object in Cat, it suffices to specify

• a set of objects,
• for each n ≥ 0, a set of n-arrows with (co)domains among the specified object set,
• a right action of the morphisms in Δ on this graded set,
• a “horizontal” composition operation for n-arrows with compatible (co)domains that 

preserves the simplicial action.

We will define Adj to be the simplicial category with two objects, denoted “+” and 
“−”, and whose n-arrows will be certain graphically inspired strictly undulating squiggles 
on n +1 lines. We will provide a formal account of these squiggles presently, but we prefer 
to start by engaging the reader’s intuition with a picture. For example, the diagram below 
depicts a 6-arrow in the hom-space Adj(−, +):

(3.1.1)

Here we have drawn the n + 1 lines (n = 6 in this case) which support this squiggle 
as horizontal dotted lines numbered 0 to n down the right hand side, and these lines 
separate n + 2 levels which are labelled down the left hand side. The levels which sit 
between a pair of lines, sometimes called gaps, are labelled 1 to n while the top and 
bottom levels are labelled − and + respectively.

Each turning point of the squiggle itself lies entirely within a single level. The qualifier 
“strict undulation” refers to the requirement that the levels of adjacent turning points 
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should be distinct and that they should oscillate as we proceed from left to right. For 
example, the following is not a strictly undulating squiggle

because its last two turning points occur on the same level.
The data of such a squiggle can be encoded by a string a = (a0, a1, . . . , ar) of let-

ters in the set {−, 1, 2, . . . , n, +}, corresponding to the levels of each successive turning 
point, subject to conditions that we will enumerate shortly. The string corresponding 
to our 6-arrow (3.1.1) is displayed along the bottom of that picture. As we shall see, 
composition of n-arrows in Adj will correspond to a coalesced concatenation operation 
on these strings, and so it is natural to read them from right to left. Consequently, the 
domain and codomain of such a squiggle are naturally taken to be its last and first letters 
respectively; in particular, the domain of the 6-arrow (3.1.1) is − and its codomain is +.

3.1.2. Definition (Strictly undulating squiggles). We write a = (a0, a1, . . . , ar) for a non-
empty string of letters in {−, 1, 2, . . . , n, +}, intended to represent a squiggle on n + 1
lines, with domain dom(a) := ar and codomain cod(a) := a0. We define the width of this 
squiggle to be the number w(a) := r, that is, the number of letters in its string minus 
1. The interior of such a string is the sub-list a1, . . . , ar−1 of all of its letters except for 
those at its end points a0 and ar.

We say that a string a represents a strictly undulating squiggle on n + 1 lines if it 
satisfies the conditions that:

(i) a0, aw(a) ∈ {−, +}, and
(ii) if a0 = − (resp. a0 = +) then for all 0 ≤ i < w(a) we have ai < ai+1 whenever i is 

even (resp. odd) and ai > ai+1 whenever i is odd (resp. even).

We also say that a is simply an undulating squiggle on n +1 lines if it satisfies condition (i) 
above but only satisfies the weaker condition

(ii)′ if a0 = − (resp. a0 = +) then for all 0 ≤ i < w(a) we have ai ≤ ai+1 whenever i is 
even (resp. odd) and ai ≥ ai+1 whenever i is odd (resp. even).

in place of condition (ii).
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3.1.3. Definition (Composing squiggles). Two such n-arrows b and a are composable when 
bw(b) = a0 and their composite is described graphically as the kind of horizontal glueing 
depicted in the following picture:

More formally, the composite b◦a is given by the string (b0, · · · , bw(b) = a0, a1, · · · , aw(a))
constructed by dropping the last letter of b and concatenating the resulting string with a. 
It is easily seen that this composition operation is associative and that it has the n-arrows 
(−) and (+) as identities. In other words, these operations make the collection of n-arrows 
into a category with objects − and +.

3.1.4. Observation (Atomic n-arrows). Notice that an n-arrow c of Adj may be expressed 
as a composite b ◦ a of non-identity n-arrows precisely when there is some 0 < k < w(c)
such that ck ∈ {−, +}. Specifically, b := (c0, . . . , ck) and a := (ck, . . . , cw(c)) are strictly 
undulating squiggles whose composite is c. It follows that an n-arrow c is atomic, in the 
sense of definition 2.1.4, if and only if the letters − and + do not appear in its interior.

We now describe how the simplicial operators act on the arrows of Adj.

3.1.5. Observation (Simplicial action on strictly undulating squiggles). The geometric 
idea behind the simplicial action is simple: given a simplicial operator α : [m] → [n] and 
a strictly undulating squiggle on n + 1 lines, one produces a strictly undulating squiggle 
on m + 1 lines by removing the line labelled by each letter i ∈ [n] not in the image of α, 
“pulling” the string taught if necessary to preserve the strict undulations, and replacing 
the line labelled by each letter i ∈ [n] that is in the image by an identical copy of that 
line for each element of the fibre α−1(i), “stretching” apart these lines to create the 
appropriate gaps.

To illustrate, consider the 4-arrow

(3.1.6)
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Its image under the action of the degeneracy operator σ0 : [5] → [4] is the 5-arrow

obtained by doubling up line 0 and opening up an extra gap between these copies. From 
this description, it is clear that degenerate n-arrows are readily identifiable: an n-arrow 
is in the image of the degeneracy operator σi if and only if the letter i + 1 does not 
appear in its representing string.

The image of a under the action of the face operator δ4 : [3] → [4] is the 3-arrow 
constructed by removing the line numbered 4 from the squiggle (3.1.6):

This is again a strictly undulating squiggle which we may immediately take to be the 
face we seek. Note that a · δ4 is decomposable even though a itself is atomic.

The construction of the image of a under the action of the face operator δ1 : [3] → [4]
must be constructed in two steps. First we remove the line numbered 1 from the squiggle 
in (3.1.6) to give:

This, however, isn’t strictly undulating so we eliminate matched pairs of those adjacent 
turning points which occur at the same level to give the desired 3-face:
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Note that the execution of this reduction step means that the width of this particular 
face is strictly less than that of the original n-arrow.

In general, the elementary face operator δi acts on an n-arrow a of Adj by first 
replacing each letter aj > i with aj − 1 and then, if necessary, performing a reduction 
step to preserve the strict undulation. This reduction deletes consecutive matched pairs 
of repetitions of the same letter, eliminating sequences of repetitions of even length 
entirely and reducing those of odd length to a single letter. It is now straightforward to 
show that the string that emerges from this reduction step will be strictly undulating 
and thus will deliver us an (n − 1)-arrow of Adj.

Applying this algorithm to take further faces we see, for example, that the image of 
a under the face operator {0, 1, 4} : [2] → [4] is the 2-arrow

and in turn the first face of this 2-arrow is the 1-arrow

A formal account of the right action of Δ on the arrows of Adj makes use of the 
interval representation.

3.1.7. Observation (Interval representation). There is a faithful “interval representation” 
in the form of a functor ir : Δop

↪→ Δ defined on objects by ir([n]) := [n + 1] and on 
morphisms by:

• for any elementary face operator δin : [n − 1] → [n],

ir(δin) := σi
n : [n + 1] → [n],

and
• for any elementary degeneracy operator σi

n−1 : [n] → [n − 1],

ir(σi
n−1) := δi+1

n+1 : [n] → [n + 1].

This functor is faithful and maps onto the full subcategory of those simplicial operators 
which preserve distinct top and bottom elements. Following Joyal [10], who calls the 
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subcategory of top and bottom preserving maps in Δ the category of intervals, we refer 
to the image of Δop in Δ as the category of strict intervals.

We can think of the numbers labelling the lines on the right of our squiggle diagrams 
as being the elements of an ordinal [n] in Δop and those labelling the levels on the left 
as being the elements of the corresponding ordinal [n + 1] = ir([n]) in Δ. Here we have 

renamed the top and bottom elements of [n +1] to “+” and “−” respectively in order to 

indicate their special status in the category of strict intervals. From this perspective, we 

may motivate this action of the interval representation on elementary simplicial operators 
using the lines and levels of our squiggle diagrams:

• The action of an elementary face operator δi : [n − 1] → [n] on a squiggle diagram 

proceeds by removing the line labelled i on the right, which causes the levels labelled 

i and i + 1 on the left to be coalesced into one and causes all higher numbered levels 
to have their level number reduced by one. This operation maps levels labelled in 

[n + 1] to levels labelled in [n] according to the action of the elementary degeneracy 

operator ir(δi) = σi : [n + 1] → [n].
• The action of an elementary degeneracy operator σi : [n] → [n −1] on a squiggle dia-

gram proceeds by doubling up on the line labelled i on the right and then stretching 

apart those lines to give a new level labelled i +1 on the left, which causes the levels 
whose labels are greater than i to have their level numbers increased by one. This 
operation maps levels labelled in [n] to levels labelled in [n + 1] according to the 

action of the elementary face operator ir(σi) = δi+1 : [n] → [n + 1].

3.1.8. Definition (Simplicial actions formally). The action of a simplicial operator 
α : [m] → [n] on an n-arrow of Adj may be formally described via a two-step process:

• Apply the interval representation ir(α) : [n + 1] → [m + 1] of α to the entries of 
a = (a0, . . . , ar) to give a string (a′0, . . . , a′r). This string is not necessarily strictly 

undulating, since ir(α) may not be injective, but it is undulating.
• Reduce the undulating string (a′0, . . . , a′r) to a strictly undulating one by iteratively 

locating consecutive pairs of matched letters and eliminating them. The order of 
these eliminations is immaterial and that this process will always terminate at the 

same strictly undulating string, which we take to be a · α.

The actions of the simplicial operators on the arrows of Adj respect the simplicial 
identities and are compatible with composition and thus make Adj into a simplicial 
category. For aesthetic reasons, and because their data is redundant in the presence of 
an oriented planar picture, when drawing squiggles we often decline to include the labels 
for the lines and gaps, or the corresponding string of letters.



E. Riehl, D. Verity / Advances in Mathematics 286 (2016) 802–888 821
3.1.9. Observation (The vertices of an arrow in Adj). The 2-nd vertex of the 4-arrow 
(3.1.6) can be computed by deleting all lines except for the one labelled 2 and reducing 
the resulting undulating squiggle to a strictly undulating one:

More directly, the diagram of the j-th vertex of a is the squiggle on one line crossing the 
same number of times that the original squiggle crosses the line j. Writing {j} for the 
simplicial operator that picks out the j-th vertex, we have:

The last of these vertices, denoted by an empty picture, is the identity 0-arrow on the 
object −.

A key advantage to our explicit description of Adj is that the proof of the following 
important proposition is trivial.

3.1.10. Proposition. The simplicial category Adj is a simplicial computad.

Proof. A squiggle in Adj may be uniquely decomposed into a sequence of atomic arrows 
by splitting it at each successive − or + letter in its interior.

The operation of degenerating an arrow does not introduce any extra + or − letters into 
its interior, from which it follows that degenerated atomic arrows are again atomic. �
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3.1.11. Example (Adjunction data in Adj). For later use, we name some of the low 
dimensional non-degenerate atomic arrows in Adj. There are exactly two non-degenerate 
atomic 0-arrows in Adj, these being:

Since Adj is a simplicial computad, all of its other 0-arrows may be obtained as a unique 
alternating composite of those two, for example:

One convenient aspect of our string notation for arrows is that the act of whiskering an 
n-arrow a with one the arrows f or u, as described in notation 2.1.2, simply amounts to 
appending or prepending one of the symbols − or + as follows:

fa = a with − prepended, af = a with + appended,

ua = a with + prepended, and au = a with − appended.

There are also exactly two non-degenerate atomic 1-arrows in Adj, these being:

Writing these 1-arrows as if they were 1-cells in a 2-category, they clearly take a form 
reminiscent of the unit η : id− ⇒ uf and counit ε : fu ⇒ id+ of an adjunction. Here 
again, since Adj is a simplicial computad all of its 1-arrows are uniquely expressible as 
a composite of the 1-arrows ε and η and the degenerated 1-arrows obtained from the 
0-arrows u and f such as:

By way of contrast, there exists a countably infinite number of non-degenerate atomic 
2-arrows. Key amongst these are a pair of 2-arrows whose squiggle diagrams should 
remind the reader of the string diagram renditions of the familiar triangle identities of 
an adjunction:
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We can arrange all of the non-degenerate atomic 2-arrows of Adj into two countable 
families α(n) and β(n) for n ≥ 2. An arrow α(n) in the first of these families starts at +, 
alternates between 1 and 2 for n steps and then finishes at − if n is even and at + if n
is odd. So α(2) = α and the next three elements in this sequence are:

The faces of the arrows in this family are given by the formulae

α(2r) · δ2 = ηru α(2r) · δ1 = u α(2r) · δ0 = uεr

α(2r+1) · δ2 = ηr+1 α(2r+1) · δ1 = η α(2r+1) · δ0 = uεrf (3.1.12)

where the expressions εr and ηr denote r-fold compositional powers of the endo-arrows 
ε and η. The family β(n) is that obtained by reflecting the corresponding arrows in the 
family α(n) through a horizontal axis.

The pair of 3-arrows discussed in section 1.1 of the introduction are:

3.2. The simplicial category Adj as a 2-category

Our blanket identification of categories with their nerves leads to a corresponding 
identification of 2-categories with simplicial categories, obtained by applying the nerve 
functor hom-wise. In this section, we will show that the simplicial category Adj is a 
2-category in this sense, i.e., that its hom-spaces Adj are nerves of categories, a “fibran-
cy” result. Indeed, we show in §3.3 that Adj is isomorphic to the generic or walking
adjunction, the 2-category freely generated by an adjunction.

Using the graphical calculus, it is not difficult to sketch a direct proof that Adj is 
isomorphic to the generic adjunction, whose concrete description recalled in remark 3.3.8
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below. However, we find it more illuminating to first verify that the hom-spaces in Adj
satisfy the Segal condition, showing that Adj is isomorphic to some 2-category, and then 
prove that this 2-category has the universal property that defines the walking adjunction.

3.2.1. Recall (Segal condition). A simplicial set X is the nerve of a category if and only if 
it satisfies the (strict) Segal condition, which states that for all n, m ≥ 1 the commutative 
square

Xn+m

−·{0,...,n}

−·{n,...,n+m}

Xn

−·{n}

Xm
−·{0}

X0

is a pullback. This condition says that if x is an n-simplex and y is an m-simplex in X
for which the last vertex x · {n} of x is equal to the first vertex y · {0} of y then there 
exists a unique (n +m)-simplex z for which z · {0, . . . , n} = x and z · {n, . . . ,m + n} = y.

3.2.2. Proposition. Each hom-space of the simplicial category Adj is the nerve of a cate-
gory.

Proof. To prove proposition 3.2.2, it suffices to verify that the arrows in each hom-space 
of Adj satisfy the Segal condition. We convey the intuition with a specific example 
provided by the following pair of squiggles in the hom-space Adj(+, +):

(3.2.3)

Counting the crossings of the bottom line in the first of these and the crossings of the 
top line in the second, as discussed in observation 3.1.9, we see that the last vertex of a
is the same as the first vertex of b. Thus, a and b are a pair of arrows to which premise 
of the Segal condition applies.

Since these crossings match up we may “splice” these two squiggles together by iden-
tifying the bottom line of a and the top line of b and then fusing each string which passes 
through the bottom line of a with the corresponding string which passes through the 
top line of b to construct the following squiggle
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(3.2.4)

To evaluate the face {0, 1, 2} : [2] → [4] of this spliced simplex, we remove lines 3 and 4
and reduce

which gives us back a. Similarly, to evaluate the face {2, 3, 4} : [2] → [4], we remove lines 
0 and 1 and reduce

which gives us back b. Thus, c is the clearly unique 4-simplex which has c · {0, 1, 2} = a

and c · {2, 3, 4} = b as required.
It is an entirely straightforward, if tedious, combinatorial exercise to express this splic-

ing operation as a function on the strings that encode the strictly undulating squiggles, 
defining an inverse to the function from the set of (n + m)-arrows of Adj to the set of 
pairs of n-arrows and m-arrows with common last and first vertices. Full details are given 
in [25, §4.2]. �
3.2.5. Remark. The simplicial category Adj turns out to be isomorphic to the Dwyer–
Kan hammock localisation [6] of the category consisting of two objects and a single 
non-identity arrow w : + → −, which is a weak equivalence. This was first observed by 
Karol Szumiło.

We give a sketch of the proof employing our graphical calculus. Consider an k-arrow

(3.2.6)
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and draw vertical lines bisecting each undulation point (but not otherwise intersecting 
the squiggle) and also one vertical line to the left and to the right of the diagram. Label 
each intersection of a vertical and horizontal line in this picture with a “+” if it is in the 
region “above” the squiggle and a “−” if it is “below”; the squiggle on the left of (3.2.6)
gives rise to the figure on the right.

Reading down a vertical line we get a sequence +, · · · , +, −, · · · , − which we interpret 
as a composable sequence of arrows comprised of identities at +, the arrow w, and then 
identities at −, all of which are weak equivalences. Note the leftmost (resp. rightmost) 
vertical line is comprised of a sequence of identities at the codomain (resp. domain) of 
the k-arrow (3.2.6). By “pinching” these sequences of identities, we obtain the starting 
and ending points of the hammock.

Reading across a horizontal line from right (the domain) to left (the codomain), we get 
a sequence of objects “+” or “−”, which we interpret as a zig-zag of identities together 
with forwards (left-pointing) and backwards (right-pointing) instances of w. With these 
conventions, the squiggle (3.2.6) represents the hammock:

On account of our conventions for the direction of horizontal composition, the hammock 
described here is a reflection of the k-arrow displayed on [6, p. 19] in a vertical line, with 
“backwards” arrows point to the right. Each column will contain at least one “w”, and 
every “w” in a given column will point in the same direction. This dictates the direction 
of the identities in that column. We leave it to the reader to verify that the hammocks 
corresponding to strictly undulating squiggles are “reduced” in the sense of [6, 2.1].

3.3. The 2-categorical universal property of Adj

This section is devoted to relating our 2-category Adj to the generic adjunction 
2-category as first studied by Schanuel and Street in [28]. Our approach will be to show 
that the 2-category Adj established by proposition 3.2.2 enjoys the universal property 
they used to characterise their 2-category. It follows then that these 2-categories must be 
isomorphic. This observation provides us with a alternative description of Adj in terms 
of the structure of Δ, which we expound upon in remark 3.3.8.

3.3.1. Observation (2-categories as simplicial categories). When we regard a 2-category 
K as a simplicial category then

• its 1-cells and 2-cells respectively define the 0-arrows and 1-arrows,
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• if φ0, φ1, and φ2 are three 1-arrows (2-cells) in some hom-space K(A, B) then there 
exists a unique 2-arrow φ in K(A, B) with φ · δi = φi for i = 0, 1, 2 if and only if 
φ0 · φ2 = φ1 in the category K(A, B), and

• the rest of the structure of each hom-space K(A, B) is completely determined by the 
fact that it is 2-coskeletal, as is the nerve of any category.

In the terminology of example 2.2.5 the last of these observations tells is that K is a 
2-coskeletal simplicial category. It follows by adjunction that every simplicial functor 
F : sk2 L → K admits a unique extension to a simplicial functor F : L → K.

