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Introduction

This talk concerns quasi-categories which are a model for (∞, 1)-categories, which are
categories with objects, 1-morphisms, 2-morphisms, 3-morphisms, and so on, with every-
thing above level one invertible. Specifically, a quasi-category is a simplicial set in which
any inner horn has a filler. We think of the horn filling as providing a weak composition
law for morphisms in all dimensions.

Our project is to redevelop the foundational category theory of quasi-categories (pre-
viously established by Joyal, Lurie, and others) in a way that makes it easier to learn. In
particular, the proofs more closely resemble classical categorical proofs. Today I want to
illustrate this by mentioning one new theorem (to appear on the arXiv on Monday) and
then describing as much as I can about its proof.

Theorem. Homotopy limits of quasi-categories that have and functors that preserve X-
shaped (co)limits have X-shaped (co)limits, and the legs of the limit cone preserve them.

Here X can be any simplicial set. X-shaped colimits might be pushouts, filtered colimits,
initial objects, colimits of countable sequences, and so on. The two theorems (for X-shaped
limits or colimits) are dual, so I won’t mention colimits further.

By “homotopy limits” I mean Bousfield-Kan style homotopy limits, which are defined
via a particular formula. Here there is no dual result for homotopy colimits. This has to
do with the fact that the quasi-categories are the fibrant objects in a model structure on
simplicial sets. And actually, the result that we prove is for a more general class of limits,
including the homotopy limits, that I will describe along the way.

Today I’ll focus on a special case of the theorem: quasi-categories admitting and func-
tors preserving ∅-shaped limits, aka terminal objects. In fact, the general case reduces to
this special one, though I won’t have time to explain how.

Warmup

To warm up, let’s prove the following result:

Theorem. The homotopy limit of a diagram of quasi-categories is a quasi-category.

Here a diagram means a simplicial functor D : A→ qCat∞. Here qCat∞ is the simpli-
cially enriched category of quasi-categories, defined to be a full subcategory of simplicial
sets. The domain A is either a small category or a small simplicial category; we care about
both cases.
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Projective cofibrant weighted limits. Homotopy limits are examples of projective cofi-
brant weighted limits. By a weight, in the context of the diagram D above, I mean a
simplicial functor W : A→ sSet. For instance:

Example. Taking the weight to be N(A/−) : A → sSet, the corresponding limit notion is
the Bousfield-Kan homotopy limit.

Example. If A is the category • → • ← •, we might define W to be the functor with

image ∆0 d1

−→ ∆1 d0

←− ∆0. The weighted limit in then a comma object.

Example. There is a weight whose weighted limit defines the quasi-category of homotopy
coherent algebras for a homotopy coherent monad. Some of you heard me talk about this
last week at the Joint Meetings.

A weight W is projective cofibrant if ∅ → W is a retract of a composite of pushouts
of coproducts of maps ∂∆n × A(a,−) → ∆n × A(a,−) for n ≥ 0 and a ∈ A. These are
exactly the cofibrant objects in the projective model structure on the category of simplicial
functors sSetA.

The weighted limit is a bifunctor

weighted limit : (weight)op × diagram
{−,−}
−−−−→ limit object

that is completely characterized by the following two axioms:

(i) {A(a,−),D} = Da, i.e., the weighted limit weighted by a representable functor
just evaluates the diagram at that object.

(ii) {−,D} sends colimits in the weight to limits in the weighted limit.

Proof strategy. These two facts combine to give us a strategy for the proof of our warm-up
theorem, which I will now restate:

Theorem. A projective cofibrant weighted limit of a diagram of quasi-categories is a
quasi-category.

