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The idea of an ∞-category

An ∞-category — a category weakly enriched over ∞-groupoids —

should have:

• objects

• 1-arrows between these objects

• with composites of these 1-arrows witnessed by invertible 2-arrows

• with composition associative up to invertible 3-arrows (and unital)

• with these witnesses coherent up to invertible arrows all the way up

But this definition is tricky to make precise in classical foundations.



Models of ∞-categories

The notion of ∞-category is made precise by several models:

Rezk Segal

RelCat Top-Cat

1-Comp qCat

• topological categories and relative categories are the simplest to

define but do not have enough maps between them

•

⎧{{
⎨{{
⎩

quasi-categories (nee. weak Kan complexes),
Rezk spaces (nee. complete Segal spaces),
Segal categories, and

(saturated 1-trivial weak) 1-complicial sets

are cartesian closed, and in fact any of these categories can be

enriched over any of the others



The analytic vs synthetic theory of ∞-categories

Q: How might you develop the category theory of ∞-categories?

Strategies:

• work analytically to give categorical definitions and prove theorems

using the combinatorics of one model

(eg., Joyal, Lurie, Gepner-Haugseng, Cisinski in qCat;

Kazhdan-Varshavsky, Rasekh in Rezk; Simpson in Segal)

• work synthetically to give categorical definitions and prove

theorems in all four models qCat, Rezk, Segal, 1-Comp at once

(R-Verity: an ∞-cosmos axiomatizes the common features of the

categories qCat, Rezk, Segal, 1-Comp of ∞-categories)

• work synthetically in a simplicial type theory augmenting HoTT to

prove theorems in Rezk

(R-Shulman: an ∞-category is a type with unique binary

composites in which isomorphism is equivalent to identity)



Plan

0. The analytic theory of ∞-categories

“∞-category theory for experts”

1. The synthetic theory of ∞-categories (in an ∞-cosmos)

“∞-category theory for graduate students”

2. The synthetic theory of ∞-categories (in homotopy type theory)

“∞-category theory for undergraduates”
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The synthetic theory of ∞-categories
(in an ∞-cosmos)



∞-cosmoi of ∞-categories

An ∞-cosmos axiomatizes the structures needed to “develop

∞-category theory.”

not-the-defn. An ∞-cosmos is a cartesian closed category K that has

• certain (flexible weighted enriched) limits

• an adjunction

K Cat

ho

⊥

Theorem. qCat, Rezk, Segal, 1-Comp define biequivalent ∞-cosmoi.

Henceforth ∞-category and ∞-functor are technical terms that refer to

the objects and morphisms of some ∞-cosmos.



The homotopy 2-category

The homotopy 2-category of an ∞-cosmos is a strict 2-category whose:

• objects are the ∞-categories 𝐴, 𝐵 in the ∞-cosmos

• 1-cells are the ∞-functors 𝑓∶ 𝐴 → 𝐵 in the ∞-cosmos

• 2-cells, called ∞-natural transformations 𝐴 𝐵,
𝑓

𝑔

⇓𝛾 are

defined to be the arrows in the homotopy category ho(𝐵𝐴)

Key fact: equivalences in the homotopy 2-category

𝐴 𝐵 𝐴 𝐴 𝐵 𝐵
𝑓

𝑔

id𝐴

⇓≅

𝑔𝑓

id𝐵

⇓≅

𝑓𝑔

coincide with equivalences in the ∞-cosmos.

Thus, non-evil 2-categorical definitions are “homotopically correct.”