3.3.2. Observation (The adjunction in Adj). In example 3.1.11, we noted that the low 
dimensional data encoded in the simplicial category Adj was reminiscent of that associ-
ated with an adjunction. The reason that we did not commit ourselves fully to that point 
of view there was that at that stage we did not actually know that Adj was a 2-category. 
Proposition 3.2.2 allows us to cross this Rubicon and observe that the 2-category Adj
does indeed contain a genuine adjunction:

−
u

⊥ +
f

η : id+ ⇒ uf ε : fu ⇒ id− (3.3.3)

It turns out that this is the generic or universal adjunction, in the sense made precise 
in the following proposition:

3.3.4. Proposition (A 2-categorical universal property of Adj). Suppose that K is a 
2-category containing an adjunction

A
u

⊥ B

f

η : idB ⇒ uf ε : fu ⇒ idA .

Then there exists a unique 2-functor Adj → K which carries the adjunction depicted 
in (3.3.3) to the specified adjunction in K.

Proof. We know that Adj is a simplicial computad and that its non-degenerate and 
atomic 0-arrows and 1-arrow are u, f , ε, and η. Of course sk−1 Adj is the discrete simpli-
cial category with objects − and +, so we can define a simplicial functor F : sk−1 Adj →
K simply by setting F (−) := A and F (+) := B. Now we can apply proposition 2.2.6 to 
extend this to a simplicial functor F : sk0 Adj → K which is uniquely determined by the 
equalities F (u) = u and F (f) = f and then extend that, in turn, to a simplicial functor 
F : sk1 Adj → K which is uniquely determined by the further equalities F (ε) = ε and 
F (η) = η.
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Applying proposition 2.2.6 one more time, we see that extensions of the simplicial 
functor we’ve defined thus far to a simplicial functor F : sk2 Adj → K are uniquely and 
completely determined by specifying how it should act on the families of 2-arrows α(n)

and β(n) introduced in example 3.1.11. As discussed in observation 3.3.1, we know that 
there exists a unique 2-arrow F (α(n)) in the 2-category K which satisfies the boundary 
conditions required by proposition 2.2.6 if and only if the 2-cell equation F (α(n) · δ0) ·
F (α(n) · δ2) = F (α(n) · δ1) holds in K. We may compute the 2-cells that occur in these 
equations using the equalities listed in (3.1.12) and the simplicial functoriality of F on 
sk1 Adj to give

F (α(2r) · δ2) = ηru F (α(2r) · δ1) = u F (α(2r) · δ0) = uεr

F (α(2r+1) · δ2) = ηr+1 F (α(2r+1) · δ1) = η F (α(2r+1) · δ0) = uεrf

and so those conditions reduce to:

uεr · ηru = u uεrf · ηr+1 = η

The following middle four calculation

uεrf · ηr+1 = uεrf · ηruf · η = (uεr · ηru)f · η

reveals that the second of these equations follows from the first. Furthermore, the middle 
four computation

uεr+1 · ηr+1u = uεr · (uf)ruε · ηrufu · ηu = uεr · ηru · uε · ηu

shows that we can reduce the (r+1)-th instance of the first equation to a combination of 
its r-th instance and the triangle identity uε ·ηu = u. Consequently it follows, inductively, 
that all of these equations follow from that one triangle identity. The dual argument 
shows that the equalities that arise from the family β(n) all reduce to the other triangle 
identity εf · fη = f .

We have shown that there exists a unique simplicial functor F : sk2 Adj → K which 
carries the canonical adjunction in Adj to the specified adjunction. Observation 3.3.1
allows us to extend uniquely to a simplicial functor F : Adj → K. The desired universal 
property is established because a 2-functor of 2-categories is no more nor less than a 
simplicial functor between the corresponding simplicial categories. �
3.3.5. Corollary. The simplicial category Adj is isomorphic to the Schanuel and Street 
2-category of [28].

Proof. Proposition 3.3.4 tells us that our 2-category Adj satisfies the same universal 
property that Schanuel and Street used to characterise their 2-category. �
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In [28] Schanuel and Street build their 2-category Adj directly from Δ+ and they 
appeal to Lawvere’s characterisation of Δ+ as the free strict monoidal category containing 
a monoid [17] in order to establish its universal property. While those authors were 
not the first to discuss the existence of a 2-category whose structure encapsulates the 
algebraic properties of adjunctions, their paper was the first to provide a explicit and 
computationally convenient presentation of this structure. We review their construction 
of Adj here as it will be useful to pass between our presentation and theirs in the sequel.

3.3.6. Observation (Adjunctions in Δ+). As is common practice, we shall identify each 
poset P with a corresponding category whose objects are the elements p of P and which 
possesses a unique arrow p → q if and only if p ≤ q in P . Under this identification, order 
preserving maps are identified with functors and two order preserving maps f, g : P → Q

are related by a unique 2-cell f ⇒ g if and only if f ≤ g under the pointwise ordering. In 
particular, we may regard Δ+ as being a full sub-2-category of Cat under the pointwise 
ordering of simplicial operators.

It is easily demonstrated that a simplicial operator α : [n] → [m] admits a left adjoint 
αl � α (respectively right adjoint α � αr) in the 2-category Δ+ if and only if it carries 
the top element n (respectively the bottom element 0) of [n] to the top element m
(respectively the bottom element 0) of [m]. In particular, between the ordinals [n − 1]
and [n] we have the following sequence of adjunctions

δnn � σn−1
n−1 � δn−1

n � σn−2
n−1 � . . . � σ1

n−1 � δ1
n � σ0

n−1 � δ0
n (3.3.7)

of elementary operators. We shall use the notation Δ∞ (respectively Δ−∞) to denote 
the sub-category of Δ consisting of those simplicial operators which preserve the top 
(respectively bottom elements) in each ordinal.

Of course, each identity operator stands as its own left and right adjoint. Furthermore, 
since adjunctions compose, we know that if α : [n] → [m] and β : [m] → [r] both admit 
left (respectively right) adjoints then so does their composite and (β ◦ α)l = αl ◦ βl

(respectively (β ◦ α)r = αr ◦ βr). It follows that the act of taking adjunctions provides 
us with a pair of mutually inverse contravariant functors

Δop
∞

(−)l
Δ−∞

(−)r

whose action on elementary operators may be read off from (3.3.7) as

(δin)l = σi
n−1 when 0 ≤ i < n (δin)r = σi−1

n−1 when 0 < i ≤ n

(σi
n−1)l = δi+1

n when 0 ≤ i ≤ n− 1 (σi
n−1)r = δin when 0 ≤ i ≤ n− 1.
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Notice here that these formulae cover all cases because an elementary face operator δin
is in Δ∞ if and only if i < n and is in Δ−∞ if and only if 0 < i whereas every elementary 
degeneracy operator is in both of these subcategories.

3.3.8. Remark (The Schanuel and Street 2-category Adj). Schanuel and Street define 
Adj to be a 2-category with two objects, which we shall again call − and +, and with 
hom-categories given by

Adj(+,+) := Δ+, Adj(−,−) := Δop
+ ,

Adj(−,+) := Δ∞ ∼= Δop
−∞, and Adj(+,−) := Δ−∞ ∼= Δop

∞

or more evocatively depicted as

−
Δ∞∼=Δop

−∞

Δop
+ +

Δ−∞∼=Δop
∞

Δ+

The isomorphisms Δ∞ ∼= Δop
−∞ are those of observation 3.3.6.

It should come as no surprise that Δ+ features as the endo-hom-category on + in this 
structure. In essence this fact follows directly from Lawvere’s result, since the monad 
generated by an adjunction is a monoid in a category of endofunctors under the strict 
monoidal structure given by composition. Schanuel and Street define the composition 
operations that hold between the hom-categories of Adj in terms of the ordinal sum 
bifunctor

Δ+ × Δ+
−⊕−

Δ+

[n], [m]

α,β �→

[n + m + 1]

α⊕β

[n′], [m′] [n′ + m′ + 1]

α⊕ β(i) :=
{
α(i) i ≤ n

β(i− n− 1) + n′ + 1 i > n

which defines the strict monoidal structure on Δ+.
Ordinal sum, regarded as a bifunctor on Δ+ and on its dual Δop

+ , provide the compo-
sitions

Adj(+,+) × Adj(+,+) ◦ Adj(+,+) Adj(−,−) × Adj(−,−) ◦ Adj(−,−)

on endo-hom-categories. Ordinal sum restricts to the subcategories Δ∞ and Δ−∞ to give 
bifunctors

Δ+ × Δ∞
⊕

Δ∞ Δ−∞ × Δ+
⊕

Δ−∞
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which provide the composition operations

Adj(+,+) × Adj(−,+) ◦ Adj(−,+) Adj(+,−) × Adj(+,+) ◦ Adj(+,−)

respectively. Furthermore, the isomorphic presentations of Adj(+, −) and Adj(−, +) in 
terms of Δop

∞ and Δop
−∞ ensure that these restricted ordinal sum bifunctors on the duals 

Δop
+ , Δop

∞ and Δop
−∞ may also be used to provide composition operations

Adj(−,−) × Adj(+,−) ◦ Adj(+,−) Adj(−,+) × Adj(−,−) ◦ Adj(−,+)

respectively. We shall simply write

Δ∞ × Δop
+

⊕
Δ∞ Δop

+ × Δ−∞
⊕

Δ−∞

to denote these transformed instances of the join operation, since the order of the factors 
in the domain along with the dual that occurs there will disambiguate our usage.

Finally, observe that the following restriction of the ordinal sum bifunctor

Δ−∞ × Δ∞
⊕

Δ+

carries a pair of simplicial operators to a simplicial operator which preserves both top 
and bottom elements. So it follows that this bifunctor factors through the interval rep-
resentation ir : Δop

+ → Δ+ to give a bifunctor

Δ−∞ × Δ∞
⊕̄

Δop
+

which we use to provide the last two composition actions:

Adj(−,+) × Adj(+,−) ◦ Adj(+,+) Adj(+,−) × Adj(−,+) ◦ Adj(−,−)

A copy of the object [0] resides in each of the hom-categories Adj(−, +) and Adj(+, −)
and that these correspond to the 0-arrows u and f respectively in our presentation of 
Adj. Furthermore the copies of the face operator δ0 : [−1] → [0] that reside in Adj(+, +)
and Adj(−, −) correspond to our unit η and counit ε respectively.

4. Adjunction data

Recall an adjunction of quasi-categories is an adjunction in qCat2. The basic the-
ory of adjunctions is developed in section I.4. In this section, we filter the free ho-
motopy coherent adjunction Adj by a sequence of “parental” subcomputads and use 
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this filtration to prove that any adjunction of quasi-categories—or, more precisely, any 
diagram indexed by a parental subcomputad—extends to a homotopy coherent adjunc-
tion, a diagram Adj → qCat∞. Our proof is essentially constructive, enumerating the 
choices necessary to make each stage of the extension. We conclude by proving that 
the appropriate spaces of extensions, defined here, are contractible Kan complexes, 
the usual form of a “homotopical uniqueness” statement in the quasi-categorical con-
text.

In §4.1, we introduce the notion of fillable arrow, which will be used in §4.2 to define 
parental subcomputads. Our aim in this section is to prove proposition 4.2.15, which 
shows that any nested pair of parental subcomputads may be filtered as a countable 
sequence of such, where each subcomputad is generated relative to the previous one by 
a finite set of fillable arrows. In §4.3, we apply this result to prove that any adjunction 
extends to a homotopy coherent adjunction. In §4.4, we give precise characterisations of 
the homotopical uniqueness of such extensions.

4.1. Fillable arrows

4.1.1. Definition. An arrow a of Adj is (left) fillable if and only if

• it is non-degenerate and atomic,
• its codomain a0 = −, and
• ai �= a1 for all i > 1.

Write Atomn ⊂ Adjn for the subset of all atomic and non-degenerate n-arrows and write 
Filln ⊂ Atomn for the subset of fillable n-arrows.

Our proof inductively specifies the data in the image of a homotopy coherent ad-
junction by choosing fillers for horns corresponding to fillable arrows. We will see that 
the unique fillable 0-arrow f = (−, +) behaves somewhat differently; nonetheless it is 
linguistically convenient to include it among the fillable arrows.

4.1.2. Observation (Fillable arrows and distinguished faces). Any fillable n-arrow a with 
n > 0 has width greater than or equal to 2 and a distinguished codimension-1 face whose 
index is k(a) := a1. Note here that 1 ≤ k ≤ n so this distinguished face may have any 
index except for 0. On account of the graphical calculus, in which a fillable arrow a
corresponds to a squiggle descending from “−” on the left to make its first turn at level 
k(a), we refer to k(a) as the depth of a.

The fillability of a implies that no reduction steps are then required in the process 
of forming the distinguished face a · δk(a). Consequently, this distinguished face is again 
non-degenerate and has the same width as a. To further analyse this distinguished face, 
we need to consider two cases:
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• case k(a) < n: a · δk(a) is also atomic. However, it is not fillable because non-
degeneracy of a requires that there is some i > 1 such that ai = a1 + 1, whence 
the entries of a · δk(a) at indices 1 and i are both equal to k(a).

• case k(a) = n: a · δk(a) decomposes as fb where b is non-degenerate and atomic, has 
width one less that of a, and has b0 = +.

We shall use the notation a	 to denote the non-degenerate, atomic, and non-fillable 
(n − 1)-arrow given by:

a	 :=
{
a · δk(a) when k(a) < n, and
b when k(a) = n and a · δk(a) = fb.

4.1.3. Lemma. Let a be a non-degenerate and atomic n-arrow of Adj with a0 = −. Then 
either it is:

• a fillable arrow, or
• the codimension-1 face of exactly two fillable (n + 1)-arrows of the same width.

In the second case, both fillable (n + 1)-arrows have a as the a1-th face. One of these 
fillable arrows, which we shall denote by a†, has depth a1 and the other has depth a1 +1. 
Consequently, a† is the unique fillable (n + 1)-arrow with the property that (a†)	 = a.

Proof. If a is not fillable, then aj = a1 for some j > 1. Any arrow b admitting a as a 
codimension-1 face is obtained by inserting an extra line. If the arrow b is to be fillable 
and of the same width as a, then this line must be inserted in the k-th level and used 
to separate a1 from the other aj. There are exactly two ways to do this, as illustrated 
below:

�
4.1.4. Lemma. Let a be a non-degenerate and atomic n-arrow of Adj with a0 = +. Then 
the composite arrow fa is a codimension-1 face of exactly one fillable (n + 1)-arrow a†. 
The (n +1)-arrow a† has width one greater than that of a, a†1 = n +1, and fa = a† ·δn+1. 
In other words, a† is the unique fillable (n + 1)-arrow with the property that (a†)	 = a.
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Proof. The construction of a† from a is illustrated in the following sequence of diagrams:

That is, we “add” an extra loop to the left and then “insert” an extra line into the 
bottom most space. The uniqueness of this (n + 1)-arrow is clear. �
4.2. Parental subcomputads

4.2.1. Definition (Fillable parents). When a is a non-degenerate and atomic n-arrow in 
Adj which is not fillable then we define its fillable parent a† to be the fillable (n +1)-arrow 
introduced in lemma 4.1.3 in the case where a0 = − and in lemma 4.1.4 in the case where 
a0 = +. These lemmas tell us that a† is the unique fillable (n +1)-arrow with the property 
that (a†)	 = a. Consequently, the fillable parent relation provides us with a canonical 
bijection between the set Filln+1 of all fillable (n + 1)-arrows and the set Atomn \ Filln
of all non-degenerate and atomic n-arrows which are not fillable.

4.2.2. Definition (Parental subcomputads of Adj). We say that a subcomputad A of Adj
is parental if it contains at least one non-identity arrow and satisfies the condition that

• if a is a non-degenerate and atomic arrow in A then either it is fillable or its fillable 
parent a† is also in A.

These conditions imply that any parental subcomputad must contain a fillable arrow. 
By observation 3.1.9, the 0-th vertex of any fillable arrow may be decomposed as a 
composite fb. Hence, any parental subcomputad contains the 0-arrow f .

4.2.3. Example. The 0-arrow f is fillable and the subcomputad {f} ⊂ Adj that it gen-
erates, as described in definition 2.2.4, has f as its only non-degenerate and atomic 
arrow, so is trivially a parental subcomputad. Since every parental subcomputad must 
contain f , this is the minimal such.

The counit 1-arrow ε is fillable and the generated subcomputad {ε} ⊂ Adj has f , u, 
and ε as its non-degenerate and atomic arrows. Now f is fillable and ε is the fillable 
parent of u, so {ε} is a parental subcomputad.

The triangle identity 2-arrow β is fillable and the generated subcomputad {β} ⊂ Adj
has f , u, ε, η, and β as its non-degenerate and atomic arrows. Now f is fillable, ε is the 
fillable parent of u, and β is the fillable parent of η, so {β} is a parental subcomputad.
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4.2.4. Example (A non-example). The subcomputad {α, β} ⊂ Adj generated by the 
triangle identity 2-arrows has f , u, ε, η, β, and α as its non-degenerate and atomic arrows. 
This is not parental, as witnessed by the fact that the 3-arrow ω of example 3.1.11 is the 
fillable parent of the 2-arrow α but it is not an arrow in {α, β}.

4.2.5. Example. Example 3.1.11 names the 3-arrows ω and τ and the 2-arrow μ which 
featured in the discussion of adjunction data in section 1.1. Observe that the arrows ω
and τ are both fillable and that the subcomputad {ω, τ} ⊂ Adj which they generate has 
f , u, ε, η, β, α, τ , ω, and μ as its non-degenerate and atomic arrows. Since τ is the 
fillable parent of μ, {ω, τ} is also a parental subcomputad.

Examples 4.2.3 and 4.2.5 establish a chain of parental subcomputad inclusions

{f} ⊂ {ε} ⊂ {β} ⊂ {ω, τ} ⊂ Adj.

Our aim in the remainder of this section is to filter a general parental subcomputad 
inclusion A ⊂ A′ as a countable tower of parental subcomputads, with each sequential 
inclusion presented as the pushout of an explicit map. To describe each “attaching step,” 
we turn our attention to certain families of simplicial categories. Recall the simplicial 
categories 2[X] introduced in example 2.1.3.

4.2.6. Notation. Let 3[X] denote the simplicial category with objects 0, 1, and 2, non-
trivial hom-sets 3[X](0, 1) := X, 3[X](1, 2) := Δ0, 3[X](0, 2) := XΔ0, and whose only 
non-trivial composition operation is defined by the canonical inclusion:

3[X](1, 2) × 3[X](0, 1) = Δ0 ×X ∼= X ↪→ X  Δ0 = 3[X](0, 2)

Here we define 3[X](2, 1) = 3[X](1, 0) = 3[X](2, 0) = ∅ and 3[X](0, 0) = 3[X](1, 1) =
3[X](2, 2) = ∗. A simplicial functor F : 3[X] → K is determined by the following data:

• a 0-arrow f : B → A and an object C of K and
• a pair of simplicial maps g : X → K(C, B) and h : X  Δ0 → K(C, A) such that the 

following square commutes:

X

g

X  Δ0

h

K(C,B)
K(C,f)

K(C,A)

(4.2.7)

The map h : X Δ0 → K(C, A) may be described in terms of Joyal’s slicing construction 
of definition I.2.4.2, by giving a 0-arrow a : C → A (the image of the Δ0) and a simplicial 
map h̄ : X → K(C,A)/a. The commutative square (4.2.7) transposes to the commutative 
square:
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X
h̄

g

K(C,A)/a
π

K(C,B)
K(C,f)

K(C,A)

(4.2.8)

This data may be captured by a single map l : X → K(C, f)/a whose codomain is the 
pullback of K(C,A)/a along K(C, f), i.e., the slice K(C, f)/a of the map K(C, f) over a
as defined in remark I.2.4.14. Thus, a simplicial functor F : 3[X] → K is determined by 
the following data:

• a pair of 0-arrows f : B → A and a : C → A of K and
• a simplicial map l : X → K(C, f)/a.