Proof. It suffices to show that qCat∞ is closed under

(i) splittings of idempotents (i.e., retracts)
(ii) limits of towers of isofibrations

(iii) pullbacks of isofibrations
(iv) products
(v) cotensors (−)Y with any simplicial set Y

and moreover that a monomorphism X ↪→ Y induces an isofibration (−)Y → (−)X of quasi-
categories. Here an isofibration is a fibration between fibrant objects in the Joyal model
structure on simplicial sets. All of the facts (i)-(iii) follow immediately from the fact that
the quasi-categories are the fibrant objects in this monoidal model structure. �

Quasi-categories with terminal objects

Now let us consider qCat∅,∞ ⊂ qCat∞, the simplicial category of quasi-categories ad-
mitting and functors preserving terminal objects (and all higher morphisms whose vertices
are functors preserving terminal objects). Our aim is to prove:

Theorem. A projective cofibrant weighted limit of a diagram in qCat∅,∞ is in qCat∅,∞.
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As before, it suffices to show that qCat∅,∞ is closed under the classes of limits (i)-(v)
and that cotensors with monomorphisms induce isofibrations that preserve terminal ob-
jects. Before going any further, we should define a terminal object in the quasi-categorical
context.

Definition. A vertex t in a quasi-category A is terminal if any of the following equivalent
conditions are satisfied:

(i) Any sphere in A whose final vertex is t has a filler.

∆0
[n]
//

t
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(ii) There is an adjunction of quasi-categories A
! ))
⊥ ∆0

t
hh

(iii) For all simplicial sets X, the constant functor X
!
−→ ∆0 t

−→ A is terminal in h(AX),
the homotopy category of the mapping space AX .

Definitions (ii) and (iii) refer implicitly to qCat2, the strict 2-category of quasi-categories,
defined by applying the homotopy category functor to the hom-spaces of qCat∞.

To conclude, I’ll quickly prove parts (iv), (i), and (v) of the theorem. Parts (ii) and (iii)
are no more difficult, but require some basic facts about isofibrations and terminal objects.

Lemma (products). Suppose ti ∈ Ai is terminal. Then (ti)i∈I ∈
∏

i∈I Ai is terminal.

Proof. Given a sphere

∆0
[n]
//

(ti)i∈I
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ti
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πi // Ai
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the fact that the ti ∈ Ai are terminal for each i defines the components of the filler. Note
that each projection πi prefers this particular terminal object. This implies that it preserves
all terminal objects because all terminal objects are isomorphic. �

Lemma (idempotents). Suppose t ∈ A is terminal, e : A → A is an idempotent (e2 = e),
and e preserves terminal objects (so et ∈ A is terminal). We split the idempotent by forming
the equalizer

Ae // // eq(A
e //
id
// A)

Then et ∈ Ae is terminal.
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Proof. Observe that e2 = e implies that et ∈ Ae. Given a sphere

∆0
[n]
//

et

((
∂∆n

��

// Ae

��
∆n

ea

=={
{

{
{

a
//___ A

the fact that et is terminal in A implies there exists a filler a : ∆n → A for the composite
sphere in A. One can check that ea : ∆n → Ae fills the sphere in Ae �

Products and idempotents are both conical limits. For cotensors, we’ll switch to the
equivalent definition (iii).

Lemma (cotensors). Suppose t ∈ A is terminal and Y is a simplicial set. Then Y
!
−→ ∆0 t

−→ A
is terminal in AY .

Proof. To say t ∈ A is terminal is to say that for any simplicial set X and any map X → A
there is a unique 2-cell

X //

!   @@@@@@@
⇓∃!

A

∆0

t

??~~~~~~~

By 2-cell I mean a morphism in h(AX), i.e., an endpoint-preserving homotopy class of 1-
simplices in AX . This is true for any X so in particular, we have a unique 2-cell as on the
left below.

X × Y //

! ""DDDDDDDDD
⇓∃!

A

!

X //

! !!CCCCCCCC
⇓∃!

AY

=

X //

! ��????????
⇓∃!

AY

∆0

t
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(∆0)Y

tY
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∆0

t·!

>>~~~~~~~~

The 2-category of quasi-categories is cartesian closed, so applying the 2-adjunction −×Y a
(−)Y , this transposes to a unique 2-cell in the triangle on the right. By (iii) this says exactly
that the constant map at t is terminal in AY . �
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