Adjunctions between ∞-categories

defn. An adjunction between ∞-categories is an adjunction in the

homotopy 2-category, consisting of:

• ∞-categories 𝐴 and 𝐵
• ∞-functors 𝑢∶ 𝐴 → 𝐵, 𝑓∶ 𝐵 → 𝐴

• ∞-natural transformations 𝐵 𝐵
id𝐵

⇓𝜂

𝑢𝑓

and 𝐴 𝐴
𝑓𝑢

⇓𝜖

id𝐴

satisfying the triangle equalities

𝐵 𝐵 𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴 𝐴 𝐴 𝐴
⇓𝜖 𝑓 ⇓𝜂 = =

𝑓
⇓𝜂 ⇓𝜖

𝑓 = =
𝑓𝑓

𝑢
𝑢 𝑢 𝑢

𝑢

Write 𝑓 ⊣ 𝑢 to indicate that 𝑓 is the left adjoint and 𝑢 is the right adjoint.



The 2-category theory of adjunctions

Since an adjunction between ∞-categories is just an adjunction in the

homotopy 2-category, all 2-categorical theorems about adjunctions

become theorems about adjunctions between ∞-categories.

Prop. Adjunctions compose:

𝐶 𝐵 𝐴 ⇝ 𝐶 𝐴
𝑓′

⊥
𝑓

⊥
𝑢′ 𝑢

𝑓𝑓′

⊥
𝑢′𝑢

Prop. Adjoints to a given functor 𝑢∶ 𝐴 → 𝐵 are unique up to canonical

isomorphism: if 𝑓 ⊣ 𝑢 and 𝑓 ′ ⊣ 𝑢 then 𝑓≅𝑓 ′ .

Prop. Any equivalence can be promoted to an adjoint equivalence: if

𝑢∶ 𝐴 𝐵∼
then 𝑢 is left and right adjoint to its equivalence inverse.



Composing adjunctions

Prop. Adjunctions compose:

𝐶 𝐵 𝐴 ⇝ 𝐶 𝐴
𝑓′

⊥
𝑓

⊥
𝑢′ 𝑢

𝑓𝑓′

⊥
𝑢′𝑢

Proof: The composite 2-cells

𝐶 𝐶 𝐶

𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴

𝑓′ ⇓𝜂′ ⇓𝜖′
𝑓′

𝑓
⇓𝜂

𝑢′
𝑢′

⇓𝜖
𝑓

𝑢
𝑢

define the unit and counit of 𝑓𝑓 ′ ⊣ 𝑢′𝑢 satisfying the triangle equalities.



Limits and colimits in an ∞-category

defn. An ∞-category 𝐴 has

• a terminal element iff 1 𝐴
𝑡
⊥
!

and

• all limits of shape 𝐽 iff 𝐴𝐽 𝐴
lim

⊥
Δ

.

Note: the counit components

𝐴

1 𝐴𝐽
⇓𝜖

Δ

𝑑

lim𝑑 define the limit cone.

Prop. Right adjoints preserve limits and left adjoints preserve colimits.

Proof: The usual one!



Universal properties of adjunctions and limits

defn. Any ∞-category 𝐴 has an ∞-category of arrows 𝐴2 , pulling back

to define the comma ∞-category:

Hom𝐴(𝑓, 𝑔) 𝐴2

𝐶 × 𝐵 𝐴 × 𝐴

⌟
(cod,dom) (cod,dom)

𝑔×𝑓

This specializes to define the mapping space Hom𝐴(𝑥, 𝑦) between each

pair of elements 𝑥, 𝑦 ∶ 1 → 𝐴.

Prop. 𝐴 𝐵
𝑢
⊥
𝑓

if and only if Hom𝐴(𝑓, 𝐴) ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑢).

Prop. An ∞-functor 𝑑∶ 𝐽 → 𝐴 has limit ℓ ∶ 1 → 𝐴 iff

Hom𝐴(𝐴, ℓ) ≃𝐴 Hom𝐴𝐽(Δ, 𝑑).