4.2.9. Definition. A fillable n-arrow a gives rise to a corresponding simplicial functor Fa

into Adj defined as follows:

• If a1 < n define Fa : 2[Δn] → Adj to be the simplicial functor induced out of the 
generic n-arrow 2[Δn] by a; cf. example 2.1.3.

• If a1 = n define Fa : 3[Δn−1] → Adj so that it:
◦ maps the objects 1 to +, 2 to −, and 0 to aw(a), the domain of a,
◦ maps the hom-set 3[Δn−1](1, 2) ∼= Δ0 to Adj(+, −) by the unique simplicial 

map which corresponds to the 0-arrow f ,
◦ maps the hom-set 3[Δn−1](0, 1) ∼= Δn−1 to Adj(aw(a), +) by the unique 

simplicial map which corresponds to the (n − 1)-arrow a	, and
◦ maps the hom-set 3[Δn−1](0, 2) ∼= Δn to Adj(aw(a), −) by the unique sim-

plicial map which corresponds to the n-arrow a itself.
The relation a · δn = fa	 implies that these actions are compatible with the compo-
sition structures of 3[Δn−1] and Adj.

4.2.10. Lemma (Extending parental subcomputads). Suppose that A is a parental sub-
computad of Adj and that a is a fillable n-arrow of depth k := a1 which is not a member 
of A, and let A′ be the subcomputad of Adj generated by A ∪ {a}. Suppose also that the 
codimension-1 face a · δi is a member of A for each i ∈ [n] with i �= k. Then A′ is also a 
parental subcomputad, and we may restrict the functor Fa of definition 4.2.9 to express 
the inclusion A ↪→ A′ as a pushout

2[Λn,k]

Fa

2[Δn]

Fa

A A′

(4.2.11)
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when k < n and as a pushout

3[∂Δn−1]

Fa

3[Δn−1]

Fa

A A′

(4.2.12)

when k = n.

Proof. Because a is the fillable parent of a	, this non-degenerate, atomic, and non-fillable 
(n −1)-arrow cannot be an element of the parental subcomputad A. Now by assumption 
all of the faces a · δi with i �= k are contained in A, so a and a	 are the only two atomic 
arrows which are in A′ but are not in A. The first of these is fillable and the second has 
the first as its fillable parent; hence, A′ is again parental.

To verify the that the squares given in the statement are pushouts of simplicial cat-
egories, observe that extensions of F : A → K to a simplicial functor F ′ : A′ → K are 
completely determined by specifying what the atomic arrows a and a	 should be mapped 
to in K, subject to domain, codomain, and face conditions imposed by the simplicial 
functor F . Specifically, to make this extension we must provide:

• case k < n: an n-arrow g in K with the property that g · δi = F (a · δi) for all i �= k, 
i.e., a simplicial functor g : 2[Δn] → K which makes the following square commute:

2[Λn,k]

g

2[Δn]

g

A
F

K

• case k = n: an (n − 1)-arrow g and an n-arrow h in K with the property that and 
g · δi = F (a	 · δi) and h · δi = F (a · δi) for all i �= n, and also that h · δn = (Ff)g. 
In other words, by notation 4.2.6, we require a simplicial functor h : 3[Δn−1] → K
which makes the following square commute:

3[∂Δn−1]

h

3[Δn−1]

h

A
F

K �
By iterating lemma 4.2.10, we have proven:

4.2.13. Corollary. Suppose that A is a parental subcomputad of Adj and that X is a set 
of fillable arrows, each of which is not in A but has the property that every face except 
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the one indexed by its depth is in A. Let A′ be the subcomputad of Adj generated by 
A ∪X. Then A′ is a parental subcomputad and the inclusion A ↪→ A′ may be expressed 
as a pushout

(
∐
a∈X

a1<dim(a)

2[Λdim(a),a1 ]) � (
∐
a∈X

a1=dim(a)

3[∂Δdim(a)−1])

〈Fa〉a∈X

(
∐
a∈X

a1<dim(a)

2[Δdim(a)]) � (
∐
a∈X

a1=dim(a)

3[Δdim(a)−1])

〈Fa〉a∈X

A A′

(4.2.14)

of simplicial categories.

4.2.15. Proposition. Suppose that A and A′ are parental subcomputads of Adj and that 
A ⊆ A′. Then we may filter this inclusion as a countable tower of parental subcomputads 
A0 ⊆ A1 ⊆ A2 ⊆ · · · (A = A0 and A′ =

⋃
i≥0 Ai) in such a way that for each i ≥ 1

there is a non-empty and finite set Xi of arrows such that

(i) each arrow in Xi is fillable, is not contained in Ai−1, but has the property that every 
face except the one indexed by its depth is in Ai−1, and

(ii) the subcomputad Ai is generated by Ai−1 ∪Xi.

Hence, the inclusion map A ↪→ A′ may be expressed as a countable composite of inclu-
sions all of which may be constructed as pushouts of the form (4.2.14).

Proof. Let X denote the set of all fillable arrows which are in A′ and are not in A, and let 
Xw,k,n denote the subset of those arrows which have width w, depth k, and dimension n. 
Now any non-degenerate arrow of Adj must have dimension which is strictly less than its 
width, and it is clear there can only be a finite number of non-degenerate arrows of any 
given width. The depth of any fillable arrow is always less than or equal to its dimension, 
so it follows that Xw,k,n is always finite and that it is empty unless k ≤ n < w.

Now order those index triples (w, k, n) which have k ≤ n < w under the lexicographic 
ordering: for i ≥ 1, let (wi, ki, ni) index the subsequence of that linear ordering of those 
index triples for which Xw,k,n is non-empty, and write Xi := Xwi,ki,ni

. Let Ai be the 
subcomputad of Adj generated by A ∪ (

⋃i
j=1 Xj) and observe that this family filters the 

inclusion A ⊆ A′ since, by construction, the union of the subcomputads Ai is A′, the 
subcomputad generated by A ∪ (

⋃
i≥1 Xi).

We complete our proof by induction on the index i, starting from the parental subcom-
putad A0 = A. Adopt the inductive hypothesis that for all indices j < i the subcomputad 
Aj is parental and condition (i) holds. For the inductive step, it suffices to check that all 
of the arrows in Xi satisfy condition (i) with respect to Ai−1; this amounts to verifying 
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that the appropriate codimension-1 faces are in Ai−1. Applying corollary 4.2.10 to the 
set Xi and the subcomputad Ai−1, which is parental by the inductive hypothesis, it 
follows that Ai is again parental.

Observe that Ai−1 is the smallest subcomputad of Adj which contains A and all 
fillable simplices in A′ which have

• width less than wi, or
• width wi and depth less than ki, or
• width wi, depth ki, and dimension less than ni.

Consider an arrow a in Xi, which has width wi, depth ki, and dimension ni. To complete 
the inductive step, it remains only to show that the face a · δl is a member of Ai−1 for 
every l ∈ [ni] which is not equal to the depth ki. The details in each case, while tedious, 
are entirely straightforward.

• case l �= ki − 1, l �= ki: Under this condition the line numbered l is not one of those 
separating the level a1 from the other entries of a. It follows that the removal of line 
l will not cause entry a1 to be eliminated by a reduction step, to become − or +, or 
to end up in the same space as another later entry. In other words, a · dl is fillable if 
it is non-degenerate and atomic with depth ki−1 if l < k1−1 and depth ki if l > ki.
Since Adj is a simplicial computad, a · δl may be expressed uniquely as a composite 
(b1 ·α1) ◦ (b2 ·α2) ◦ . . .◦ (br ·αr) in which each bj is non-degenerate and atomic arrow 
of A′ and each αj is a degeneracy operator. For the reasons just observed, b1 is a 
fillable arrow of width less than or equal to wi, depth less than or equal to ki, and 
dimension strictly less than ni. Hence, b1 is a member of the subcomputad Ai−1.
Furthermore, b1 has width greater or equal to 2 (because b1 �= − and b1 �= +) so 
the width of each bj with j > 1 is less than or equal to wi − 2. Consequently, when 
j > 1, then bj is either a fillable arrow of width less than or equal to wi− 2 or it has 
a fillable parent of width less than or equal to wi − 1. In either case, bj is a member 
of the subcomputad Ai−1. As a · δl is a composite of degenerate images of arrows 
which are all in Ai−1, it too lies in Ai−1.

• case l = ki − 1: As observed in definition 4.2.2, the parental subcomputad Ai−1
contains the fillable 0-arrow f . Since a is not in Ai−1, we know that it must have 
width greater than or equal to 2 and dimension greater than or equal to 1. The only 
fillable arrow of width 2 is ε = (−, 1, −), for which the depth ki = 1, l = ki − 1 = 0, 
and we have ε · δ0 = − an identity, which is certainly in Ai−1. So from hereon we 
may assume that wi > 2. With this assumption, a1 > a2 �= − and thus ki ≥ 2, from 
which it follows that on removing line l = ki − 1 the resulting face a · δl must again 
be atomic. Now we have two subcases:

◦ case a1 = a2 + 1: The line l = ki − 1 = a1 − 1 separates the levels of a1 and 
a2, so when we remove it to form the face a ·δl we must also perform at least 
one reduction step. This implies that a · δl has width is less than or equal to 
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wi − 2 and that this face is possibly degenerate. There is a unique atomic 
and non-degenerate arrow b and a unique degeneracy operator α such that 
a ·δl = b ·α. The arrow b is either a fillable arrow of width less than or equal 
to wi − 2 or it has a fillable parent of width less than or equal to wi − 1. 
In either case, it follows that b, and thus its degenerated partner a · δl, is a 
member of Ai−1.

◦ case a1 > a2+1: The line l separates the level a1 from the level immediately 
above it, which contains neither a0 nor a2. So when we remove that line to 
form the face a · δl no reduction steps are required and this face must again 
be non-degenerate. However, since the arrow a is non-degenerate there must 
be some j > 2 such that aj = a1 − 1 and hence a · δl is not fillable. Now 
lemma 4.1.3 implies that the fillable parent (a · δl)† has depth a1 − 1, which 
is one less than the depth ki = a1 of a. As a · δl is a member of the parental 
subcomputad A′, its fillable parent is also in A′, and we may apply by the 
characterisation of Ai−1 to conclude that this fillable parent (a · δl)†, and 
thus its face a · δl, is in the parental subcomputad Ai−1. �

4.3. Homotopy coherent adjunctions

In this section, we use proposition 4.2.15 to show that every adjunction of quasi-
categories gives rise to a simplicial functor Adj → qCat∞ which carries the canonical 
adjunction in Adj to the chosen adjunction of quasi-categories.

4.3.1. Recall (2-categories from quasi-categorically enriched categories). Recall, from ob-
servation I.3.1.2, that the homotopy category construction h : qCat → Cat gives rise 
to a functor h∗ : qCat-Cat → 2-Cat which reflects the category of quasi-categorically 
enriched categories qCat-Cat into its full sub-category of 2-categories 2-Cat. The 
2-category h∗K is constructed by applying h to each of the hom-spaces of K. We write 
K2 := h∗K for the 2-category associated to a quasi-categorically enriched category K. 
When F : K → L is a simplicial functor of quasi-categorically enriched categories, we 
write F2 := h∗F : K2 → L2 for the associated 2-functor. We shall also adopt the nota-
tion QK : K → K2 for the manifest quotient simplicial functor, the component at K of 
the unit of the reflection h∗.

Given this relationship, we shall use the 2-cell notation φ : f ⇒ g to denote a 1-arrow 
with 0-arrow faces f = φ · δ1 and g = φ · δ0. This notation is consistent with the cor-
responding usage in the 2-category K2, since φ is a representative of a genuine 2-cell 
φ : f ⇒ g in there.

4.3.2. Observation (Adjunctions in a quasi-categorically enriched category). Suppose that 
K is a quasi-categorically enriched category. An adjunction f � u : A → B in the 
2-category K2 may be presented by the following information in K itself:
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• a pair of 0-arrows u ∈ K(A, B) and f ∈ K(B, A),
• a pair of 1-arrows η ∈ K(B, B) and ε ∈ K(A, A) which represent the unit and counit 

2-cells in K2 and whose boundaries are depicted in the following pictures

idB

η
uf fu

ε idA ,

and
• a pair of 2-arrows α ∈ K(A, B) and β ∈ K(B, A) which witness the triangle identities 

and whose boundaries are depicted in the following pictures:

ufu
uε

fuf
εf

u
u·σ0

ηu

u f
f ·σ0

fη

f
α β

This information is not uniquely determined by our adjunction since it involves choices of 
representative 1-arrows for its unit and counit 2-cells and choices of witnessing 2-arrows 
for its triangle identities.

This data used to present an adjunction in K uniquely determines a simplicial functor 
T : {α, β} → K whose domain is the subcomputad of Adj generated by the triangle 
identity 2-arrows, as in example 4.2.4, and whose action on non-degenerate and atomic 
arrows is given by T (f) = f , T (u) = u, T (ε) = ε, T (η) = η, T (β) = β, and T (α) = α.

Since adjunctions are defined equationally in a 2-category, they are preserved by any 
2-functor. It follows, therefore, that adjunctions are preserved by the 2-functor F2 : K2 →
L2 associated with any simplicial functor F : K → L of quasi-categorically enriched 
categories. Explicitly, the adjunction displayed above transports along F to give an 
adjunction F (f) � F (u) in L which is presented by unit and counit 1-arrows F (η) and 
F (ε) and 2-arrows F (α) and F (β) which witness its triangle identities.

4.3.3. Notation. For the remainder of this section we shall assume that K and L are 
quasi-categorically enriched categories. Furthermore, we shall assume that we have been 
given a simplicial functor P : K � L which is a local isofibration in the sense that its ac-
tion P : K(A, B) � L(PA, PB) on each hom-space is an isofibration of quasi-categories. 
We will also fix an adjunction

A
u

⊥ B

f

in K2 that is presented in K by unit and counit 1-arrows η : idB ⇒ uf and ε : fu ⇒ idA

and 2-arrows α and β which witness its triangle identities as in observation 4.3.2. To re-
mind the reader of our standing hypotheses, we might write “suppose K has an adjunction 
(f � u, ε),” listing in parentheses the data in K chosen to present an adjunction in K2.
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4.3.4. Observation (The internal universal property of the counit). Suppose that C is an 
arbitrary object of K. The representable simplicial functor K(C, −) : K → qCat∞ carries 
our adjunction f � u in K to an adjunction

K(C,A)
K(C,u)

⊥ K(C,B)
K(C,f)

of quasi-categories with unit K(C, η) and counit K(C, ε). On applying proposition I.4.4.8 
to this adjunction of quasi-categories, we find that if a is a 0-arrow in K(C, A) then 
εa : fua ⇒ a may be regarded as being an object of the slice quasi-category K(C, f)/a
wherein it is a terminal object. So, in particular, it follows that if ∂Δn−1 → K(C, f)/a is 
a simplicial map which carries the vertex {n− 1} of ∂Δn−1 to the object εa then it may 
be extended along the inclusion ∂Δn−1 ↪→ Δn−1 to a simplicial map Δn−1 → K(C, f)/a.

On consulting notation 4.2.6, we discover that simplicial maps ∂Δn−1 → K(C, f)/a
(respectively Δn−1 → K(C, f)/a) which carry {n− 1} to εa stand in bijective correspon-
dence to simplicial functors 3[∂Δn−1] → K (respectively 3[Δn−1] → K) which carry the 
0-arrow {0} of 3[∂Δn−1](1, 2) = Δ0 to f , the 0-arrow {n− 1} of 3[∂Δn−1](0, 1) to ua, 
and the 1-arrow {n− 1, n} of 3[∂Δn−1](0, 2) = Δn−1Δ0 ∼= Δn to εa. It follows that the 
universal property of the counit 1-arrow ε discussed above simply posits the existence of 
the lift T ′ in the following diagram

3[∂Δn−1] T K

3[Δn−1]
T ′

so long as T ({0} : 1 → 2) = f , T ({n− 1} : 0 → 1) = ua, and T ({n− 1, n} : 0 → 2) = εa.

To prove a relative version of this result, we require the following lemma:

4.3.5. Lemma (A relative universal property of terminal objects). Suppose that E and B
are quasi-categories which possess terminal objects and that p : E � B is an isofibration 
which preserves terminal objects, in the sense that if t is terminal in E then pt is terminal 
in B. Then any lifting problem

∂Δn u
E

p

Δn
v

B

with n > 0 has a solution so long as u carries the vertex {n} to a terminal object in E.
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Proof. Using the universal property of the terminal object t := u{n} in E we may extend 
the map u : ∂Δn → E to a map w : Δn → E. Now we have two maps pw, v : Δn → B

both of which restrict to the boundary ∂Δn to give the same map pu : ∂Δn → B. From 
these we can construct a map h : ∂Δn+1 → B with hδn+1 = pw and hδn = v by starting 
with the degenerate simplex pwσn : Δn+1 → B, restricting to its boundary, and then 
replacing the n-th face in this sphere with v : Δn → B. Of course h maps the object 
{n + 1} to the object pt which is terminal in B, so it follows that we may extend it 
to a map k : Δn+1 → B. We may also construct a map g : Λn+1,n → E by restriction 
from the degenerate simplex wσn : Δn+1 → E and observe that we may decompose 
the commutative square of the statement into the following composite of commutative 
squares:

∂Δn δn Λn+1,n g
E

p

Δn

δn
Δn+1

k

l

B

Since the central vertical of this square is an inner horn inclusion and its right hand 
vertical is an isofibration of quasi-categories, it follows that the lifting problem on the 
right has a solution l : Δn+1 → E as marked. Now it is clear that the map lδn : Δn → E

provides a solution to the original lifting problem. �
4.3.6. Proposition (The relative internal universal property of the counit). If K has an 
adjunction (f � u, ε), then the following lifting problem has a solution

3[∂Δn−1] T K

P

3[Δn−1]
S

L

provided that T ({0} : 1 → 2) = f , T ({n− 1} : 0 → 1) = ua, and T ({n− 1, n} : 0 → 2) =
εa for some 0-arrow a ∈ K(C, A).