Prop. Mapping spaces are discrete ∞-categories, i.e., ∞-groupoids.
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The synthetic theory of ∞-categories
(in homotopy type theory)



The Rosetta Stone for Homotopy Type Theory

type theory set theory logic homotopy theory

𝐴 set proposition space

𝑥 ∶ 𝐴 element proof point

∅, 1 ∅, {∅} ⊥, ⊤ ∅, ∗
𝐴 × 𝐵 set of pairs 𝐴 and 𝐵 product space

𝐴 + 𝐵 disjoint union 𝐴 or 𝐵 coproduct

𝐴 → 𝐵 set of functions 𝐴 implies 𝐵 function space

𝑥 ∶ 𝐴 ⊢ 𝐵(𝑥) family of sets predicate fibration

𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵(𝑥) fam. of elements conditional proof section

∏𝑥∶𝐴 𝐵(𝑥) product ∀𝑥.𝐵(𝑥) space of sections

∑𝑥∶𝐴 𝐵(𝑥) disjoint sum ∃𝑥.𝐵(𝑥) total space

𝑝 ∶ 𝑥 =𝐴 𝑦 𝑥 = 𝑦 proof of equality path from 𝑥 to 𝑦
∑𝑥,𝑦∶𝐴 𝑥 =𝐴 𝑦 diagonal equality relation path space for 𝐴



Path induction

The identity type family is freely generated by the terms refl𝑥 ∶ 𝑥 =𝐴 𝑥.

Path induction. If 𝐵(𝑥, 𝑦, 𝑝) is a type family dependent on 𝑥, 𝑦 ∶ 𝐴 and

𝑝 ∶ 𝑥 =𝐴 𝑦, then to prove 𝐵(𝑥, 𝑦, 𝑝) it suffices to assume 𝑦 is 𝑥 and 𝑝 is

refl𝑥 . I.e., there is a function

path-ind ∶ (∏
𝑥∶𝐴

𝐵(𝑥, 𝑥, refl𝑥)) → ( ∏
𝑥,𝑦∶𝐴

∏
𝑝∶𝑥=𝐴𝑦

𝐵(𝑥, 𝑦, 𝑝)).



A model for the type theory for synthetic ∞-categories

Set𝚫
op×𝚫op ⊃ Reedy ⊃ Segal ⊃ Rezk

= = = =

bisimplicial sets types types with types with

composition composition

& univalence

Theorem (Shulman). Homotopy type theory is modeled by the category

of Reedy fibrant bisimplicial sets.

Theorem (Rezk). ∞-categories are modeled by Rezk spaces aka

complete Segal spaces.



Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes Φ ⊂ 2𝑛 ,

polytopes embedded in a directed cube, defined in a language

⊤, ⊥, ∧, ∨, ≡ and 0, 1, ≤

satisfying intuitionistic logic and strict interval axioms.

Δ𝑛 ≔ {(𝑡1, … , 𝑡𝑛) ∶ 2𝑛 ∣ 𝑡𝑛 ≤ ⋯ ≤ 𝑡1} e.g. Δ1 ≔ 2

Δ2 ≔

⎧{{
⎨{{⎩

(0,0) (1,0)

(1,1)

(𝑡,0)

(1,𝑡)
(𝑡,𝑡)

𝜕Δ2 ≔ {(𝑡1, 𝑡2) ∶ 22 ∣ (𝑡2 ≤ 𝑡1) ∧ ((0 = 𝑡2) ∨ (𝑡2 = 𝑡1) ∨ (𝑡1 = 1))}
Λ2

1 ≔ {(𝑡1, 𝑡2) ∶ 22 ∣ (𝑡2 ≤ 𝑡1) ∧ ((0 = 𝑡2) ∨ (𝑡1 = 1))}



Extension types

Formation rule for extension types

Φ ⊂ Ψ shape 𝐴 type 𝑎 ∶ Φ → 𝐴

⟨
Φ 𝐴

Ψ

𝑎

⟩ type

A term 𝑓 ∶ ⟨
Φ 𝐴

Ψ

𝑎

⟩ defines

𝑓 ∶ Ψ → 𝐴 so that 𝑓(𝑡) ≡ 𝑎(𝑡) for 𝑡 ∶ Φ.

The simplicial type theory allows us to prove equivalences between

extension types along composites or products of shape inclusions.



Hom types

The hom type for 𝐴 depends on two terms in 𝐴:

𝑥, 𝑦 ∶ 𝐴 ⊢ Hom𝐴(𝑥, 𝑦)

Hom𝐴(𝑥, 𝑦) ≔ ⟨
𝜕Δ1 𝐴

Δ1

[𝑥,𝑦]

⟩ type

A term 𝑓 ∶ Hom𝐴(𝑥, 𝑦) defines an arrow in 𝐴 from 𝑥 to 𝑦.

In the ∞-cosmos Rezk:

• Hom𝐴(𝑥, 𝑦) recovers the mapping space from 𝑥 to 𝑦 and

• ∑𝑥,𝑦∶𝐴 Hom𝐴(𝑥, 𝑦) recovers the ∞-category of arrows 𝐴2 .



Segal types ≡ types with binary composition

A type 𝐴 is Segal iff every composable pair of arrows has a unique

composite., i.e., for every 𝑓 ∶ Hom𝐴(𝑥, 𝑦) and 𝑔 ∶ Hom𝐴(𝑦, 𝑧) the type

⟨
Λ2

1 𝐴

Δ2

[𝑓,𝑔]

⟩ is contractible.

Semantically, a Reedy fibrant bisimplicial set 𝐴 is Segal if and only if

𝐴Δ2 ↠ 𝐴Λ2
1 has contractible fibers.

By contractibility, ⟨
Λ2

1 𝐴

Δ2

[𝑓,𝑔]

⟩ has a unique inhabitant. Write

𝑔 ∘ 𝑓 ∶ Hom𝐴(𝑥, 𝑧) for its inner face, the composite of 𝑓 and 𝑔.



Identity arrows

For any 𝑥 ∶ 𝐴, the constant function defines a term

id𝑥 ≔ 𝜆𝑡.𝑥 ∶ Hom𝐴(𝑥, 𝑥) ≔ ⟨
𝜕Δ1 𝐴

Δ1

[𝑥,𝑥]

⟩,

which we denote by id𝑥 and call the identity arrow.

For any 𝑓 ∶ Hom𝐴(𝑥, 𝑦) in a Segal type 𝐴, the term

𝜆(𝑠, 𝑡).𝑓(𝑡) ∶ ⟨
Λ2

1 𝐴

Δ2

[id𝑥,𝑓]

⟩

witnesses the unit axiom 𝑓 = 𝑓 ∘ id𝑥 .



Associativity of composition

Let 𝐴 be a Segal type with arrows

𝑓 ∶ Hom𝐴(𝑥, 𝑦), 𝑔 ∶ Hom𝐴(𝑦, 𝑧), ℎ ∶ Hom𝐴(𝑧, 𝑤).

Prop. ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓.
Proof: Consider the composable arrows in the Segal type Δ1 → 𝐴:

𝑦

𝑥 𝑧

𝑧

𝑦 𝑤

𝑔

ℎ∘𝑔ℎ∘𝑔

𝑓

𝑔∘𝑓

𝑓

𝑔∘𝑓
𝑓

ℓ

ℎ

ℎℎ

𝑔𝑔

𝑔

Composing defines a term in the type Δ2 → (Δ1 → 𝐴) which yields a

term ℓ ∶ Hom𝐴(𝑥, 𝑤) so that ℓ = ℎ ∘ (𝑔 ∘ 𝑓) and ℓ = (ℎ ∘ 𝑔) ∘ 𝑓.