Proof. On consulting notation 4.2.6, we see that we may translate the lifting problem 
of the statement into a lifting problem of the following form

∂Δn−1 t K(C, f)/a

P

Δn−1
s

L(PC,Pf)/Pa
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in simplicial sets. The upper horizontal map t : ∂Δn−1 → K(C, f)/a carries the vertex 
{n− 1} to the object εa of K(C, f)/a, which is terminal in there by observation 4.3.4. 
Furthermore, using the local isofibration property of the simplicial functor P it is 
easily verified that the vertical map on the right of this square is an isofibration of 
quasi-categories. This map carries the terminal object εa of K(C, f)/a to the object 
P (εa) = (Pε)(Pa) of L(PC,Pf)/Pa, which is again terminal since Pε is the counit of 
the transported adjunction Pf � Pu in L. Applying lemma 4.3.5, we obtain the desired 
lift. �
4.3.7. Observation. As an easier observation of a similar ilk, note that the fact that our 
simplicial functor P : K � L is a local isofibration implies that we may solve the lifting 
problem

2[Λn,k] T K

P

2[Δn]
S

L

whenever n ≥ 2 and 0 < k < n.

Combining these observations with the results of §4.2, we obtain the following lifting 
result:

4.3.8. Theorem. Suppose that A and A′ are parental subcomputads of Adj and that 
A ⊆ A′. Furthermore, assume that A contains the 0-arrows u and f and the 1-arrow ε. 
Then if K has an adjunction (f � u, ε), we may solve the lifting problem

A T K
P

A′
S

L

so long as T (f) = f , T (u) = u, and T (ε) = ε.

Proof. We know, by proposition 4.2.15, that we may filter the inclusion A ⊆ A′ as a 
countable sequence of inclusions all of which may be constructed as pushouts of the form 
(4.2.11) or (4.2.12). It follows that we may reduce this result to the case where A′ is a 
parental subcomputad which extends A by the addition of a single fillable n-arrow a of 
depth k := a1 as discussed in the statement of lemma 4.2.10.

Now consider the two cases identified in lemma 4.2.10. The first of these is the easy 
case k < n, in which situation we have the following commutative diagram
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2[Λn,k]
Fa

A T K

P

2[Δn]
Fa

A′
S

L

where the square on the left is the pushout of (4.2.11). Now observation 4.3.7 provides 
us with a solution for lifting problem which is the composite of these two squares. Then 
we may use that lift and the universal property of the pushout on the left to construct 
the solution we seek for the lifting problem on the right.

In the case where k = n our argument is a little more involved, but here again we 
start with a commutative diagram

3[∂Δn−1]
Fa

A T K

P

3[Δn−1]
Fa

A′
S

L

where the square on the left is the pushout of (4.2.12). Consulting the definition of the 
simplicial functor Fa : 3[Δn−1] → Adj, as given in definition 4.2.9, we see that it maps 
the 0-arrow {0} : 1 → 2 to f and it maps the n-arrow id[n] : 0 → 2 to a, so it maps 
{n− 1, n} : 0 → 2 to a · {n− 1, n}. To calculate this edge we delete the lines numbered 
0, 1, . . . , n − 2 and then reduce. However a is a fillable n-arrow of depth k = n so it has 
a0 = −, it is atomic so ai �= −, + for 0 < i < w(a), and ai �= a1 for all i > 1; these facts 
together imply that n = a1 > ai for 1 < i < w(a). There are now two cases to consider, 
depending on whether the domain aw(a) of a is − or +. In the first of these, the removal 
of lines 0, 1, . . . , n −2 leaves a string of the form (−, 1, −, −, . . . , −) in which the sequence 
of trailing − symbols is of odd length, so this reduces to ε = (−, 1, −). In the second, the 
removal of those lines leaves a string of the form (−, 1, −, −, . . . , −, +) where again the 
sequence of − symbols is of odd length, so this reduces to εf = (−, 1, −, +). The second 
of these computations is illustrated in the following sequence of squiggle pictures:

By assumption, T maps f to the 0-arrow f : B → A and it maps ε to the 1-arrow ε, 
so it follows that TFa({n− 1, n} : 0 → 2) is equal to ε when aw(a) is − and is equal to εf
when aw(a) is +. In either case the map TFa : 3[∂Δn−1] → K conforms to the conditions 
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of proposition 4.3.6, with a = idA in the first case and a = f in the second. Applying 
that result, we may find a solution for the lifting problem expressed by this composite 
rectangle. Then we may use that lift and the universal property of the pushout on the 
left to construct the solution we seek for the lifting problem on the right. �

Having cleared the heavy lifting, we are now in a position to prove that it is possible 
to extend every adjunction in K2 to a homotopy coherent adjunction in K.

4.3.9. Theorem (Homotopy coherence of adjunctions I). If K has an adjunction (f � u, ε), 
then there exists a simplicial functor H : Adj → K for which H(f) = f , H(u) = u, and 
H(ε) = ε.

Proof. By example 4.2.3, the subcomputad {ε} ⊂ Adj is a parental subcomputad whose 
non-degenerate and atomic arrows are f , u, and ε. Consequently, there exists a simpli-
cial functor T : {ε} → K which is uniquely determined by the fact that it maps those 
generators to the corresponding arrows f , u, and ε in K respectively. Now we have a 
lifting problem

{ε} T K

!

Adj
!

H

1

where 1 denotes the terminal simplicial category whose only hom-set is Δ0. Because 
each hom-space of K is a quasi-category, the right hand vertical in this square is a local 
isofibration. Applying theorem 4.3.8, we obtain the dashed lift H : Adj → K which, by 
construction, has the properties asked for in the statement. �
4.3.10. Remark. Applying theorem I.6.1.4 to the characterisation of adjunctions found 
in example I.5.0.4, we see that a functor f : B → A is a left adjoint if and only if 
the slice quasi-category f/a has a terminal object for each vertex a ∈ A. In this case, 
theorem I.6.1.4 supplies a right adjoint u and counit ε : fu ⇒ idA in qCat2. On choosing 
any representative 1-arrow for that counit, theorem 4.3.9 extends this data to a simplicial 
functor H : Adj → qCat∞.

4.3.11. Theorem (Homotopy coherence of adjunctions II). If K has an adjunction (f �
u, ε, η, β), there exists a simplicial functor H : Adj → K for which H(f) = f , H(u) = u, 
H(ε) = ε, H(η) = η, and H(β) = β.

Proof. We follow the same pattern of argument as in the proof of theorem 4.3.9. This 
starts by observing that example 4.2.3 tells us that the subcomputad {β} ⊂ Adj is a 
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parental subcomputad whose non-degenerate and atomic arrows are f , u, ε, η, and β. 
It follows then that there exists a simplicial functor T : {β} → K which is uniquely 
determined by the fact that it maps those generators to the corresponding arrows f , 
u, ε, η, and β in K respectively. Applying theorem 4.3.8, we again construct a sim-
plicial functor H : Adj → K which, by construction, satisfies the conditions of the 
statement. �
4.3.12. Remark. Note that theorem 4.3.11 does not impose any conditions concerning 
the action of the simplicial functor H : Adj → K on the other triangle identity 2-arrow α. 
In general, while H(α) is a 2-arrow which witnesses the other triangle identity of f � u

there is no reason why it should be equal to the particular witness α that we fixed in 
observation 4.3.2. Indeed it is possible that there may be no simplicial functor H : Adj →
K which simultaneously maps both of the 2-arrows α and β to that chosen pair of 
witnesses for the triangle identities.

4.3.13. Definition. We know by proposition 3.3.4 that there exists a unique 2-functor 
F : Adj → K2 which carries the canonical adjunction in Adj to the chosen adjunction 
f � u in K2. If this 2-functor lifts through the quotient simplicial functor from K to K2
as in the following diagram

Adj H

F

K
QK

K2

then we say that the dashed simplicial functor H : Adj → K is a lift of our adjunction 
f � u to a homotopy coherent adjunction in K. More explicitly, H is any simplicial 
functor which maps u and f to the corresponding 0-arrows of the adjunction f � u and 
which maps ε and η to representatives for the unit and counit of that adjunction. As an 
immediate consequence of theorem 4.3.11, every adjunction in K2 lifts to a homotopy 
coherent adjunction in K.

4.4. Homotopical uniqueness of homotopy coherent adjunctions

We conclude this section by proving that the space of all lifts of an adjunction to a 
homotopy adjunction is not only non-empty, as guaranteed by theorem 4.3.11, but is also 
a contractible Kan complex. In other words, this result says that lifts of an adjunction 
to a homotopy coherent adjunction are “homotopically unique”.

4.4.1. Observation (Simplicial enrichment of simplicial categories). We may apply the 
product preserving exponentiation functor (−)X : sSet → sSet to the hom-spaces of any 
simplicial category K to obtain a simplicial category KX . This construction defines a 
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bifunctor sSetop × sSet-Cat → sSet-Cat, and there exist canonical natural isomorphisms 
KΔ0 ∼= K and KX×Y ∼= (KX)Y which obey manifest coherence conditions.

Given an action of this kind of sSet on sSet-Cat, we may construct an enrichment 
of the latter to a (large) simplicial category. Specifically, we take the n-arrows between 
simplicial categories K and L to be simplicial functors F : K → LΔn . The action of Δ
on these is given by F · α := Lα ◦ F , and we compose F with a second such n-simplex 
G : L → MΔn by forming the composite:

K F LΔn GΔn

(MΔn)Δn ∼= M(Δn×Δn) M∇

MΔn

The associativity and identity rules for this composition operation are direct conse-
quences of the fact that for any X the diagonal map ∇ : X → X × X and the unique 
map ! : X → Δ0 obey the co-associativity and co-identity rules. Under this enrichment 
by (possibly large) simplicial sets, the construction KX becomes the simplicial cotensor 
of K by X.

We write icon(K, L) to denote the (possibly large) simplicial hom-space between sim-
plicial categories. The notation “icon” is chosen here because a 1-simplex in icon(K, L)
should be thought of as analogous to an identity component oplax natural transformation
in 2-category theory, as defined by Lack [16]. In particular, the simplicial functors K → L
serving as the domain and the codomain of a 1-simplex in icon(K, L) agree on objects.

The universal property of LX as a cotensor may be expressed as a natural isomorphism 
icon(K, L)X ∼= icon(K, LX) and, in particular, it provides a natural bijection between 
simplicial maps X → icon(K, L) and simplicial functors K → LX .

We will be interested in fibres of maps icon(A′, K) → icon(A, K) associated to an 
identity-on-objects inclusion A ↪→ A′ between small simplicial categories. It is easily 
checked, using the fact that the hom-spaces of K are all small simplicial sets, that any 
such fibre will be a small simplicial set.

For the remainder of this section we shall assume that K and L denote quasi-
categorically enriched categories. The icon enrichment of sSet-Cat is homotopically 
well-behaved with respect to local isofibrations and relative simplicial computads, in 
the precise sense formalised in the next lemma.

4.4.2. Lemma. Suppose that P : K � L is a simplicial functor which is a local isofibration, 
and suppose that I : A ↪→ B is relative simplicial computad. Furthermore assume either 
that P is surjective on objects or that I acts bijectively on objects. Then the Leibniz 
simplicial map

îcon(I, P ) : icon(B,K) −→ icon(A,K) ×icon(A,L) icon(B,L)

is a fibration in Joyal’s model structure.
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Proof. We wish to prove that every lifting problem

X

i

icon(B,K)

̂icon(I,P )

Y icon(A,K) ×icon(A,L) icon(B,L)

whose left-hand vertical i : X ↪→ Y is a trivial cofibration in the Joyal model structure 
on sSet, has a solution. This lifting problem transposes into the corresponding problem:

A

I

KY

ĥom(i,P )

B KX ×LX LY

Here the simplicial functor ĥom(i, P ) on the right is surjective on objects whenever P
is, and its action on each hom-set is the Leibniz map

ĥom(i, P ) : K(C,D)Y → K(C,D)X ×L(PC,PD)X L(PC,PD)Y ,

which is a trivial fibration of quasi-categories because P : K(C, D) � L(PC, PD) is an 
isofibration of quasi-categories and i : X ↪→ Y is a trivial cofibration in Joyal’s model 
structure.

Now by definition 2.1.4 we know that I : A ↪→ B can be expressed as a countable 
composite of pushouts of inclusions ∅ ↪→ 1 and 2[∂Δn] ↪→ 2[Δn] for n ≥ 0. Furthermore 
I is bijective on objects if and only if that decomposition doesn’t contain any pushouts 
of the inclusion ∅ ↪→ 1. So it follows that it is enough to check that we may solve lifting 
problems of the forms:

∅ KY

ĥom(i,P )

1 KX ×LX LY

2[∂Δn] KY

ĥom(i,P )

2[Δn] KX ×LX LY

Now solutions to problems like those on the right are guaranteed by the fact that the 
actions of ĥom(i, P ) on hom-spaces are trivial fibrations. Furthermore, if P is surjective 
on objects then we can solve problems like those on the left. Otherwise, when I is bijective 
on objects we need not solve any such problems. �

Special cases of lemma 4.4.2 imply that icon(I, K) : icon(B, K) � icon(A, K) is an 
isofibration of quasi-categories if A is a simplicial computad and A ↪→ B is a relative 
simplicial computad.
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4.4.3. Observation. Translating the proof of lemma 4.4.2 to the marked model structure 
of I.2.3.8, we obtain a corresponding result for relative simplicial computads and local 
isofibrations of categories enriched in naturally marked quasi-categories. In particular, 
if K has naturally marked hom-spaces and A is a simplicial computad, then the space 
icon(A, K) is a naturally marked quasi-category.

We will be interested in the isomorphisms in these spaces of icons.

4.4.4. Lemma. Suppose that F : K � L is a simplicial functor which is locally conserva-
tive in the sense that its action F : K(A, B) → L(FA, FB) on each hom-space reflects 
isomorphisms. Suppose also that A is a simplicial computad and that I : A ↪→ B is a 
relative simplicial computad that is bijective on objects. Then the Leibniz simplicial map

îcon(I, F ) : icon(B,K) −→ icon(A,K) ×icon(A,L) icon(B,L)

is a conservative functor of quasi-categories.

Proof. We work in the marked model structure, where we know that a simplicial map is 
conservative if and only if it has the right lifting property with respect to the inclusion 
2 ↪→ 2
 of the unmarked 1-simplex into the marked 1-simplex. Transposing this lifting 
property, we find that it is equivalent to postulating that every lifting problem

A K2�

ĥom(i,F )

B K2 ×L2 L2�

has a solution. Since A ↪→ B is both a relative simplicial computad and bijective on 
objects it is expressible as a composite of pushouts of inclusions of the form 2[∂Δn] ↪→
2[Δn], and it suffices to consider the case when A ↪→ B is an inclusion of this form. This 
amounts to showing that each lifting problem

∂Δn K(A,B)2�

ĥom(i,F )

Δn K(A,B)2 ×L(FA,FB)2 L(FA,FB)2�

has a solution, which transposes to give the following lifting problem:

(∂Δn × 2
) ∪ (Δn × 2) K(A,B)

F

Δn × 2
 L(FA,FB)
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The marked simplicial sets on the left have the same underlying simplicial sets and differ 
only in their markings. Consequently, the (unique) existence of the solution to this latter 
problem follows immediately from the assumption that F is locally conservative. �
4.4.5. Definition. The vertices of the quasi-category icon(Adj, K) are precisely the homo-
topy coherent adjunctions in K, so we write cohadj(K) = icon(Adj, K) for the space of 
homotopy coherent adjunctions in K.

4.4.6. Lemma. The space of homotopy coherent adjunctions in K is a (possibly large) 
Kan complex.

Proof. Lemma 4.4.2 implies that cohadj(K) is a quasi-category, so to demonstrate that 
it is a Kan complex we need only show that all of its arrows are isomorphisms. This prob-
lem reduces to a 2-categorical argument. Observe that the quotient simplicial functor 
QK : K → K2 is locally conservative simply because, by definition, the isomorphisms 
of the quasi-category K(A, B) are those arrows which map to isomorphisms in the 
homotopy category K2(A, B) = h(K(A, B)). Lemma 4.4.4 implies that the functor 
cohadj(QK) : cohadj(K) → cohadj(K2) is conservative. So it follows that the arrows of 
cohadj(K) are isomorphisms if this is the case for cohadj(K2).

It is easy to see that cohadj(K2) is a category. The 2-categorical universal property of 
Adj established in proposition 3.3.4 furnishes a concrete description of this category:

• objects are adjunctions (f � u, ε, η) in K2,
• arrows (φ, ψ) : (f � u, ε, η) → (f ′ � u′, ε′, η′) consist of a pair of 2-cells φ : f ⇒ f ′

and ψ : u ⇒ u′ in K2 which satisfy the equations ε′ · (φψ) = ε and η′ = (ψφ) · η, and
• identities and composition are given component-wise.

The isomorphisms in this category are those pairs whose constituent 2-cells are in-
vertible. Given any arrow (φ, ψ) : (f � u, ε, η) → (f ′ � u′, ε′, η′), we may construct the 
mates of the 2-cells φ and ψ under the given adjunctions, that is to say the following 
composites:

ψ′ := f ′ f ′η
f ′uf

f ′ψf
f ′u′f

ε′f
f φ′ := u′ ηu′

ufu′ uφu′

uf ′u′ uε′

u

We leave it to the reader to verify that φ′ is inverse to ψ and that ψ′ is inverse to φ. �
The following proposition strengthens lemma 4.4.2 when we restrict our attention to 

inclusions of parental subcomputads of Adj.

4.4.7. Proposition. Suppose that A and A′ are parental subcomputads of Adj with A ⊆ A′

containing the arrows f , u, and ε. Suppose that T : A → K is a simplicial functor for 
which T (f) = f , T (u) = u, and T (ε) = ε define an adjunction in K2. Then the fibre ET of 
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the isofibration icon(I, K) : icon(A′, K) � icon(A, K) over the vertex T is a contractible 
Kan complex.

Proof. The vertices of ET are simply those simplicial functors H : A′ → K which ex-
tend the given simplicial functor T : A → K. It follows, from theorem 4.3.8, that some 
such extension does exist and thus that ET is inhabited. Our task is to generalise that 
argument and show that if i : X ↪→ Y is any inclusion of simplicial sets then any lift-
ing problem of the form displayed in the displayed left-hand square, or equivalently the 
composite rectangle

X

i

ET icon(A′,K)

icon(I,K)

Y
!

Δ0
T

icon(A,K)

has a solution as illustrated by the dashed map. Transposing, we obtain an equivalent 
lifting problem

A T

I

K K!

KY

Ki

A′ KX

(4.4.8)

in the category of simplicial categories.
Now the vertical simplicial functor on the right of this diagram is a local isofibration; 

its action on the hom-space from C to D is K(C, D)i : K(C, D)Y � K(C, D)X . Further-
more, as noted in observation 4.3.2, the simplicial functor K! : K → KY preserves the 
adjunctions of K2. In particular, the upper horizontal map carries f , u, and ε to the data 
of an adjunction in KY , and we may apply theorem 4.3.8 to provide us with a solution 
to the transformed lifting problem (4.4.8) as required. �

Our first homotopical uniqueness result arises by specialising proposition 4.4.7 to the 
case where A = {ε} and A′ = Adj.