Isomorphisms

An arrow 𝑓∶ Hom𝐴(𝑥, 𝑦) in a Segal type is an isomorphism if it has a

two-sided inverse 𝑔∶ Hom𝐴(𝑦, 𝑥). However, the type

∑
𝑔∶ Hom𝐴(𝑦,𝑥)

(𝑔 ∘ 𝑓 = id𝑥) × (𝑓 ∘ 𝑔 = id𝑦)

has higher-dimensional structure and is not a proposition. Instead define

isiso(𝑓) ≔ ( ∑
𝑔∶ Hom𝐴(𝑦,𝑥)

𝑔 ∘ 𝑓 = id𝑥) × ( ∑
ℎ∶ Hom𝐴(𝑦,𝑥)

𝑓 ∘ ℎ = id𝑦).

For 𝑥, 𝑦 ∶ 𝐴, the type of isomorphisms from 𝑥 to 𝑦 is:

𝑥 ≅𝐴 𝑦 ≔ ∑
𝑓∶Hom𝐴(𝑥,𝑦)

isiso(𝑓).



Rezk types ≡ ∞-categories

By path induction, to define a map

path-to-iso ∶ (𝑥 =𝐴 𝑦) → (𝑥 ≅𝐴 𝑦)

for all 𝑥, 𝑦 ∶ 𝐴 it suffices to define

path-to-iso(refl𝑥) ≔ id𝑥.

A Segal type 𝐴 is Rezk iff every isomorphism is an identity, i.e., iff the map

path-to-iso ∶ ∏
𝑥,𝑦∶𝐴

(𝑥 =𝐴 𝑦) → (𝑥 ≅𝐴 𝑦)

is an equivalence.



Discrete types ≡ ∞-groupoids

Similarly by path induction define

path-to-arr ∶ (𝑥 =𝐴 𝑦) → Hom𝐴(𝑥, 𝑦)

for all 𝑥, 𝑦 ∶ 𝐴 by path-to-arr(refl𝑥) ≔ id𝑥 .

A type 𝐴 is discrete iff every arrow is an identity, i.e., iff path-to-arr is an

equivalence.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are

isomorphisms.

Proof:

𝑥 =𝐴 𝑦 Hom𝐴(𝑥, 𝑦)

𝑥 ≅𝐴 𝑦

path-to-arr

path-to-iso



∞-categories for undergraduates

defn. An ∞-groupoid is a type in which arrows are equivalent to

identities:

path-to-arr ∶ (𝑥 =𝐴 𝑦) → Hom𝐴(𝑥, 𝑦) is an equivalence.

defn. An ∞-category is a type

• which has unique binary composites of arrows:

⟨
Λ2

1 𝐴

Δ2

[𝑓,𝑔]

⟩ is contractible

• and in which isomorphisms are equivalent to identities:

path-to-iso ∶ (𝑥 =𝐴 𝑦) → (𝑥 ≅𝐴 𝑦) is an equivalence.



Covariant type families ≡ categorical fibrations

A type family 𝑥 ∶ 𝐴 ⊢ 𝐵(𝑥) over a Segal type 𝐴 is covariant if for every

𝑓 ∶ Hom𝐴(𝑥, 𝑦) and 𝑢 ∶ 𝐵(𝑥) there is a unique lift of 𝑓 with domain 𝑢.

The codomain of the unique lift defines a term 𝑓∗𝑢 ∶ 𝐵(𝑦).

Prop. For 𝑢 ∶ 𝐵(𝑥), 𝑓 ∶ Hom𝐴(𝑥, 𝑦), and 𝑔 ∶ Hom𝐴(𝑦, 𝑧),

𝑔∗(𝑓∗𝑢) = (𝑔 ∘ 𝑓)∗𝑢 and (id𝑥)∗𝑢 = 𝑢.

Prop. If 𝑥 ∶ 𝐴 ⊢ 𝐵(𝑥) is covariant then for each 𝑥 ∶ 𝐴 the fiber 𝐵(𝑥) is
discrete. Thus covariant type families are fibered in ∞-groupoids.

Prop. Fix 𝑎 ∶ 𝐴. The type family 𝑥 ∶ 𝐴 ⊢ Hom𝐴(𝑎, 𝑥) is covariant.