4.4.9. Observation. We use the universal property of icon({ε}, K) to deduce a new descrip-
tion of this space. Observation 4.4.1 tells us that simplicial maps X → icon({ε}, K) are in 
bijective correspondence with simplicial functors T : {ε} → KX . Any such T is completely 
and uniquely determined by giving objects A and B of K, 0-arrows T (f) ∈ K(B, A)X
and T (u) ∈ K(A, B)X , and a 1-arrow T (ε) : T (f)T (u) ⇒ idA ∈ K(A, A)X . This amounts 
to giving a triple of simplicial maps T (f) : X → K(B, A), T (u) : X → K(A, B), and 
T (ε) : X → K(A, A)2 which make the following square
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X
T (ε)

(!,T (f),T (u))

K(A,A)2

(p1,p0)

Δ0 ×K(B,A) ×K(A,B)
idA ×◦B

K(A,A) ×K(A,A)

commute. More concisely, we can express all of this information as a single map from X
into the pullback of the diagram formed by the right hand vertical and lower horizontal 
maps of this square. On consulting I.3.3.15 or example 5.1.9 below, we recognise that 
this pullback is precisely the comma quasi-category ◦B ↓ idA displayed in the following 
diagram:

◦B ↓ idA
p1

ψ
⇐Δ0

idA

K(B,A) ×K(A,B)

p0

◦B

K(A,A)

In conclusion, the space icon({ε}, K) is isomorphic to the (possibly large) coproduct, 
indexed by pairs A,B ∈ objK, of comma quasi-categories ◦B ↓ idA.

4.4.10. Definition (The space of counits). An object of

icon({ε},K) ∼=
∐

A,B∈obj K
◦B ↓ idA

may be written as a triple (f, u, ε) where f ∈ K(B, A) and u ∈ K(A, B) are 0-arrows and 
ε : fu ⇒ idA ∈ K(A, A) is a 1-arrow. We are most interested in those objects (f, u, ε)
with the property that ε represents the counit of an adjunction f � u in K2; we write 
(f � u, ε) to denote an object satisfying that condition.

Now define counit(K) to be the simplicial subset of icon({ε}, K) whose 0-simplices 
are the objects (f � u, ε), whose 1-simplices are the isomorphisms between them, and 
whose higher simplices are precisely those whose vertices and edges are members of 
these classes. As a quasi-category whose 1-simplices are isomorphisms, counit(K) is a 
Kan complex, which we call the space of counits in K.

Any given homotopy coherent adjunction H : Adj → K provides us with an adjunction 
H(f) � H(u) in K2 with counit represented by the 1-arrow H(ε); it follows that H
restricts along the inclusion I : {ε} ↪→ Adj to give an object (H(f) � H(u), H(ε)) of 
counit(K). By lemma 4.4.6, all of the arrows of cohadj(K) are isomorphisms; therefore, as 
functors preserve isomorphisms, every arrow in cohadj(K) maps to an arrow of counit(K)
under the isofibration icon(I, K) : icon(Adj, K) � icon({ε}, K). Consequently this map 
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factors through the space of counits to give an isofibration pC : cohadj(K) � counit(K)
of Kan complexes.

An object H : Adj → K of cohadj(K) is in the fibre Eε of the isofibration cohadj(K) �
counit(K) over some (f � u, ε) precisely if it is a lift of the adjunction f � u to a homotopy 
coherent adjunction which happens to map ε to the chosen counit representative ε. 
We call this fibre the space of homotopy coherent adjunctions extending the counit ε. 
Proposition 4.4.7 specialises to prove our first uniqueness theorem:

4.4.11. Theorem. The space Eε of homotopy coherent adjunctions extending the counit ε
is a contractible Kan complex.

Theorem 4.4.11 has the following extension.

4.4.12. Proposition. The isofibration pC : cohadj(K) � counit(K) is a trivial fibration of 
Kan complexes.

Proof. The map pC : cohadj(K) � counit(K) is an isofibration between Kan complexes, 
and hence a Kan fibration. The conclusion follows immediately from theorem 4.4.11 and 
the following standard result from simplicial homotopy theory. �
4.4.13. Lemma. A Kan fibration p : E � B is a trivial fibration if and only if its fibres 
are contractible.

Proof. This can be proven either by appealing to the long exact sequence of a fibration 
or by a direct combinatorial argument (see [25, 5.4.16] or [20, 17.6.5]). �

It is also natural to ask what happens if we start only with a single 0-arrow f : B → A, 
which we know has some right adjoint in K2, and consider all of its extensions to a 
homotopy coherent adjunction. To answer this question we start by considering the 
isofibration icon(I, K) : icon({ε}, K) � icon({f}, K) of quasi-categories induced by the 
inclusion I : {f} ↪→ {ε} of subcomputads of Adj.

4.4.14. Observation. Observation 4.4.1 tells us that simplicial maps X → icon({f}, K) are 
in bijective correspondence with simplicial functors T : {f} → KX . Any such T is com-
pletely and uniquely specified by giving the 0-arrow T (f) of KX . This in turn corresponds 
to specifying a pair of objects A and B of K and a simplicial map T (f) : X → K(B, A)
or, in other words, to giving a simplicial map T (f) : X →

∐
A,B∈obj K K(B, A). Thus, the 

space icon({f}, K) is isomorphic to the (possibly large) coproduct 
∐

A,B∈obj K K(B, A)
of hom-spaces.

Combined with observation 4.4.9, we see that the isofibration icon(I, K) : icon({ε},
K) � icon({f}, K) is isomorphic to the coproduct of the family of projection isofibrations

◦B ↓ idA

p0 K(B,A) ×K(A,B)
π0 K(B,A)
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indexed by pairs of objects A, B ∈ K. In particular, the fibre of this isofibration over an 
object f ∈ K(B, A) is isomorphic to the comma quasi-category K(A, f) ↓ idA.

4.4.15. Definition (The space of left adjoints). Define leftadj(K) to be the simplicial subset 
of icon({f}, K) ∼=

∐
A,B∈obj K K(B, A) whose 0-simplices are those 0-arrows f of K which 

possess a right adjoint in K2, whose 1-simplices are the isomorphisms between them, 
and whose higher simplices are precisely those whose vertices and edges are members 
of these classes. As a quasi-category whose 1-simplices are isomorphisms, leftadj(K) is a 
Kan complex, which we call the space of left adjoints in K.

4.4.16. Observation. An object (f � u, ε) of counit(K) maps to the object f of leftadj(K)
under the isofibration icon(I, K) : icon({ε}, K) � icon({f}, K), which restricts to give 
an isofibration qL : counit(K) � leftadj(K) of Kan complexes.

4.4.17. Proposition. The isofibration qL : counit(K) � leftadj(K) is a trivial fibration of 
Kan complexes.

Proof. An isofibration of Kan complexes is a Kan fibration, so this result follows from 
lemma 4.4.13 once we show that the fibres of qL are contractible.

If f ∈ K is an object of leftadj(K) then the fibre Ff of qL : counit(K) � leftadj(K)
over f is isomorphic to a sub-quasi-category of the fibre K(A, f) ↓ idA of the isofibra-
tion icon(I, K) : icon({ε}, K) � icon({f}, K). Its objects are pairs (u, ε) which have the 
property that u is right adjoint to the fixed 0-arrow f with counit represented by the 
1-arrow ε : fu ⇒ idA.

Given such an object (u, ε) then we may apply the simplicial functor K(A, −) to the ad-
junction f � u to obtain an adjunction of quasi-categories K(A, f) � K(A, u) : K(A, A) →
K(A, B) whose counit is represented by K(A, ε). By I.4.4.8, the object (u, ε) is a terminal 
object in K(A, f) ↓ idA. Therefore, the fibre Ff is simply the full sub-quasi-category of 
terminal objects in K(A, f) ↓ idA and, as such, it is contractible as required. �

Composing the trivial fibrations of propositions 4.4.12 and 4.4.17, we obtain a trivial 
fibration pL : cohadj(K) � leftadj(K) which maps each homotopy coherent adjunction 
H : Adj → K to its left adjoint 0-arrow H(f). So if f ∈ K(B, A) is a left adjoint 0-arrow, 
that is to say an object in leftadj(K), then the fibre Ef of pL over that vertex has ob-
jects which are precisely those homotopy coherent adjunctions H : Adj → K for which 
H(f) = f . Consequently, we call Ef the space of homotopy coherent adjunctions extend-
ing the left adjoint f . Now lemma 4.4.13 applied to the trivial fibration pL tells us that 
such extensions exist and are homotopically unique, in the sense that the fibre Ef is a 
contractible Kan complex, proving our second uniqueness theorem.

4.4.18. Theorem. The space Ef of homotopy coherent adjunctions extending the left 
adjoint f is a contractible Kan complex. �
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5. Weighted limits in qCat∞

Of paramount importance to enriched category are the notions of weighted limit and 
weighted colimit. Here we consider only three sorts of enrichment — in sets, in categories, 
or in simplicial sets — so we may as well suppose that the base for enrichment is a 
complete and cocomplete cartesian closed category V.

Our aim in §5.2 is to show that qCat∞ admits a large class of weighted limits: those 
whose weights are projective cofibrant simplicial functors. These will be used to develop 
a “formal” theory of monads in the quasi-categorical context by extending a new pre-
sentation of the analogous 2-categorical results. For the reader’s convenience, we review 
the basics of the theory of weighted limits in §5.1. A more thorough treatment can be 
found in [14] or [22]. In §5.3, we establish a correspondence between projective cofibrant 
simplicial functors and certain relative simplicial computads that will be exploited in 
section 6 to identify projective cofibrant weights.

5.1. Weighted limits and colimits

An ordinary limit is an object representing the Set-valued functor of cones over a fixed 
diagram. But in the enriched context, this Set-based universal property is insufficiently 
expressive. The intuition is that in the presence of extra structure on the hom-sets of a 
category, cones over a diagram might come in exotic “shapes.”

5.1.1. Definition (Cotensors). For example, in the case of a diagram of shape 1 in a 
V-category M, the shape of a cone might be an object V ∈ V. Writing D ∈ M for the 
object in the image of the diagram, the V -weighted limit of D is an object V � D ∈ M
satisfying the universal property

M(M,V � D) ∼= V(V,M(M,D))

where this isomorphism is meant to be interpreted in the category V. For historical 
reasons, V � D is called the cotensor of D ∈ M by V ∈ V. Assuming the objects 
with these defining universal properties exist, cotensors define a bifunctor − � − : Vop ×
M → M.

For example, a closed symmetric monoidal category is always cotensored over itself: 
the cotensor is simply the internal hom. The cotensor V � D is also denoted by DV

when the context disambiguates between objects D ∈ M and V ∈ V.

5.1.2. Definition (Weighted limits). Suppose A and M are respectively small and large 
V-categories and write MA for the category of V-functors and V-natural transformations. 
Suppose further that M is complete and admits cotensors. Then the weighted limit
bifunctor { , }A : (VA)op ×MA → M is defined by the formula
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{W,D}A :=
∫

a∈A

W (a) � D(a)

:= lim

⎛⎝∏
a∈A

W (a) � D(a) ⇒
∏

a,b∈A

(A(a, b) ×W (a)) � D(b)

⎞⎠ (5.1.3)

Here, the weight W for the limit of a diagram D of shape A is a covariant V-valued 
functor of A. We refer to the object {W, D}A as the limit of the diagram D weighted 
by W . It is characterised by the universal property

M(M, {W,D}A) ∼= VA(W,M(M,D)) (5.1.4)

where the isomorphism is again interpreted in V.
A map of weights V → W induces a functor between the weighted limits {W, D}A →

{V, D}A which we refer to as the functor derived from the map V → W .

5.1.5. Example (Representable weights). Let Aa denote the covariant V-enriched repre-
sentable of A at an object a. The bifunctor (5.1.3) admits canonical isomorphisms

{Aa, D}A ∼=
∫

b∈A

A(a, b) � D(b) ∼= D(a) (5.1.6)

which are natural in a ∈ A and D ∈ MA; this result is simply a recasting of the 
classical Yoneda lemma. Hence, limits weighted by representables are computed simply 
by evaluating the diagram at the appropriate object.

5.1.7. Observation. The defining universal property of the weighted limit bifunctor, as 
expressed in the natural isomorphism of (5.1.4), provides us with an enriched adjunction

(VA)op
{−,D}A

⊥ M
M(−,D)

for each fixed diagram D. Consequently, the right adjoint functor {−, D}A carries 
(weighted) colimits in VA to (weighted) limits in M; weighted colimits in VA are simply 
weighted limits in (VA)op. In summary, the weighted limit bifunctor is cocontinuous in 
the weights. It follows, in particular, that weights can be “made-to-order” using colim-
its; that is a weight constructed as a colimit of representables will stipulate the expected 
universal property.

5.1.8. Example (Diagrams). The category VA of weights admits pointwise tensors by 
objects of V, satisfying a universal property dual to that of definition 5.1.1. As V is 
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cartesian monoidal, we adopt the notation V ×W for the tensor of V ∈ V by W ∈ VA

defined by (V ×W )(a) := V ×W (a).
The cocontinuity of the weighted limit bifunctor in its first variable tells us that if 

D is a diagram in MA and V is an object in V then the weighted limit {V ×W, D}A
is isomorphic to V � {W, D}A. So, in particular, it follows from example 5.1.5 that 
{V ×Aa, D}A is naturally isomorphic to V � D(a). Particularly in the quasi-categorical 
context appearing below, the cotensor V � D(a) is often referred to as the object of 
diagrams of shape V in D(a).

5.1.9. Example (Comma quasi-categories). Let A be the category • → • ← •. Let W be 
the sSet-valued weight with this shape whose image is

Δ0 δ0

−−→ Δ1 δ1

←−− Δ0

The limit of a diagram D

B
f−→ A

g←− C

in the simplicial category qCat∞ ↪→ sSet weighted by W is the comma quasi-category 
f ↓ g introduced in I.3.3.15, constructed by the pullback

f ↓ g A2

C ×B
g×f

A×A.

5.1.10. Example (Homotopy limits as weighted limits). The homotopy limit of a diagram 
of shape A taking values in the fibrant objects of a simplicial model category is the limit 
weighted by A/− : A → sSet. This is the Bousfield Kan formula [4].

5.1.11. Lemma (Weighted limits and Kan extensions). Suppose given a V-functor 
K : D → C, a diagram D : C → M, and a weight W : D → V. The limit of the re-
stricted diagram DK weighted by W is isomorphic to the limit of D weighted by the left 
Kan extension of W along K.

{W,DK}D ∼= {lanK W,D}C

C
lanK W

⇑∼=

D
W

K

V

Proof. The defining universal properties of these weighted limits are easily seen to coin-
cide; see [14, 4.57]. �
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5.2. Weighted limits in the quasi-categorical context

The following proposition shows that the limit of any diagram of quasi-categories 
weighted by a projective cofibrant functor is again a quasi-category. The proof is very 
simple and indeed related conclusions have been drawn elsewhere; see for instance [8]. 
For the duration of this section and the next we shall assume that A is a small simplicial 
category.

5.2.1. Definition (Projective cofibrations). A natural transformation in sSetA is said to 
be a projective cofibration if and only if it has the left lifting property with respect to 
those natural transformations which are pointwise trivial fibrations. The maps in the set

{∂Δn × Aa → Δn × Aa | n ≥ 0, a ∈ A}

of projective cells are projective cofibrations. A natural transformation in sSetA is a 
pointwise trivial fibration if and only if it has the right lifting property with respect to 
all projective cells. We say that a natural transformation i : V → W is a relative projective 
cell complex if it is a countable composite of pushouts of coproducts of projective cells, 
or equivalently, if it is a transfinite composite of pushouts of projective cells. A simplicial 
functor W in sSetA is a projective cell complex if the unique natural transformation 
∅ → W is a relative projective cell complex.

By the small object argument, we may factor every natural transformation f : V → W

in sSetA as a composite of a relative projective cell complex i : V → U followed by a 
pointwise trivial fibration p : U → W . It follows that a map i : V → W is a projective 
cofibration if and only if it is a retract of a relative projective cell complex.

5.2.2. Proposition. Let i : V → W be a projective cofibration of weights in sSetA, 
and suppose that p : D → E is a natural transformation of diagrams in sSetA and a 
pointwise (trivial) fibration in the Joyal model structure. Then the Leibniz limit map 
{i, p}∧A : {W, D}A → {W, E}A ×{V,E}A

{V, D}A is also a (trivial) fibration.

Proof. The natural transformation i : V → W is a projective cofibration if and only if 
it is a retract of a countable composite of pushouts of coproducts of projective cells. 
Observation 5.1.7 tells us that the weighted limit bifunctor is cocontinuous in its first 
variable, so the Leibniz map {i, p}∧A as a retract of a countable tower of pullbacks of 
products of Leibniz maps of the form:

{in×Aa, p}∧A : {Δn×Aa, D}A −→ {Δn×Aa, E}×{∂Δn×Aa,E}{∂Δn×Aa, D} (5.2.3)

Hence, it suffices to show that each of these is a (trivial) fibration. Example 5.1.8 provides 
a natural isomorphism {X×Aa, D}A ∼= D(a)X from which we see that the Leibniz map 
(5.2.3) is isomorphic to the Leibniz hom:

ĥom(in, pa) : D(a)Δ
n −→ E(a)Δ

n ×E(a)∂Δn D(a)∂Δn
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Now pa : D(a) → E(a) is a (trivial) fibration, because p is a pointwise (trivial) fibration 
by assumption, and so (5.2.3) is also a (trivial) fibration as a consequence of the fact 
that the Joyal model structure is cartesian. �
5.2.4. Proposition. The full simplicial subcategory qCat∞ of quasi-categories is closed in 
sSet under limits weighted by projective cofibrant weights in the sense that qCat∞ has 
and qCat∞ ↪→ sSet preserves such limits.

Proof. Since qCat∞ is a full simplicial subcategory of sSet, all we need do is show 
that if W : A → sSet is a projective cofibrant weight and D : A → sSet is a diagram 
whose vertices are all quasi-categories then the weighted limit {W, D}A in sSet is also a 
quasi-category. This is a special case of proposition 5.2.2. �
5.2.5. Remark. Simplicial limits with projective cofibrant weights should be thought of 
as analogous to flexible 2-limits, i.e., 2-limits built out of products, inserters, equifiers, 
and retracts (splittings of idempotents) [2]. The flexible limits also include iso-inserters, 
descent objects, and comma objects. When a 2-category A is regarded as a simplicial cat-
egory, the change-of-base functor h∗ : sSetA → CatA carries projective cofibrant weights 
to flexible weights. The weights for flexible limits are the cofibrant objects in a model 
structure on the diagram 2-category CatA that is enriched over the folk model structure 
on Cat. In analogy with our result, the fibrant objects in a Cat-enriched model structure 
are closed under flexible weighted limits [15, theorem 5.4].

The next result shows that limits weighted by projective cofibrant weights are homo-
topical, that is, preserve pointwise equivalences between diagrams in qCat∞.

5.2.6. Proposition. Let W : A → sSet be projective cofibrant, and let D, E : A → qCat∞
be a pair of diagrams equipped with a natural transformation w : D → E which is a 
pointwise equivalence. Then the induced map {W, D}A → {W, E}A is an equivalence of 
quasi-categories.

Proof. Applying the construction of Ken Brown’s lemma, w : D → E may be factored 
as the composite of a right inverse to a pointwise trivial fibration followed by a point-
wise trivial fibration. So it suffices to show that if w : D → E is a pointwise trivial 
fibration then {W, D}A → {W, E}A is an equivalence. This is a special case of proposi-
tion 5.2.2. �
5.2.7. Remark. The proofs of propositions 5.2.2, 5.2.4, and 5.2.6 apply mutatis mutandis 
to show that the fibrant objects in any model category that is enriched over either Quil-
len’s or Joyal’s model structure on sSet is closed under weighted limits with projective 
cofibrant weights and that these constructions are homotopical. The essential input in 
all cases is the closure property of the (trivial) fibrations in such model categories with 
respect to Leibniz cotensors by monomorphisms of simplicial sets.
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5.2.8. Example (Homotopy limits of quasi-categories). For any small category A, the 
weight A/− : A → sSet is projective cofibrant [9, 14.8.5]. An A-diagram of quasi-
categories can be regarded as a functor D : A → msSet taking values in the fibrant 
objects of the marked model structure of I.2.3.8. The advantage of this interpretation 
is that the marked model structure is a simplicial model structure [18, 3.1.4.4]. By the 
last remark the weighted limit of a diagram of naturally marked quasi-categories is again 
a naturally marked quasi-category. In this way, we see that qCat∞ is closed under the 
formation of homotopy limits. See [22] for more details.

5.2.9. Remark (2-categorical weighted limits and quasi-categorical weighted limits). Recall 
our convention to regard a 2-functor W : A → Cat as a simplicial functor W : A →
qCat∞ via the embedding 2-Cat ↪→ sSet-Cat. It follows from the defining weighted limit 
formula (5.1.3) and the fact that the nerve preserves exponentials that the (2-)limit 
of a 2-functor D : A → Cat weighted by W , when regarded as a quasi-category, is 
isomorphic to the limit of the associated simplicial functor D : A → qCat∞ weighted by 
the simplicial functor W . Many of the weights appearing in sections 6 and 7 are simplicial 
re-interpretations of 2-functors. In this way, the special case of the quasi-categorical 
monadicity theorem, in which the quasi-categories in question are ordinary categories, 
can be interpreted directly in the full subcategory Cat of the simplicial category qCat∞.

5.3. The collage construction

To apply proposition 5.2.4, it will be useful to know that certain weights constructed 
from simplicial computads are projective cofibrant. This follows from a recognition prin-
ciple which relates projective cofibrations to retracts of relative simplicial computads 
between collages.

5.3.1. Definition (The collage construction). Let W : A → sSet be a simplicial functor. 
The collage of W is a simplicial category collW containing A as a full simplicial sub-
category and precisely one additional object ∗ whose endomorphism space is a point. 
Declare the hom-spaces from a ∈ A to ∗ to be empty and define

collW (∗, a) := W (a).

The action maps A(a, b) × W (a) → W (b) provide the required compositions between 
these hom-spaces derived from W and the hom-spaces in the full subcategory A. This 
construction is functorial: it carries a natural transformation f : V → W to a simplicial 
functor coll(f) : collV → collW which acts as the identity on the copies of A and ∗ in 
those collages and whose actions coll(f) : collV (∗, a) → collW (∗, a) are the components 
fa : V (a) → W (a).

5.3.2. Observation (A right adjoint to the collage construction). For our purposes the 
collage construction is simply a functor of ordinary, unenriched categories. By definition, 
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the functor coll(f) : collV → collW associated with a natural transformation f : V → W

commutes with the inclusions of the coproduct A +{∗} into the collages that comprise its 
domain and codomain. So we may write the collage construction as a functor from sSetA

to the slice category (A +{∗})/sSet-Cat which carries a simplicial functor W : A → sSet
to the inclusion A + {∗} ↪→ collW . This functor admits a right adjoint

(A + {∗})/sSet-Cat
wgt

⊥ sSetA
coll

carrying an object F : A + {∗} → E to the simplicial functor wgt(E, F ) : A → sSet
whose action on objects is given by wgt(E, F )(a) := E(F (∗), F (a)) and whose action on 
hom-spaces is determined by composition in E as follows:

A(a, b) × E(F (∗), F (a))
F×id

E(F (a), F (b)) × E(F (∗), F (a)) ◦ E(F (∗), F (b)).

The unit of this adjunction is an isomorphism, implying that the collage construction is 
a fully faithful functor.

A simplicial category W is of the form coll(W ) if and only if it is comprised of a full 
simplicial subcategory isomorphic to A plus one other object ∗ satisfying the conditions 
that W(∗, ∗) = Δ0 and W(a, ∗) = ∅ for all objects a in A.

The following result characterises relative projective cell complexes.

5.3.3. Proposition. A natural transformation i : V → W in sSetA is a relative projective 
cell complex if and only if its collage coll(i) : collV → collW is a relative simplicial 
computad.

Proof. Exploiting the adjunction coll � wgt, there is a bijective correspondence be-
tween simplicial functors F : coll(X ×Aa) → B and natural transformations X ×Aa →
wgt(B, FI), where I : A +{∗} ↪→ coll(X×Aa) denotes the canonical inclusion. Applying 
the defining property of the cotensor X × Aa and Yoneda’s lemma, we see that maps 
of this latter kind correspond to simplicial maps X → wgt(B, FI)(a) = B(F (∗), F (a)). 
Consequently we obtain a natural bijective correspondence between simplicial functors 
F : coll(X×Aa) → B and pairs of simplicial functors F : A → B and F̂ : 2[X] → B with 
the property that F̂ (1) = F (a). That latter pair is obtained from F : coll(X ×Aa) → B
by restricting it to the subcategory A and by composing it with a canonical comparison 
functor KX : 2[X] → coll(X ×Aa) respectively. Using this characterisation, it is easy to 
check that if f : X → Y is any simplicial map then the square
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2[X]
KX

2[f ]

coll(X × Aa)

coll(f×Aa)

2[Y ]
KY

coll(Y × Aa)

(5.3.4)

is a pushout.
Transfinite composites and pushouts are colimits of connected diagrams, so they are 

both preserved and reflected by the forgetful functor (A + {∗})/sSet-Cat → sSet-Cat. 
Furthermore, the collage construction is a fully faithful left adjoint functor so it too 
preserves and reflects all small colimits. For the “only if” direction, we suppose that 
i : V ↪→ W is a relative projective cell complex, i.e., that it can be expressed as a 
transfinite composite of pushouts of natural transformations of the form ∂Δn × Aa ↪→
Δn ×Aa. On applying the collage construction and projecting into sSet-Cat, we obtain 
a decomposition of coll(i) : collV ↪→ collW as a transfinite composite of pushouts of 
simplicial functors of the form coll(∂Δn × Aa) ↪→ coll(Δn × Aa). Composing each of 
those pushouts with the pushout square (5.3.4), we can also express coll(i) as transfinite 
composite of pushouts of simplicial functors of the form 2[∂Δn] ↪→ 2[Δn]. This proves 
that coll(i) is a relative simplicial computad.

Conversely for the “if” direction, if coll(i) : coll(V ) ↪→ coll(W ) is a relative simplicial 
computad, then it can be expressed as a transfinite composite of functors Iβ : Wβ ↪→
Wβ+1 each of which is a pushout of a functor 2[∂Δn] ↪→ 2[Δn] for some n ≥ 0; because 
coll(V ) and coll(W ) share the same sets of objects, we will not require the functor ∅ ↪→ 1
of definition 2.1.4.

If β ≤ β′ then we may regard Wβ as being a simplicial subcategory of Wβ′ . In par-
ticular since each Wβ sits as a simplicial subcategory between coll(V ) and coll(W ) it 
follows that it too must have A as a full simplicial subcategory plus one extra object ∗
for which Wβ(∗, ∗) = Δ0 and Wβ(a, ∗) = ∅. Applying the characterisation of observa-
tion 5.3.2, there exists an essentially unique simplicial functor W β in sSetA such that 
coll(W β) ∼= Wβ. As the collage construction is fully faithful, we also obtain induced maps 
iβ,β

′ : W β → W β′ whose images under the collage construction are isomorphic to the 
connecting functors Iβ,β′ : Wβ ↪→ Wβ′ under the chosen isomorphisms coll(W β) ∼= Wβ. 
Finally, the transfinite sequence iβ,β

′ : W β → W β′ in sSetA is actually a transfinite com-
posite because it maps under the collage construction to a sequence which is isomorphic 
to our chosen transfinite composite Iβ,β

′ : Wβ ↪→ Wβ′ in sSet-Cat and these colimits 
are reflected.

All that remains is to show that each iβ : W β → W β+1 is a pushout of a projective 
cell. We know that coll(iβ) : collW β ↪→ collW β+1 is isomorphic to Iβ : Wβ ↪→ Wβ+1, 
by construction, and that latter functor is a pushout of some inclusion 2[∂Δn] ↪→ 2[Δn], 
so it follows that there is a pushout:
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2[∂Δn] Fβ

collW β

coll(iβ)

2[Δn] collW β+1

However, collW β and collW β+1 can only differ in hom-spaces whose domains are ∗ and 
whose codomains are objects of A so the attaching simplicial functor F β must map 0 to 
the object ∗ and 1 to some object a of A. It follows we may apply the observations of 
the first paragraph of this proof to factor F β as a composite of the canonical comparison 
K∂Δn : 2[∂Δn] → coll(∂Δn × Aa) and a simplicial functor F̂ β : coll(∂Δn × Aa) →
collW β . As the collage construction is fully faithful, there must exist a unique natural 
transformation fβ : ∂Δn×Aa → W β with the property that coll(fβ) = F̂ β . This defines 
a factorisation of the pushout above through the pushout (5.3.4) to give the following 
diagram

2[∂Δn]
K∂Δn

coll(∂Δn × Aa)

coll(i×Aa)

coll(fβ)
collW β

coll(iβ)

2[Δn]
KΔn

coll(Δn × Aa)
coll(gβ)

collW β+1

in which the right hand square is a pushout by the usual cancellation argument. As the 
collage construction reflects pushouts, we conclude that iβ : W β ↪→ W β+1 is a pushout 
of the projective cell i × Aa : ∂Δn × Aa ↪→ Δn × Aa as required. �

Sections 6 and 7 make substantial use of the following special case of proposition 5.3.3.

5.3.5. Proposition. A simplicial functor W : A → sSet is a projective cell complex if and 
only if the canonical inclusion A ↪→ collW is a relative simplicial computad.

Proof. Proposition 5.3.3 tells us that ∅ → W is a projective cofibration if and only 
if coll ∅ → collW is a relative simplicial computad. This latter functor is simply the 
canonical inclusion A + {∗} ↪→ collW , which is a relative simplicial computad if and 
only if A ↪→ collW is such. �
6. The formal theory of homotopy coherent monads

Let Mnd denote the full sub-2-category of Adj on the object +. We know from corol-
lary 3.3.5 and remark 3.3.8 that the hom-category of Mnd is the category Δ+ and that its 
horizontal composition is given by the join operation. So Lawvere’s characterisation [17]
of Δ+ as the free monoidal category containing a monoid tells us that Mnd is the free 
2-category containing a monad.
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We have seen that any adjunction in the 2-category K2 of a quasi-categorically en-
riched category K extends to a homotopy coherent adjunction, a simplicial functor 
Adj → K. The composite simplicial functor Mnd → Adj → K is the homotopy co-
herent monad generated by that adjunction. More generally, we regard any simplicial 
functor Mnd → K as a homotopy coherent monad in K. In this section and the next 
we justify this definition by developing the theory of homotopy coherent monads in the 
quasi-categorical context, including Beck’s monadicity theorem.

The “formal theory of monads” plays homage to Ross Street’s paper [29], which devel-
ops a formal 2-categorical theory of monads and their associated Eilenberg–Moore and 
Kleisli constructions. However, our method here is not a direct generalisation of his. For 
example, he defines the Eilenberg–Moore object associated with a monad in a 2-category 
using a universal property which is expressed in terms of the associated 2-category of 
monads and monad morphisms. In the quasi-categorical context, we will describe the 
Eilenberg–Moore object, which we refer to as the quasi-category of algebras, as a limit of 
the homotopy coherent monad Mnd → qCat∞ weighted by a projective cofibrant weight 
extracted from the simplicial computad Adj.

This weight for Eilenberg–Moore objects was first observed in the 2-categorical context 
by Lawvere [17], but he does not appear to have recognised the connection with the free 
adjunction. Our description and analysis of Adj will allow us to take his insights much 
further, applying them directly to understanding monadicity in the quasi-categorical 
context. One novelty in our approach is that we describe almost all constructions and 
computations involved our proof of Beck’s theorem in terms of the properties of weights of 
various kinds and of natural transformations between them. This is the topic of section 7.

A key technical point is that the weights we derive from the simplicial category Adj
are all shown to be projective cofibrant, as an immediate consequence of the fact that Adj
is a simplicial computad. It follows then, by proposition 5.2.4, that limits of diagrams of 
quasi-categories weighted by such weights are again quasi-categories. In particular, our 
weighted limits approach produces explicit quasi-categorical models of all key structures 
involved in the theory of homotopy coherent monads.

In §6.1, we introduce the weights for the quasi-category of algebras for a homotopy 
coherent monad. We then build the associated (monadic) adjunction by exploiting a cor-
responding adjunction of weights. In §6.2, we show that the monadic forgetful functor 
reflects isomorphisms. In §6.3, we describe how the objects in the quasi-category of alge-
bras for a homotopy coherent monad are themselves colimits of canonically constructed 
simplicial objects. A full proof of this result is deferred to [24], where we prove a substan-
tial generalization that applies to other quasi-categories defined via projective cofibrant 
weighted limits, but we outline that argument here.

The proofs in this section are all just formal arguments involving the weights — the 
quasi-category on which the homotopy coherent monad is defined need not be referenced. 
In analogy with the classical case, the proof of the quasi-categorical analog of Beck’s 
monadicity theorem in the next section will require certain hypotheses on the underlying 
quasi-categories.
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6.1. Weighted limits for the formal theory of monads

6.1.1. Definition (Homotopy coherent monads). A homotopy coherent monad in a quasi-
categorically enriched category K is a simplicial functor T : Mnd → K. The action of this 
functor on the unique object + in Mnd picks out an object B of K. Its action on the sole 
hom-space Δ+ of Mnd is given by a functor t : Δ+ → K(B, B) of quasi-categories which 
is a monoid map relative to the join operation on Δ+ and the composition operation on 
the endo-hom-space K(B, B).

6.1.2. Remark. To fix ideas, from here to the end of the paper we shall work in qCat∞
with respect to a fixed homotopy coherent monad T : Mnd → qCat∞ acting on a quasi-
category B via a functor t : Δ+ → BB . However, our arguments can be interpreted 
equally in the context of an arbitrary quasi-categorically enriched category K that ad-
mits all limits weighted by projective cofibrant weights.

6.1.3. Observation (Weights on Mnd). The constructions that we will apply to homotopy 
coherent monads will be expressed as limits weighted by projective cofibrant weights 
in sSetMnd. Any simplicial functor W : Mnd → sSet is describable as a simplicial set 
W = W (+) equipped with a left action · : Δ+ × W → W of the simplicial monoid 
(Δ+, ⊕, [−1]). Furthermore, a map f : V → W in sSetMnd is a simplicial map which is 
equivariant with respect to the actions of Δ+ on V and W , in the sense that the square

Δ+ × V
Δ+×f

·

Δ+ ×W

·

V
f

W

commutes. In particular, a cone c : W → T (−)A weighted by W over the diagram T with 
summit A is specified by giving a simplicial map c : W → BA which makes the following 
square

Δ+ ×W

·

t×c
BB ×BA

◦

W
c

BA

commute.

Of course, since homotopy coherent monads are also simplicial functors Mnd →
qCat∞, they too may be expressed as simplicial sets with left Δ+-actions.
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6.1.4. Definition (Monad resolutions). Write W+ : Mnd → sSet for the (unique) repre-
sented simplicial functor on Mnd. When described as in observation 6.1.3, W+ is the 
simplicial set Δ+ acting on itself on the left by the join operation.

By the Yoneda lemma (5.1.6), the limit of any diagram weighted by a representable 
simplicial functor always exists and is isomorphic to the value of the diagram at the 
representing object. Hence, the weighted limit {W+, T}Mnd is isomorphic to B, the object 
on which the monad operates, and the data of the limit cone is given by the action 
t : Δ+ → BB of the simplicial functor T on the hom-space of Mnd. We refer to this 
diagram as the monad resolution and use the following notation for the evident 1-skeletal 
subset of its image

idB η t
ηt

tη
t2μ tηt

ηtt

ttη

t3 · · · · · ·
tμ

μt
∈ BB .

Evaluating this at any object b we obtain an augmented cosimplicial object in B, which 
we draw as:

b ηb tb
ηtb

tηb
t2bμb tηtb

ηttb

ttηb

t3b · · · · · ·
tμb

μtb ∈ B (6.1.5)

When B is an ordinary category, regarded as a quasi-category, remark 5.2.9 applies. 
A homotopy coherent monad is just an ordinary monad and the cone t : Δ+ → BB is the 
usual monad resolution.

Another way to describe the weight W+ is to view it as the restriction of the covariant 
representable Adj+ : Adj → sSet to the full simplicial subcategory Mnd. This suggests 
the following definition:

6.1.6. Definition. Write W− for the restriction of the covariant representable Adj− : Adj →
sSet to the full simplicial subcategory Mnd. When described as a left Δ+-simplicial 
set, as in observation 6.1.3, W− has underlying simplicial set Δ∞ and left action 
⊕ : Δ+ × Δ∞ → Δ∞.

6.1.7. Definition (Quasi-category of algebras). The quasi-category of (homotopy coherent) 
algebras for a homotopy coherent monad T on an object B in qCat∞ is the weighted 
limit

B[t] := {W−, T}Mnd.

Once we show that the weight W− is projective cofibrant, proposition 5.2.4 will imply 
that every homotopy coherent monad possesses an associated quasi-category of alge-
bras. The proof of this fact is entirely straightforward and follows a pattern we shall see 
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repeated for other weights below. We identify the collage collW− as a simplicial sub-
category of Adj, use that description to show that it is a simplicial computad, and then 
appeal to proposition 5.3.5.

6.1.8. Lemma. The simplicial functor W− : Mnd → sSet is projective cofibrant.

Proof. The collage of W− can be identified with the (non-full) simplicial subcategory 
of Adj containing the hom-spaces Adj(+, +) and Adj(−, +) but with the hom-spaces 
from − and + to − respectively trivial and empty. This is a simplicial computad whose 
atomic arrows are precisely those squiggles whose codomain is + and which do not 
contain any instances of + in their interiors. Note that the atomic arrows in collW− are 
not necessarily atomic in Adj, as they may contain any number of occurrences of −, so 
collW− is not a simplicial subcomputad of Adj. However, the atomic arrows of Mnd are 
also those squiggles which do not contain any instances of + in their interiors, so Mnd
is a simplicial subcomputad of collW−, and it follows that Mnd ↪→ collW− is a relative 
simplicial computad. The conclusion now follows from proposition 5.3.5. �
6.1.9. Corollary. Every homotopy coherent monad in qCat∞ admits a quasi-category of 
algebras.