The Yoneda lemma

Let 𝑥 ∶ 𝐴 ⊢ 𝐵(𝑥) be a covariant family over a Segal type and fix 𝑎 ∶ 𝐴.

Yoneda lemma. The maps

ev-id ≔ 𝜆𝜙.𝜙(𝑎, id𝑎) ∶ (∏
𝑥∶𝐴

Hom𝐴(𝑎, 𝑥) → 𝐵(𝑥)) → 𝐵(𝑎)

and

yon ≔ 𝜆𝑢.𝜆𝑥.𝜆𝑓.𝑓∗𝑢 ∶ 𝐵(𝑎) → (∏
𝑥∶𝐴

Hom𝐴(𝑎, 𝑥) → 𝐵(𝑥))

are inverse equivalences.

Corollary. A natural isomorphism 𝜙 ∶ ∏𝑥∶𝐴 Hom𝐴(𝑎, 𝑥) ≅ Hom𝐴(𝑏, 𝑥)
induces an identity ev-id(𝜙) ∶ 𝑏 =𝐴 𝑎 if the type 𝐴 is Rezk.



The dependent Yoneda lemma

Yoneda lemma. If 𝐴 is a Segal type and 𝐵(𝑥) is a covariant family

dependent on 𝑥 ∶ 𝐴, then evaluation at (𝑎, id𝑎) defines an equivalence

ev-id ∶ (∏
𝑥∶𝐴

Hom𝐴(𝑎, 𝑥) → 𝐵(𝑥)) → 𝐵(𝑎)

The Yoneda lemma is a “directed” version of the “transport” operation

for identity types, suggesting a dependently-typed generalization

analogous to the full induction principle for identity types.

Dependent Yoneda lemma. If 𝐴 is a Segal type and 𝐵(𝑥, 𝑦, 𝑓) is a
covariant family dependent on 𝑥, 𝑦 ∶ 𝐴 and 𝑓 ∶ Hom𝐴(𝑥, 𝑦), then
evaluation at (𝑥, 𝑥, id𝑥) defines an equivalence

ev-id ∶ ( ∏
𝑥,𝑦∶𝐴

∏
𝑓∶Hom𝐴(𝑥,𝑦)

𝐵(𝑥, 𝑦, 𝑓)) → ∏
𝑥∶𝐴

𝐵(𝑥, 𝑥, id𝑥)



Dependent Yoneda is directed path induction

Slogan: the dependent Yoneda lemma is directed path induction.

Path induction. If 𝐵(𝑥, 𝑦, 𝑝) is a type family dependent on 𝑥, 𝑦 ∶ 𝐴 and

𝑝 ∶ 𝑥 =𝐴 𝑦, then to prove 𝐵(𝑥, 𝑦, 𝑝) it suffices to assume 𝑦 is 𝑥 and 𝑝 is

refl𝑥 . I.e., there is a function

path-ind ∶ (∏
𝑥∶𝐴

𝐵(𝑥, 𝑥, refl𝑥)) → ( ∏
𝑥,𝑦∶𝐴

∏
𝑝∶𝑥=𝐴𝑦

𝐵(𝑥, 𝑦, 𝑝)).

Arrow induction. If 𝐵(𝑥, 𝑦, 𝑓) is a covariant family dependent on

𝑥, 𝑦 ∶ 𝐴 and 𝑓 ∶ Hom𝐴(𝑥, 𝑦) and 𝐴 is Segal, then to prove 𝐵(𝑥, 𝑦, 𝑓) it

suffices to assume 𝑦 is 𝑥 and 𝑓 is id𝑥 . I.e., there is a function

id-ind ∶ (∏
𝑥∶𝐴

𝐵(𝑥, 𝑥, id𝑥)) → ( ∏
𝑥,𝑦∶𝐴

∏
𝑓∶Hom𝐴(𝑥,𝑦)

𝐵(𝑥, 𝑦, 𝑓)).
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