Proof. Immediate from lemma 6.1.8 and proposition 5.2.4. �
6.1.10. Remark. We unpack definition 6.1.7 to view an object of B[t] as a homotopy 
coherent algebra. The definition of B[t] as a limit weighted by W− tells us that the object 
b : Δ0 → B[t] corresponds to a W−-weighted cone over T with summit Δ0. As discussed 
in observation 6.1.3, such a cone is simply a simplicial map b : Δ∞ → B satisfying the 
equivariance condition that

Δ+ × Δ∞

⊕

t×b
BB ×B

ev

Δ∞
b

B

(6.1.11)

commutes. Evaluating b at [0] ∈ Δ∞ we obtain an object in B, which we shall also denote 
by b. Evaluating at σ0 : [1] → [0], we obtain an arrow in B, which we shall denote by 
β : tb → b.

The condition (6.1.11) implies, in particular, that the composite of b : Δ∞ → B with 
the functor − ⊕[0] : Δ+ → Δ∞ is equal to the resolution displayed in (6.1.5). Drawing this 
algebra in the way that we drew our monad resolutions (6.1.5), we obtain the following 
picture:
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b ηb tbβ

ηtb

tηb t2bμb

tβ

ηttb

tηtb

ttηb

t3b · · · · · ·
μtb

tμb

ttβ

∈ B (6.1.12)

The higher dimensional data of (6.1.12) implies, in particular, that (b, β) defines a 
h(t)-algebra, in the usual sense, in the homotopy category hB. However, it is not gener-
ally the case that all h(t)-algebras in hB can be lifted to homotopy coherent t-algebras 
in B.

6.1.13. Example (Free monoid monad). Let Kan∞ denote the simplicial category of Kan 
complexes. We may construct the free strictly associative monoid on a Kan complex K
in the usual way: take the coproduct

tK :=
∐
n≥0

Kn

which is again a Kan complex and equip it with the obvious concatenation operation 
as its product tK × tK → tK. This provides us with a simplicially enriched monad on 
Kan∞ whose monad resolution Δ+ → KanKan∞∞ may be transposed to give a left action 
Δ+ × Kan∞ → Kan∞ of the strict monoidal category (Δ+, ⊕, [−1]). Here we regard the 
category Δ+ as being a simplicial category with discrete hom-spaces.

Applying the homotopy coherent nerve construction N : sSet-Cat → sSet, which 
coincides with the usual nerve construction on discrete simplicial categories, we ob-
tain a left action Δ+ × NKan∞ → NKan∞, transposing to define a monoid map 
Δ+ → NKanNKan∞∞ . This defines a homotopy coherent monad on the (large) quasi-
category NKan∞.

Consulting remark 6.1.10, we see that a vertex in the associated quasi-category of 
coherent algebras corresponds to a functor Δ∞ → NKan∞ satisfying the naturality 
condition with respect to the left actions of Δ+ on its domain and codomain. We can 
take the transpose of that map under the adjunction C � N to give a simplicial functor 
CΔ∞ → Kan∞; hence, a homotopy coherent algebra is a homotopy coherent diagram of 
shape Δ∞ in Kan∞. The data in the image of this functor picks out a Kan complex K, 
an action map β : tK → K, various composites of these as displayed in (6.1.12), and 
higher dimensional homotopy coherence data that relates those to the structure of the 
monad resolution at K. In particular, this data ensures that the action map β : tK → K

supplies K with the structure of a strictly associative monoid in the classical homotopy 
category of Kan complexes.

Importantly, weighted limits can be used not just to define the quasi-category of 
algebras for a homotopy coherent monad but also the full (monadic) homotopy coherent 
adjunction.

6.1.14. Definition (Monadic adjunction). Composing the Yoneda embedding and the 
restriction along Mnd ↪→ Adj, one obtains a simplicial functor
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Adjop sSetAdj sSetMnd

+ W+

− W−

(6.1.15)

We know that the weighted limit construction {−, T}Mnd is simplicially contravariantly 
functorial on the full subcategory of projective cofibrant weights in sSetMnd. In particu-
lar, the representable W+ and the weight for quasi-categories of algebras W− are both 
projective cofibrant, so it follows that we may compose the simplicial functor (6.1.15)
with the weighted limit construction {−, T}Mnd : (sSetMnd

cof )op → qCat∞ to obtain a ho-
motopy coherent adjunction Adj → qCat∞.

We denote the primary data involved in this adjunction as follows

{W−, T}Mnd = B[t]
ut

⊥ B ∼= {W+, T}Mnd

ft

ηt : idB ⇒ utf t

εt : f tut ⇒ idB[t]

and call this the homotopy coherent monadic adjunction associated with the homotopy 
coherent monad T .

6.2. Conservativity of the monadic forgetful functor

6.2.1. Definition (Conservative functors). We say a functor f : A → B between quasi-
categories is conservative if it reflects isomorphisms; that is to say, if it has the property 
that a 1-simplex in A is an isomorphism if and only if its image in B under f is an 
isomorphism. It is clear that f is conservative if and only if the corresponding functor 
h(f) : hA → hB of homotopy categories is conservative.

As in the categorical context, the monadic forgetful functor ut : B[t] → B is always 
conservative. This will follow from the following general result.

6.2.2. Proposition. Suppose A is a small simplicial category and that i : V ↪→ W in sSetA

is a projective cofibration between projective cofibrant weights with the property that for 
all objects a ∈ A the simplicial map ia : V (a) ↪→ W (a) is surjective on vertices. Then for 
any diagram D in qCatA∞, the functor {i, D}A : {W, D}A → {V, D}A is conservative.

Proof. Applying the small object argument for the restricted set of projective cells 
∂Δn × Aa ↪→ Δn × Aa with n > 0, we factor i : V ↪→ W as a composite of a natu-
ral transformation i′ : V ↪→ U which is a transfinite composite of pushouts of those cells 
and a natural transformation p : U → W which has the right lifting property with re-
spect to those cells. This second condition means that for all objects a of A the simplicial 
map pa : U(a) → W (a) has the right lifting property with respect to each ∂Δn ↪→ Δn
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for n > 0. Now ia = pai
′
a is surjective on vertices, by assumption, so it follows that 

pa is also surjective on vertices. This means that p has the right lifting property with 
respect to each cell ∅ ∼= ∂Δ0 × Aa ↪→ Δ0 × Aa

∼= Aa, so pa is actually a trivial fi-
bration. As i is a projective cofibration by assumption, it has the right lifting property 
with respect to the pointwise trivial fibration p. Solving the obvious lifting problem 
between i and p, we conclude that i is a retract of i′. This demonstrates that i is a 
retract of a transfinite composite of pushouts of the restricted set of projective cells 
{∂Δn × Aa ↪→ Δn × Aa | a ∈ A, n > 0}.

Arguing as in the proof of proposition 5.2.2, we may now express {i, D}A as a retract 
of a transfinite co-composite (limit of a tower) of pullbacks of functors of the form

D(a)i : D(a)Δ
n −→ D(a)∂Δn

with n > 0. The class of conservative functors is closed under transfinite co-composites, 
pullbacks, and splitting of idempotents: working in the marked model structure, a functor 
is conservative if and only if it has the right lifting property with respect to 2 ↪→ 2
. So 
it is enough to show that each of those functors is conservative. This is an easy corollary 
of lemma I.2.3.10: pointwise equivalences in D(a)Δn are detected in D(a)∂Δn , provided 
n > 0, because ∂Δn → Δn is surjective on 0-simplices. �
6.2.3. Corollary. The monadic forgetful 0-arrow ut : B[t] → B is conservative.

Proof. The forgetful functor ut is constructed by applying the contravariant weighted 
limit functor {−, T}A to the natural transformation which arises by applying the sim-
plicial functor displayed in (6.1.15) to the 0-arrow u in Adj. In other words, this is 
the natural transformation W+ ↪→ W− which acts by pre-whiskering the elements of 
W+(+) = Adj(+, +) with the 0-arrow u to give an element of W−(+) = Adj(−, +). 
Our graphical calculus makes clear that this pre-whiskering operation is injective, so it 
follows that we may use it to identify collW+ with a simplicial subcategory of collW−, 
which we have already identified with a simplicial subcategory of Adj in the proof of 
lemma 6.1.8.

Under this identification collW+ becomes a simplicial subcategory of collW− which 
differs from it solely to the extent that its hom-space collW+(−, +) contains only those 
squiggles of collW+(−, +) = Adj(−, +) that decompose as au for some unique squiggle 
a in Adj(+, +). In particular, every atomic arrow of collW− is also atomic in collW+. 
Thus, collW+ ↪→ collW− is a relative simplicial computad to which we may apply 
proposition 5.3.3 to show that − ◦ u : W+ ↪→ W− is a relative projective cell complex. 
Furthermore, every 0-arrow in Adj is an alternating composite of the atomic 0-arrows u
and f , so it is clear that every 0-arrow in W−(+) = Adj(−, +) does decompose as au
and is thus in the image of − ◦ u : W+ ↪→ W−. Applying proposition 6.2.2, we conclude 
that ut : B[t] → B is conservative. �
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6.2.4. Observation. In the proof of corollary 6.2.3, we observed that W+ ↪→ W− is a rela-
tive projective cell complex. By proposition 5.3.3, we can extract an explicit presentation 
from the corresponding relative simplicial computad collW+ ↪→ collW− via our graphi-
cal calculus. Applying the weighted limit {−, T} to the map W+ ↪→ W−, this translates 
to a presentation of the monadic forgetful functor as a limit of a tower of isofibrations, 
each layer of which is defined as the pullback of a map BΔn � B∂Δn corresponding to 
an atomic n-arrow of collW− not in the image of collW+. In particular, ut : B[t] � B

is an isofibration.

6.2.5. Remark. We may express the projective cofibration − ◦u : W+ ↪→ W− in the form 
of observation 6.1.3 using the representation of Adj given in remark 3.3.8. Under that 
interpretation it is the simplicial map − ⊕ [0] : Δ+ ↪→ Δ∞, which satisfies the required 
equivariance condition

Δ+ × Δ+
Δ+×(−⊕[0])

⊕

Δ+ × Δ∞

⊕

Δ+
−⊕[0]

Δ∞

as an immediate consequence of the associativity of the join.

6.3. Colimit representation of algebras

Perhaps the key technical insight enabling Beck’s proof of the monadicity theorem is 
the observation that any algebra is canonically a colimit of a particular diagram of free 
algebras. More precisely any algebra (b, β) for a monad t on a category B is a ut-split 
coequaliser

t2b
μb

tβ
tbtηb β

ηtb

b
ηb

(6.3.1)

Here the solid arrows are maps which respect t-algebra structures on these objects, 
whereas the dotted splittings are not. Split coequalisers are examples of absolute colimits, 
that is to say colimits which are preserved by any functor. In particular they are preserved 
by t : B → B itself, a fact we may exploit in order to show that the forgetful functor 
ut : B[t] → B creates the canonical colimits of the form (6.3.1).

On our way to a monadicity theorem that can be applied to homotopy coherent 
adjunctions of quasi-categories, we demonstrate that any vertex in the quasi-category 
B[t] of algebras for a homotopy coherent monad T : Mnd → qCat∞ has an analogous 
colimit presentation. In this context, the ut-split coequaliser (6.3.1) is replaced by a 
canonical ut-split augmented simplicial object. In this section, we give a precise statement 
of this result and a sketch of its proof. The full details are deferred to [24] because the 
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argument, relying on our description of the quasi-category of algebras as a projective 
cofibrant weighted limit, applies to general quasi-categories defined as limits of this 
form.

As explained in section I.5, colimits in a quasi-category are encoded by absolute left 
lifting diagrams in qCat2 of a particular form. For the reader’s convenience, we briefly 
recall definition I.5.2.8.

I.5.2.8. Definition (Colimits in a quasi-category). We say a quasi-category A admits 
colimits of a family of diagrams k : K → AX of shape X if there is an absolute left lifting 
diagram in qCat2

⇑λ

A

c

K
k

colim

AX

in which c, the “constant map”, is the adjoint transpose of the projection πA : A ×X → A.

For example, the split augmented simplicial objects in a quasi-category B provide us 
with a family of colimit diagrams:

I.5.3.1. Theorem. For any quasi-category B, the canonical diagram

⇑

B

c

BΔ∞

ev0

res BΔop

(6.3.2)

is an absolute left lifting diagram. Hence, given any simplicial object admitting an aug-
mentation and a splitting, the augmented simplicial object defines a colimit cone over 
the original simplicial object. Furthermore, such colimits are preserved by any functor.

6.3.3. Recall (Constructing the triangle in theorem I.5.3.1). The object [−1] is terminal 
in the category Δop

+ , so there exists a necessarily unique natural transformation:

Δop

!
⇓

Δop
+

1
[−1]

(6.3.4)

Furthermore, post-composition by the arrow u : − → + of Adj provides us with an 
embedding Adj(−, −) ↪→ Adj(−, +), which we denote by u◦− : Δop

+ ↪→ Δ∞. On applying 
the contravariant 2-functor B(−) to this data we obtain the following diagram
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⇑

B

c

BΔ∞

Bu◦−
BΔop

+

ev−1

res BΔop
=: ⇑

B

c

BΔ∞

ev0

res BΔop

whose composite is the triangle displayed in the statement of theorem I.5.3.1.

The importance of this particular family of colimits is that their presence in B allows 
us to infer the existence of a more general family of colimits in the quasi-category B[t]. 
The following definition specifies the class of diagrams in that family:

6.3.5. Definition (u-split augmented simplicial objects). By remark 3.3.8, the image of the 
embedding u ◦ − : Δop

+ ↪→ Δ∞ of recollection 6.3.3 is the subcategory of Δ∞ generated 
by all of its elementary operators except for the face operators δ0 : [n − 1] → [n] for each 
n ≥ 1. We call these extra face maps δ0 splitting operators.

Given any functor u : C → B of quasi-categories, a u-split augmented simplicial ob-
ject is an augmented simplicial object Δop

+ → C that, when mapped to B by u, comes 
equipped with an extension Δ∞ → B, providing actions of the splitting operators and 
associated higher coherence data. In other words, such structures comprise pairs of hor-
izontal functors in the following diagram

Δop
+

u◦−

C

u

Δ∞ B

which make that square commute.
We may define a quasi-category S(u) of u-split augmented simplicial objects by form-

ing the following pullback:

S(u) BΔ∞

Bu◦−

CΔop
+

u
Δop
+

BΔop
+

(6.3.6)

This is a pullback of exponentiated quasi-categories whose right hand vertical is an isofi-
bration, as u ◦− : Δop

+ ↪→ Δ∞ is injective. It follows that S(u) is indeed a quasi-category. 
This construction may also be described as the limit of the diagram 2 → qCat∞ whose 
image is the functor u : C → B weighted by the projective cofibrant weight 2 → sSet
whose image is u ◦ − : Δop

+ ↪→ Δ∞.

The following proposition motivates our consideration of this particular class of dia-
grams:
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6.3.7. Proposition. The monadic forgetful functor ut : B[t] → B creates colimits of ut-split 
simplicial objects. It follows immediately that ut both preserves and reflects such colimits.

Our proof of this result relies on the following theorem which we prove as corollary 5.5 
of [24], where it appears as a special case of a much more general theorem proven there:

6.3.8. Theorem. The monadic forgetful functor ut : B[t] → B of a homotopy coherent 
monad creates any colimits that t : B → B preserves.

6.3.9. Observation. Before sketching a proof of theorem 6.3.8, let us expand upon its 
statement. It asks us to show that if k : K → B[t]X is a family of diagrams in B[t]
whose underlying diagrams (ut)Xk : K → BX admit colimits in B that are preserved 
by t : B → B, then we may lift them to give colimits of the diagrams we started with 
in B[t].

In other words, consider a family of diagrams k : K → B[t]X and an absolute left 
lifting diagram

⇑λ

B

c

K
(ut)Xk

colim

BX

(6.3.10)

so that the composite diagram

⇑λ

B

c

t
B

c

K
(ut)Xk

colim

BX

tX
BX

is again an absolute left lifting diagram. Theorem 6.3.8 asserts that under these assump-
tions there is a diagram

⇑λ̄

B[t]

c

K
k

colim

B[t]X

which lies over (6.3.10), in the sense that it satisfies the equality
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⇑λ̄

B[t]

c

ut

B

c

K
k

colim

B[t]X
(ut)X

BX

= ⇑λ

B

c

K
(ut)Xk

colim

BX

and that any such diagram λ̄ lying over (6.3.10) in this way is itself an absolute left 
lifting diagram.

Sketch proof of theorem 6.3.8. The map ut : B[t] → B is induced by the inclusion of 
weights W+ ↪→ W− applied to the homotopy coherent monad T . As noted in observa-
tion 6.2.4, we may extract an explicit presentation of W+ ↪→ W− as a relative projective 
cell complex from our graphical calculus. Passing to weighted limits of the homotopy 
coherent monad T , ut : B[t] � B is then the limit of a tower of isofibrations defined as 
pullbacks of maps of the form BΔn � B∂Δn ; these isofibrations arise as the limit of T
weighted by a projective cell W+ × ∂Δn ↪→ W+ × Δn indexed by an atomic n-arrow of 
collW− not in the image of collW+.

By proposition I.5.2.18, the cotensors of B admit geometric realisations of split aug-
mented simplicial objects, defined pointwise in B. Because t preserves these colimits, the 
maps in the pullback diagrams defining the layers in the tower for ut : B[t] � B preserve 
these colimits. We conclude by arguing inductively that each pullback admits and the 
legs of the pullback cone preserve such colimits. The limit stage of this induction creates 
the desired colimits in B[t]. �
Proof of proposition 6.3.7. Start by applying the 2-functor B[t](−) to the 2-cell in (6.3.4)
to obtain a triangle which we may combine with the canonical projection S(ut) � B[t]Δ

op
+

of (6.3.6) to give a composite triangle:

⇑

B[t]

c

S(ut) B[t]Δ
op
+

ev−1

res B[t]Δop

(6.3.11)

Now, the 2-functoriality properties of exponentiation provide us with the following past-
ing equation

⇑

B[t]

c

ut

B

c

B[t]Δ
op
+

res

ev−1

B[t]Δop

(ut)Δ
op

BΔop

=
⇑

B

c

B[t]Δ
op
+

(ut)Δ
op
+

BΔop
+

ev−1

res BΔop



E. Riehl, D. Verity / Advances in Mathematics 286 (2016) 802–888 877
which we may combine with the defining pullback square (6.3.6) to show that the com-
posite of the triangle in (6.3.11) with the functor ut reduces to:

⇑

B

c

S(ut) BΔ∞

ev0

res BΔop

(6.3.12)

Here the triangle on the right is simply that given in the statement of theorem I.5.3.1, 
whose construction is described in recollection 6.3.3. In other words, we have shown that 
the triangle in (6.3.11) lies over the one in (6.3.12), in the sense discussed in observa-
tion 6.3.9.

The triangle in (6.3.12) is an absolute left lifting diagram, simply because it is obtained 
by pre-composing the absolute left lifting diagram of theorem I.5.3.1 by the functor 
S(ut) → BΔ∞ of (6.3.6). Theorem I.5.3.1 also tells us that these colimits are preserved 
by all functors and so, in particular, they are preserved by t : B → B. Consequently, we 
may apply theorem 6.3.8 to show that ut : B[t] → B creates these colimits as postulated. 
On consulting observation 6.3.9, we see that we have succeeded in showing that the 
particular triangle given in (6.3.11) is an absolute left lifting diagram which displays 
those colimits. �

Proposition 6.3.7 can be specialised to provide the promised representation of homo-
topy coherent algebras as colimits of diagrams of free such algebras. All that remains 
to do so is to define this particular family of diagrams of ut-split augmented simplicial 
objects in B[t].

6.3.13. Observation (A direct description of S(ut)). We can express the quasi-category 
S(ut) of ut-split simplicial objects in B[t] directly as a limit of the homotopy coherent 
monad T weighted by a projectively cofibrant weight. To see how this may be achieved, 
start by recalling that the forgetful functor ut is constructed by applying the covariant 
weighted limit functor {−, T}Mnd to the natural transformation − ◦ u : W+ ↪→ W−
described in remark 6.2.5. This features in the following pushout in sSetMnd of weights

W+ × Δop
+

W+×(u◦−)

(−◦u)×Δop
+

W− × Δop
+

W+ × Δ∞ Ws

(6.3.14)

in which the products are tensors of weights by simplicial sets. Now the contravariant 
simplicial functor {−, T} is cocontinuous, so it carries this pushout to a pullback which is 
easily seen to be the ut instance of the pullback (6.3.6). Consequently, S(ut) is canonically 
isomorphic to the limit {Ws, T}Mnd.
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6.3.15. Observation. Every homotopy coherent algebra for T gives rise to a ut-split simpli-
cial object in B[t], and this construction may be encapsulated in a functor B[t] → S(ut)
which we now describe. Using observation 6.1.3, we re-express the objects and maps that 
occur in the diagram whose pushout we formed in (6.3.14) in terms of the structure of 
the simplicial category Adj. Doing so we get the upper horizontal and left-hand vertical 
maps in the following square

Adj(+,+) × Adj(−,−)
(−◦u)×Adj(−,−)

Adj(+,+)×(u◦−)

Adj(−,+) × Adj(−,−)

◦

Adj(+,+) × Adj(−,+) ◦ Adj(−,+)

whose lower right-hand vertex is the simplicial set underlying W−. This diagram com-
mutes by associativity of the composition in Adj, and each of the maps respects the 
manifest left (post-composition) actions of Adj(+, +) = Δ+ on each of its nodes. Hence, 
this defines a cone under (6.3.14) which induces an action preserving map Ws → W−, 
and applying {−, T} to all of this data we obtain a commutative diagram:

B[t]
t•

s•
S(ut) B[t]Δ

op
+

ut

BΔ∞
res BΔop

+

(6.3.16)

Finally, we wish to describe the diagrams in the image of the functor t• : B[t] →
B[t]Δ

op
+ . Recall from remark 3.3.8 that the map of weights defining t• is given by the join 

operation ⊕ : Δ∞ × Δop
+ → Δ∞. The functor t• carries each homotopy coherent algebra 

b : Δ∞ → B, presented by the diagram (6.1.12), to a functor b̄ : Δop
+ → B[t], which we 

now describe. As in remark 6.1.10, the equaliser formula (5.1.3) for weighted limits can 
be used to identify B[t] as a subobject of BΔ∞ . Under this identification, the diagram 
b̄ : Δop

+ → B[t] ↪→ BΔ∞ is the composite

b̄ := Δ∞ × Δop
+

⊕−→ Δ∞
b−→ B.

The vertex [−1] ∈ Δop
+ acts as the identity for the join operation, so the algebra b̄[−1]

equals b ∈ B[t]. The vertex [0] ∈ Δop
+ acts by precomposition with − ⊕ [0] : Δ∞ → Δ∞, 

restricting b to the subdiagram
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tb ηtb t2bμb

ηttb

tηtb t3bμtb

tμb

ηtttb

tηttb

ttηtb

t4b · · · · · ·
μttb

tμtb

ttμb

∈ B

that defines the free algebra tb ∈ B[t]. The other vertices of Δop
+ act by further restriction. 

In summary, the functor b̄ : Δop
+ → B[t] carries the vertex [n] ∈ Δop

+ to tn+1b ∈ B[t]. A 
similar analysis can be used to identify the morphisms in b̄ as components of the original 
diagram b : Δ∞ → B. In conclusion, we write

b tbβ tηb t2b
tβ

μb tηtb

ttηb
t3b · · · · · ·tμb

ttβ

μtb

∈ B[t]

for the obvious 1-skeletal subset of t•b = b̄ ∈ B[t]Δ
op
+ .

6.3.17. Theorem (Canonical colimit representation of algebras). Given a homotopy co-
herent monad T : Mnd → qCat∞, the functor t• : B[t] → B[t]Δ

op
+ of (6.3.16) encodes an 

absolute left lifting diagram

B[t]

c

B[t]

id

t•
B[t]Δop

⇑ =

B[t]

c

B[t]
t•

B[t]Δ
op
+

ev−1

res B[t]Δop

⇑ (6.3.18)

created from the ut-split simplicial objects in B

⇑

B[t]

c

ut

B

c

B[t]
t•

id

B[t]Δop

(ut)Δ
op

BΔop

=
⇑

B

c

B[t]
s•

BΔ∞

ev0

res BΔop

(6.3.19)

The colimits (6.3.18) exhibit the algebras for a homotopy coherent monad T on the quasi-
category B as colimits of canonical simplicial objects whose vertices are free algebras.

Proof. An immediate corollary of proposition 6.3.7: simply pre-compose the absolute 
lifting diagrams (6.3.11) and (6.3.12) by the functor B[t] → S(ut) constructed in obser-
vation 6.3.15. �
7. Monadicity

Our aim in this section is to provide a new proof of the quasi-categorical monadicity 
theorem, originally due to Lurie [19]. Given an adjunction of quasi-categories, theo-
rem 4.3.11 extends this data to a homotopy coherent adjunction from which we can 
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construct an associated homotopy coherent monadic adjunction, as described in defini-
tion 6.1.14. Immediately from our weighted limits definition, there is a comparison map 
from the original adjunction to the monadic one, defined as a component of a simpli-
cial natural transformation between the Adj-indexed simplicial functors but of course 
also interpretable in qCat2. The monadicity theorem provides conditions on the original 
adjunction under which this comparison functor is an equivalence quasi-categories.

7.1. Comparison with the monadic adjunction

Suppose given a homotopy coherent adjunction H : Adj → qCat∞ which restricts to 
a homotopy coherent monad T : Mnd → qCat∞. By the Yoneda lemma, the limits of the 
diagram H weighted by the two representables Adj+ and Adj− are isomorphic to the 
two objects in the diagram. Furthermore, the Yoneda embedding Adj∗ : Adjop → sSetAdj

defines an adjunction between these weights, whose left adjoint is a map Adj− → Adj+. 
Applying {−, H}Adj returns the homotopy coherent adjunction:

A ∼= {Adj−, H}Adj
u

⊥ {Adj+, H}Adj ∼= B

f

7.1.1. Observation (Changing the index for the weights). In order to compare the monadic 
adjunction defined in definition 6.1.14 with H it will be convenient to have formulas that 
describe the monadic adjunction as a weighted limit indexed over the simplicial category 
Adj instead of its subcategory Mnd. As a consequence of lemma 5.1.11, this can be done 
by simply taking the left Kan extension of the defining weights.

Note that if W is projectively cofibrant, so is lanW : the right adjoint in the adjunction

sSetAdj

res
⊥ sSetMnd
lan

manifestly preserves trivial fibrations, so the left adjoint preserves cofibrant objects.

7.1.2. Definition (Quasi-category of algebras, revisited). Recall from definition 6.1.7 that 
the quasi-category of algebras is the limit of the homotopy coherent monad underlying 
H weighted by W−, the restriction of the representable Adj−. By lemma 5.1.11, this 
quasi-category is equivalently described as the limit of the H weighted by lanW−

Adj
lan W−

⇑∼=

Mnd
W−

sSet

i.e., {W−, resH}Mnd ∼= {lanW−, H}Adj.
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The left Kan extension of the representable functor W+ on Mnd along the inclu-
sion Mnd → Adj is the representable Adj+. Because the inclusion Mnd ↪→ Adj is full, 
lanW−(+) ∼= W−(+) = Δ∞. By the standard formula for left Kan extensions, the value 
of lanW− : Adj → sSet at the object − is defined by the coend

lanW−(−) =
Mnd∫

Adj(+,−) × Δ∞ = coeq
(

Δ−∞ × Δ+ × Δ∞ Δ−∞ × Δ∞
)

This coequaliser identifies the left and right actions of Δ+. In accordance with our nota-
tional conventions, the categories on the right denote the quasi-categories given by their 
nerves, but because h : qCat → Cat preserves finite products as well as colimits, our 
remarks apply equally to the analogous coequaliser in Cat.

7.1.3. Lemma. The coequaliser of the pair

Δ−∞ × Δ+ × Δ∞ Δ−∞ × Δ∞ (7.1.4)

identifying the left and right actions of Δ+ is Δop.

Proof. The coequaliser (7.1.4) is computed pointwise in Set. We will show that the 
obvious diagram Δ−∞ × Δ+ × Δ∞ ⇒ Δ−∞ × Δ∞ → Δop is a coequaliser diagram using 
the graphical calculus for the simplicial category Adj.

To see that the map from the coequaliser to Δop is surjective on k-simplices note that 
a k-simplex in Δop

+ = Adj(−, −) lies in the subcategory Δop if and only if its representing 
squiggle passes through the level labelled +. The squiggle to the left of this point is 
a k-simplex in Δ−∞ and the squiggle to the right is a k-simplex in Δ∞. Juxtaposition 
defines a surjective map.

To see the map from the coequaliser is injective, suppose a squiggle representing a 
k-simplex in Δop passes through + at least once and consider the two preimages in 
Δ−∞ ×Δ∞ corresponding to distinct subdivisions. The squiggle between the two chosen 
+ symbols is a k-simplex in Δ+. Hence, the coequaliser already identifies our two chosen 
preimages of the given k-simplex of Δop. �
7.1.5. Observation. To summarise the preceeding discussion, we can give the following 
explicit description of the weight lanW− as a simplicial functor Adj → qCat∞. The 
representable Adj− : Adj → qCat∞ defines an adjunction

Adj(−,−)
u◦−
⊥ Adj(−,+)

f◦−

� Δop
+

u◦−
⊥ Δ∞

f◦−

We see that the left adjoint lands in the full subcategory Δop ⊂ Δop
+ by employing our 

graphical calculus: Δop ⊂ Δop
+ is the simplicial subset consisting of squiggles from −
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to − that go through +. The functor f ◦ − post-composes a squiggle from − to + with 
f = (−, +), and hence lands in this subcategory. The restricted adjunction is lanW−.

lanW− : Adj → qCat∞ � Δop

u◦−
⊥ Δ∞

f◦−

(7.1.6)

7.1.7. Definition (Monadic adjunction, revisited). Enriched left Kan extension defines a 
simplicial functor lan : sSetMnd → sSetAdj. Composing with (6.1.15) yields a simplicial 
functor Adjop → sSetAdj defining an adjunction between the weights lanW− and Adj+. 
Composing with {−, H}Adj produces the monadic adjunction

B[t] ∼= {lanW−, H}Adj

ut

⊥ {Adj+, H}Adj ∼= B

ft

7.1.8. Remark. The weight (7.1.6) for the monadic adjunction is the same adjunction 
used to prove theorem I.5.3.1. Its data demonstrates that any augmented simplicial 
object admitting a splitting defines a colimit cone over its underlying simplicial object.

7.1.9. Observation (Comparison with the monadic adjunction). The counit of the left Kan 
extension–restriction adjunction induces a comparison from the weight for the monadic 
homotopy coherent adjunction to the Yoneda embedding. The components of this sim-
plicial natural transformation are maps

lanW− = lan resAdj− → Adj− and Adj+ ∼= lan resAdj+ → Adj+

the latter of which we take to be the identity. Taking limits with these weights produces 
a commutative diagram

A ∼= {Adj−, H}Adj
u

{lanW−, H}Adj ∼= B[t]

ut

B ∼= {Adj+, H}Adj

f

ft

(7.1.10)

in which the comparison functor A → B[t] commutes with both the left and the right 
adjoints.

A second justification follows: the monadic homotopy coherent adjunction is isomor-
phic to the right Kan extension of the restriction of H to Mnd; this can be seen for 
instance from the weight limits formula for (simplicial) right Kan extensions. The com-
parison map is induced by the universal property of the right Kan extension.
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7.2. The monadicity theorem

Write R : A → B[t] for the comparison functor defined by (7.1.10). The monadicity 
theorem supplies conditions under which R is an equivalence of quasi-categories. The 
first step is to show that if the quasi-category A admits certain colimits, then R has a 
left adjoint.

7.2.1. Definition (u-split simplicial objects). As in (6.3.14), if we apply the contravariant 
functor {−, H}Adj to the left-hand pushout

Adj+ × Δop

Adj+×(u◦−)

(u◦−)×Δop

Adj− × Δop

�

S(u) BΔ∞

Bu◦−

Adj+ × Δ∞ Ws AΔop

uΔop
BΔop

(7.2.2)

in sSetAdj we obtain the right hand pullback in qCat∞. In other words, if we take the 
limit of the homotopy coherent adjunction H weighted by this weight Ws we obtain the 
quasi-category S(u) of u-split simplicial objects associated with the right adjoint of that 
adjunction. In contrast with definition 6.3.5, a vertex in S(u) is a simplicial object whose 
image under u admits both an augmentation and a splitting.

We use the same notation Ws for the weights defined by (6.3.14) and (7.2.2); context 
will disambiguate these. The left-hand vertical of the pullback defining this quasi-
category S(u) is a family of diagrams k : S(u) → AΔop .

Using definition I.5.2.8, we say the quasi-category A admits colimits of u-split simpli-
cial objects if there exists a functor colim: S(u) → A and a 2-cell that define an absolute 
left lifting diagram

A

c

S(u)
k

colim

AΔop
⇑

(7.2.3)

7.2.4. Theorem (Monadicity I). Let H be a homotopy coherent adjunction with underlying 
homotopy coherent monad T and suppose that A admits colimits of u-split simplicial 
objects. Then the comparison functor R : A → B[t] admits a left adjoint.

Proof. We begin by defining the left adjoint L : B[t] → A. The weight lanW− defines a 
cone under (7.2.2):
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Adj+ × Δop Adj+ × Δ∞

Adj− × Δop
�

lanW−

(7.2.5)

By the Yoneda lemma, the map Adj+ × Δ∞ → lanW− is determined by a map Δ∞ →
lanW−(+) = Δ∞, which we take to be the identity. Similarly, the map Adj− × Δop →
lanW− is determined by a map Δop → lanW−(−) = Δop which we also take to be 
the identity. The cone (7.2.5) defines a map of weights Ws → lanW− and hence a 
map B[t] → S(u) of weighted limits. Define L to be the composite of this functor with 
colim: S(u) → A. It follows from commutativity of (7.2.5) that L : B[t] → A commutes 
with the left adjoints f t and f .

The diagram (7.2.3) defining the colimits of u-split simplicial objects in A restricts to 
define an absolute left lifting diagram

A

c

B[t]

L

AΔop
⇑

(7.2.6)

The diagram component B[t] → AΔop is derived from the map � of weights. Recall the 
functor R : A → B[t] is derived from the counit of the left Kan extension–restriction 
adjunction, a map ν : lanW− → Adj− of weights. The left-hand diagram of weights

Adj− Adj− × Δop
+

idAdj− ×!

�

A
c

R

AΔop
+

res

lanW−

ν

Adj− × Δop
�

B[t] AΔop

commutes because the lower-left composite corresponds, via the Yoneda lemma, to the 
inclusion Δop

↪→ Δop
+ , as does the upper-right composite. Hence, the induced functors 

define a commutative diagram on weighted limits, displayed above right.
In this way we see that the canonical natural transformation

A

c

AΔop
+

ev−1

res AΔop
⇑
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defined by the 2-cell (6.3.4) induces the 2-cell on the right-hand side that we call ε : LR ⇒
id via the universal property of the absolute left lifting diagram (7.2.6):

A

c

id
=

A

c

AΔop
+

ev−1

res AΔop
⇑

=:

A

R

id

⇑

A

c

B[t] AΔop

=

A

R

id

∃!⇑ε

A

c

B[t]
L

AΔop
⇑

Similarly, the commutative diagram of weights induces a commutative diagram of 
limits

lanW−

�

B[t]
t•

Adj− × Δop lanW− × Δop
ν×idΔop

AΔop

RΔop
B[t]Δop

Hence, the composite 2-cell

A

c

R
B[t]

c

B[t]

L

AΔop

⇑

R
B[t]Δop

=:

B[t] RL

id ⇑

B[t]

c

B[t] B[t]Δop

=

B[t] RL

id
∃!⇑η

B[t]

c

B[t]
id

B[t]Δop

⇑

defines the 2-cell η : id ⇒ RL using the universal property of the canonical colimit 
diagram of theorem 6.3.17.

It follows from a straightforward appeal to the uniqueness statements of these univer-
sal properties, left to the reader, that the 2-cells defined in this way satisfy the triangle 
identities and hence give rise to an adjunction L � R in qCat2. �
7.2.7. Theorem (Monadicity II). If A admits and u : A → B preserves colimits of u-split 
simplicial objects, then the unit of the adjunction L � R of theorem 7.2.4 is an isomor-
phism. If u is conservative, then

A
R

⊥ B[t]
L

is an adjoint equivalence.
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Proof. Recall u factors as ut ·R. The first hypothesis asserts that

A

c

R
B[t] ut

c

B

c

B[t]

L

AΔop

⇑

RΔop
B[t]Δop

(ut)Δ
op

BΔop

is an absolute left lifting diagram. By inspecting the defining maps of weights, we see 
that the bottom composite B[t] → B[t]Δop is the map t• of (6.3.16). By theorem 6.3.17,

B[t]

c

ut

B

c

B[t]
t•

idB[t]

B[t]Δop

⇑

(ut)Δ
op

BΔop

is also an absolute left lifting diagram.
This gives us two a priori distinct absolute left lifting diagrams defining colimits for 

the same family of diagrams B[t] → BΔop . Write α for the first 2-cell and β for the 
second. By the definition of η in the proof of theorem 7.2.4, we have

B[t] ut

⇑α

B

c

B[t]

RL

BΔop

=

B[t]

idB[t]

RL

⇑η
B[t]

⇑β

ut

B

c

B[t]

idB[t]

BΔop

Conversely, the universal property of α can be used to define a 2-cell ζ

B

c

B[t]

ut

BΔop
⇑β

=

B[t]
⇑ζ

⇑α

ut

idB[t]

B

c

B[t]

utRL

BΔop

It is easy to see that ζ and utη are inverses. But corollary 6.2.3 tells us that ut : B[t] → B

is conservative. Because isomorphisms in quasi-categories are defined pointwise, it follows 
that (ut)B[t] : B[t]B[t] → BB[t] is as well. Thus η is an isomorphism.

Isomorphisms are preserved by restricting along any functor. In particular, ηR is an 
isomorphism. By uniqueness of inverses, Rε : RLR ⇒ R is its inverse, and is also an 
isomorphism. Hence uε = utRε is an isomorphism. If u is conservative, it follows that ε
is an isomorphism, and hence that L � R is an adjoint equivalence. �
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